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Abstract

In any physical platform, two ingredients are essential for quantum information process-

ing: single-qubit control, and entangling interactions between qubits. Neutral atoms can

be individually controlled with high fidelity and are resilient to environmental noise, mak-

ing them attractive candidates for implementing quantum information protocols. However,

achieving strong interactions remains a major obstacle. One way to increase the interac-

tion strength between neutral atoms is to excite them into high-lying Rydberg states, which

exhibit large electric dipole moments (and by extension, strong electric dipole-dipole in-

teractions). By slowly ramping up the Rydberg level coupling in a system, one can “dress”

the atomic ground states with some Rydberg character; this maps the Rydberg dipole inter-

action to an effective interaction between ground states. Such Rydberg-dressed interaction

is the focus of this dissertation.

After describing the physics of the Rydberg-dressed interaction, we propose three pro-

tocols that demonstrate its versatility and provide a framework for considering some of

the details of realistic implementation. In all three cases, Rydberg dressing — along with
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some form of single-atom control — is used to generate highly entangled states of interest.

Our first proposal relates to the adiabatic model of quantum computing, in which solutions

to problems are encoded in the ground states of carefully engineered Hamiltonians. The

Rydberg-dressed interaction can provide nonlinear Hamiltonian terms, allowing us to en-

code NP-hard and other interesting problems. We model this protocol in the presence of

decoherence, and find that computational fidelities of ∼ 0.98 for four atoms should be

possible with currently realistic experimental parameters.

Our second proposal is also related to quantum computing, this time in the circuit

model. The Rydberg-dressed interaction can be used to generate a controlled-NOT logic

gate which, when interwoven with single-qubit gates, can perform universal quantum com-

putation. Experimentally, noise due to atomic thermal motion has been a primary limita-

tion on the fidelities of these gates. We show that a Doppler-free setup, with counterprop-

agating lasers, effectively suppresses this type of noise, allowing simulated fidelities of up

to ∼ 0.998 per gate. Such strong suppression is only possible because the Doppler-free

configuration can harness the natural robustness of adiabatic dressing; other gate schemes

using, e.g., resonant pulses, do not exhibit the same degree of improvement.

Finally, we consider exploiting the many-body character of the Rydberg-dressed in-

teraction to generate collective entanglement in mesoscopic ensembles of neutral atoms.

An atomic ensemble uniformly illuminated by a single Rydberg-exciting laser is iso-

morphic to the well-known Jaynes-Cummings model. In addition to adapting generic

Jaynes-Cummings entanglement protocols developed in other platforms, one can apply

microwaves to drive entanglement in a way that is unique to the atomic platform. We prove

that by allowing the microwave phase to vary in time, one can generate arbitrary symmet-

ric states of the ensemble. While this method compares favorably with other entanglement

protocols in many ways, the required frequency of phase switching presents a fundamen-

tal limitation on its effectiveness. To mitigate this, we propose a variant scheme in which

parameters are chosen to only allow excitations within the system’s dressed-ground sub-
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space; this effectively cuts phase switching demands in half. All three protocols serve to

illustrate the power of the Rydberg-dressed interaction and suggest directions for future

study.
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Chapter 1

Introduction

The essential structure of a quantum computer is relatively straightforward and platform-

independent. Arbitrary control of single qubits, along with any one of a wide range of

entangling two-qubit operations, is sufficient for universal quantum computation [4]. Es-

pecially since multi-qubit unitaries are typically more challenging to implement than their

single-qubit counterparts, a primary goal in the development of any quantum computer

is to generate entanglement between qubits with high fidelity and scalability. Substan-

tial progress toward this goal has been made with a variety of physical implementations.

Atomic ions are currently the most advanced platform in this regard [5]; accomplishments

include entanglement between as many as eight ions [6, 7] and over significant spatial

distances [8]. However, substantial entanglement has also been achieved in superconduc-

tors [9], quantum dots [10, 11], and linear optical systems [12]. In this dissertation, we

focus on entanglement generation in neutral atom qubits.

Compared with most other platforms, neutral atoms tend to interact weakly, both with

each other and with their environments. While this low interaction strength can be ben-

eficial in terms of minimizing errors from environmental noise, it makes entanglement

especially difficult to produce. Multi-atom trapping/addressing [13] and single-atom uni-

1



Chapter 1. Introduction

taries [14]—both critical ingredients in a scalable computer—can be performed with very

high fidelities. On the other hand, while several methods for producing entangling interac-

tions have been attempted, including collisional interactions [15] and coupling via optical

cavity modes [16], high-fidelity entanglement is an outstanding challenge.

One promising path to entanglement is through dipole interactions. If two neutral

atoms are brought close enough together, the electric dipole-dipole interaction (EDDI)

between them can be harnessed to perform quantum computation [17]. While this tech-

nique was originally proposed for use with atoms of low principle quantum number n, the

EDDI between such atoms is very weak. With such weak interactions, it is infeasible to

produce entanglement faster than decoherence effects such as photon scattering destroy it,

so the scheme cannot work in a realistic setting. The situation is much more promising,

however, if we use Rydberg states: high-lying atomic orbitals (typically n & 20) with ex-

aggerated physical properties [18]. The most noticeable of these properties is their size:

the diameter of a Rydberg atom’s valence electron cloud scales as n2, growing far larger

than the distances normally associated with single atoms. Such large electron clouds are

highly sensitive to electromagnetic fields, making them useful for fine manipulation of

atomic positions [19] and non-demolition photon counting in cavities [20, 21]. When al-

lowed to interact with other, ground-state atoms, they can generate large and exotic bound

states such as "trilobite molecules", so-called for the striking shapes of their wavefunc-

tions [22, 23].

When multiple Rydberg atoms are brought together, these same properties boost the

effectiveness of the EDDI between them [18]. As noted above, a Rydberg atom’s size —

and therefore electric dipole moment — scales as n2; the EDDI depends on the product

of both atoms’ dipole moments, and so scales as n4. Rydberg electron clouds are also

more “malleable” than their low-n counterparts and respond more readily to the presence

of nearby atoms; for reasons we discuss in Chap. 2, the EDDI boost from this effect also

scales as n2. As an added benefit, the rate of spontaneous emission from Rydberg levels

2



Chapter 1. Introduction

drops off as n−2, so even a fixed EDDI will have less decoherence to compete with as n

grows. Taken together, these properties suggest that using Rydberg levels can boost the

efficacy of EDDI entanglement by as much as n8. Such a Rydberg-enhanced EDDI is at

the heart of two pioneering proposals for neutral atom quantum computing, which lay out

schemes for entangling individual trapped atoms [24] and cold atomic ensembles [25].

While we discuss the details of the Rydberg EDDI in Chap. 2, its usefulness can be

understood with the qualitative “blockade” picture. Generally, a blockade interaction is an

interaction that is used to prevent multiple, simultaneous excitations in a system. Almost

any kind of multi-particle interaction can be used to generate a blockade. Notable exam-

ples include anti-bunching in electrical currents [26] and sub-poissonian loading of atom

traps [27]. In our case, the EDDI can generate a large energy penalty for states with mul-

tiple Rydberg atoms, blockading the excitation of such states. If the EDDI energy is much

larger than the other energy scales in a system, the blockade becomes essentially perfect,

and the effect of the EDDI reduces to a heuristic: “only one atom at a time can be in a Ryd-

berg state.” Fig. 1.1 shows an illustrative example of how the Rydberg EDDI blockade has

been used to generate entanglement [28]. The strengths and weaknesses of the Rydberg

EDDI mesh especially well with those of a blockade. Suppressing Rydberg excitations

helps limit sensitivity to stray fields, and a blockade is much more robust to fluctuations in

atomic position than a raw EDDI. For this reason, the blockade has been a staple element

of Rydberg-based quantum computing protocols since they were first proposed [24, 29].

Beyond the entangling operations that are the focus of this dissertation, multi-atom Ry-

dberg systems exhibit a variety of interesting physics that is well-described by the blockade

picture. A blockade can generate non-classical statistics such as antibunching of Rydberg

excitations [30]. Clusters of mutually blockaded atoms tend to share collective excitations;

this can lead to entanglement over mesoscopic ensembles [29], or quantum logic that is

robust against fluctuations in the number of atoms present [31], not to mention the kind

of collective state control we explore in Chap. 5. By exploiting the strong coupling be-
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Figure 1.1: Schematic of a method to entangle two atoms via the Rydberg blockade, using
a sequence of five resonant π-pulses. Each atom has two ground “logical” states, |0〉 and
|1〉, and a Rydberg state |r〉. (a) If the left atom is in the |1〉 state, pulse 1 excites it to |r〉.
The presence of a Rydberg atom induces an EDDI in the right atom’s |r〉 state, shifting it
off resonance and blockading excitation. Pulses 2–4 therefore have no effect, and pulse 5
returns the system to its initial state. (b) If the left atom is in |0〉, pulses 1 and 5 have no
effect. The pulse sequence 2–4 on the right atom now maps |0〉 to |1〉, and vice-versa, via
the Rydberg state. The right atom’s logical state thus changes conditioned on the left atom
being in |0〉; this is a maximally entangling operation.

tween Rydberg atoms and electromagnetic fields, one can expand the toolbox to include

electromagnetically tuned interaction strengths [32] and coupling between the Rydberg

atoms’ electronic and spatial degrees of freedom [33]. The Rydberg atoms can also act as

mediators for entanglement in the electromagnetic field itself, leading to a photon-photon

blockade [34, 35] and other strongly nonlinear optics [36].

Despite this wide and growing range of higher-level applications, the basic task of

entangling Rydberg atoms with high fidelity is an ongoing project. To make quantum

computing in neutral atoms a reality, we need to be able to generate high-fidelity entangle-

ment, even in the face of such noise sources as incoherent photon scattering and coupling

to noisy environmental fields. Recent experiments have pushed the fidelities of entan-

gling gates into the ∼ 80% range [37, 38, 39], although substantial improvements are still

needed to approach thresholds for fault tolerance [40]. In parallel with this, progress has
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been made in producing specific entangled states in ensembles [41, 42] and addressing the

experimental challenges that will come with scaling up a neutral atom system [43, 44].

To further the goal of strong and precise Rydberg interactions in noisy circumstances,

we turn to another versatile technique in neutral atom physics, adiabatic excitation. By

slowly changing the parameters of a coupling field from weak- to strong-coupling, it is

possible to drive excitations that are robust against a range of noise sources and exper-

imental imperfections [45]. It is natural to consider the application of this technique to

Rydberg excitations, and theoretical studies indicate that robust excitations can give rise

to similarly robust interactions [46]. The heart of this dissertation is an exploration of

the advantages of Rydberg entanglement through adiabatic excitation, as applied in three

different protocols.

The remainder of this dissertation is organized as follows. In Chap. 2, we review the

details of the interaction between Rydberg atoms, particularly in the context of adiabatic

dressing. In Chap. 3, we show how this interaction can be directly applied to solve prob-

lems of interest through adiabatic quantum computation. In Chap. 4, we consider the use

of Rydberg-dressed interactions in gate model computation, paying special attention to

their advantages when realistic noise is considered. In Chap. 5, we combine Rydberg-

dressed interactions with techniques from quantum control to produce a more general

class of entangled states in neutral atom ensembles. Finally, in Chap. 6, we offer some

concluding remarks and directions for future study. The published works associated with

this dissertation are given in Table 1.1.
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Chapter Publication
3 T. Keating, K. Goyal, Y.-Y. Jau, G. W. Biedermann, A. J. Landahl, and I.

H. Deutsch. Adiabatic quantum computation with Rydberg-dressed atoms,
Phys. Rev. A 87, 052314 (2013).

4 T. Keating, R. L. Cook, A. Hankin, Y.-Y. Jau, G. W. Biedermann, and I.
H. Deutsch. Robust quantum logic in neutral atoms via adiabatic Rydberg
dressing, Phys. Rev. A 91, 012337 (2015).

5 T. Keating, C. H. Baldwin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch.
Arbitrary Dicke-state control of symmetric Rydberg ensembles, in prepara-
tion.
Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann.
Entangling atomic spins with a Rydberg-dressed spin-flip blockade, Nature
Physics 12, 71–74 (2016).

B T. Keating, J. Slote, G. Muraleedharan, E. Carrasco, and I. H. Deutsch. On
the Scalability of Boson Sampling with Noise, in preparation.

Table 1.1: List of publications and associated chapters. Appendix B contains some pre-
liminary results regarding the role of noise in the Boson Sampling problem; this work is
unrelated to the Rydberg-dressed interaction, but was done in parallel with the research
for this dissertation.
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Chapter 2

The Rydberg Dipole-Blockade

Interaction

The unique physics of Rydberg atoms come from a range of exaggerated physical prop-

erties, which have been explored in detail in a number of works including [18] and [47].

Most of these properties stem from their remarkably large sizes; the diameter of an ex-

cited electron’s orbital scales with its principal quantum number as n2, and can be on the

order of microns for sufficiently large n [18]. By exciting valence electrons into states so

far-removed from their atomic cores, we can induce significant electric dipole moments in

the atom, allowing for strong electrostatic interactions at longer ranges than are normally

associated with neutral atoms. In this chapter, we outline the nature of the electric dipole-

dipole interaction (EDDI) in Rydberg atoms and describe how this interaction can be used

to produce entanglement. In particular, we focus on using the EDDI to generate a “dipole-

blockade” interaction, in which the excitation of one Rydberg atom prevents subsequent

excitations of nearby atoms. The dipole-blockade interaction holds several advantages

over the raw EDDI, and will play a central role in the protocols discussed in subsequent

chapters.
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Chapter 2. The Rydberg Dipole-Blockade Interaction

2.1 Rydberg Wavefunctions

The same large sizes that give Rydberg atoms their interesting properties make their or-

bitals comparatively easy to analyze. Following [18], we begin with the Schrödinger equa-

tion for the valence electron of an alkali atom, in atomic units,(
−∇2

2
+V (r)

)
Ψ = EΨ, (2.1)

where V is an element-dependent potential energy function, r is the electron’s distance

from the center of the atom, and E is its energy. For hydrogen, V (r) =−1
r in atomic units.

For other alkali species, core penetration effects modify the potential inside the radius of

the atomic core r0, and in general V (r ≤ r0) < −1
r . Outside this radius, the core looks –

to good approximation – like a positive point charge, and V (r > r0) =−1
r . In either case,

the equation is separable into radial and angular components, leaving the partial solution

Ψn`m(r,θ,φ) =
ρn`(r)

r
Y`m(θ,φ), (2.2)

∂2ρn`

∂r2 +

(
2E−2V (r)− `(`+1)

r2

)
ρn` = 0, (2.3)

where Y`m are the (species-independent) spherical harmonics and ρn` are the radial wave-

functions.

This equation admits a simple, exact solution only for hydrogen. However, since the

vast majority of a Rydberg atom’s wavefunction lies far from the atomic core, we can

restrict ourselves to finding a solution for r > r0, where the Hamiltonian is hydrogenic.

For such a solution, the extra potential depth inside the core will shift the energy and

phase of the overall wavefunction, but leave it otherwise unchanged. The phase shift τ and

energy are given by

τ =
∫ r0

0

√
2
(√

E +V (r)−
√

EH +VH(r)
)

dr, (2.4)

E =− 1
2(n−δ`)2 , (2.5)
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` Li Na K Rb Cs
s 0.40 1.35 2.19 3.13 4.06
p 0.04 0.85 1.71 2.66 3.59
d 0.00 0.01 0.25 1.34 2.46

Table 2.1: Quantum defects for low-` Rydberg states of Alkali atoms, from [3]. At higher
`, so little of the valence electron’s wavefunction penetrates the core that quantum defects
become negligible.

where a subscript H denotes the solution for hydrogen and δ` is the “quantum defect”, an

effective reduction in principal quantum number that captures the reduced energy inside

the core. Inside this region, an electron will have far more kinetic than binding energy,

so δ` depends strongly on atomic species and ` but only weakly on n. Specifically, δ` is

n-independent up to a correction term that scales with the binding energy, ∼ n−2 [48]. For

high-n Rydberg states, this correction can be ignored entirely, leaving the empirical values

shown in Table 2.1. These values allow us to easily map out the Rydberg spectrum, which

will prove essential to calculating the strength of the EDDI below.

2.2 Electric Dipole-Dipole Interactions

Because the separation between a Rydberg atom’s valence electron and its core is so large

compared to the core itself, such an atom’s electric character is dominated by its dipole

moment. The electric dipole moment of a single Rydberg atom given by −ex, where

e is the electron charge and x is the vector displacement of the electron from the core.

The dipole moments of two nearby (but non-overlapping) Rydberg atoms will produce an

EDDI, shifting the system’s energy by

VDD =
e2

R3 (x
(1) ·x(2)−3x(1)1 x(2)1 ), (2.6)
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where R is the distance between atoms, x1 is the component of x along the interatomic

axis, and superscript (i) indicates an operator on the ith atom. The valence electron con-

tributes only a tiny fraction of an atom’s total mass, so we can apply the “frozen atom”

approximation and treat R as a fixed, classical parameter. In this approximation, VDD

acts on the atoms’ electron degrees of freedom to produce an effective dipole potential as

a function of interatomc distance. The total, two-atom Hamiltonian (ignoring fine- and

hyperfine-structure) is then

H = ∑
n,`,m

En`m(|n`m〉〈n`m|(1)+ |n`m〉〈n`m|(2))+VDD, (2.7)

where En`m is the energy given in Eq. (2.5).

Note that the position operators x, and thus VDD itself, have odd parity. The eigenstates

of the single-atom Hamiltonian, by contrast, are eigenstates of parity due to spherical

symmetry, so the expected value of VDD is zero for all its eigenstates; that is, VDD has zero

diagonal matrix elements in the |n`m〉(1)⊗ |n`m〉(2) basis. Instead, VDD couples pairs of

atomic eigenstates to other, nearby eigenstates with `′= `±1. Typically, we are concerned

with how this coupling modifies the single-atom eigenstates, especially how the interaction

shifts their energies. To characterize this effect, we first consider the total Hamiltonian

projected onto the subspace consisting of some arbitrary state of interest |Ψ〉 and one

other state |Ψ′〉 that couples to |Ψ〉 to first order in the interaction. For concreteness, we

consider a high-lying s-orbital with principle quantum number n = 100, and two nearby

p-orbitals to which it is coupled by the dipole-dipole interaction,

|Ψ〉 ≡ |100,s,0〉(1)⊗|100,s,0〉(2) ,

|Ψ′〉 ≡ 1√
2

(
|99, p,−1〉(1)⊗|101, p,1〉(2)+ |101, p,1〉(1)⊗|99, p,−1〉(2)

)
,

H→ 2E100s |Ψ〉〈Ψ|+(E99p +E101p) |Ψ′〉〈Ψ′|+
( c3

R3 |Ψ
′〉〈Ψ|+h.c

)
,

(2.8)

where c3 ≡ R3 〈Ψ′|VDD |Ψ〉 is the EDDI coupling strength between Ψ and Ψ′. This sub-
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Hamiltonian can be diagonalized analytically; its two-atom eigenvalues are shifted to

EΨ,EΨ′ →
2E100s +E99p +E101p

2
± 1

2

√
δ2 +

c2
3

R6 ,

δ = 2E100s−E99p−E101p,

(2.9)

where δ, sometimes referred to as the “Förster defect”, is the base energy difference be-

tween Ψ and Ψ′. If the EDDI is small compared to the energy difference between the

states, c3/R3� δ, the states are only weakly mixed and the energy shift takes the form of

a van der Waals interaction, scaling as δ−2R−6 [49]. In the opposite limit of c3/R3� δ,

the levels are mixed more strongly and the shift takes the form of a resonant dipole-dipole

interaction, scaling as R−3. This is illustrated in Fig. 2.1. If a state is especially close in

energy to its coupled state, such resonance can make the energy shift both stronger and

longer-range than would otherwise be expected.

In the complete Hamiltonian of Eq. (2.7), each state |Ψ〉 is coupled not just to a single

|Ψ′〉, but to every other state with `′ = `±1. The resulting energy shift can be calculated

similarly to the simpler Eq. (2.9), except that instead of diagonalizing a 2×2 Hamiltonian,

one must diagonalize a larger Hamiltonian containing a range of levels that contribute

significantly to the shift. As in Eq. (2.9), each state asymptotes to an unshifted state at

large R and becomes increasingly shifted as R shrinks. When the EDDI strength is small

compared to the base splitting between levels (R& 10 µm for typical Rydberg atoms), most

couplings are well within the van der Waals regime. Since the van der Waals shift scales

as δ−2, the total energy shift is dominated by a few states with energies very close to the

state in question. In this case, one only needs to diagonalize H within a small subspace to

closely approximate the energy shift. As R decreases and the EDDI grows stronger, more

couplings are brought into the resonant dipole-dipole regime, and so more states must be

included to accurately calculate the total shift. If enough states are brought into resonance

in this way, finding the spectrum can become computationally infeasible. When the EDDI

becomes large compared to the energy separation between adjacent n (R . a few µm for

typical Rydberg atoms), perturbation theory breaks down. The very idea of calculating an
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Figure 2.1: Log-log plot of interaction energy VDD as a function of interatomic distance
R, for the simplified two-level model. R is given in units of a characteristic distance,
R0 ≡ (c3/δ)1/3. VDD behaves as an R−3 dipole-dipole interaction below R0, and as an R−6

van der Waals interaction above R0. Dotted lines show pure dipole-dipole and van der
Waals scaling, for comparison.

“energy shift” stops being useful, as {n, `,m} are no longer good quantum numbers; the

collective states are more molecular than atomic in character [50].

In addition to shifting the energies of Rydberg states, the EDDI also affects coupling

between states. When a ground state |g〉 is coupled via laser to a Rydberg state |Ψ〉, the

coupling strength depends on two things: the power of the laser, and a dimensionless

“oscillator strength” fΨ,g, which is related to the geometries of the states in question.

As the EDDI combines bare atomic states into dressed states, it similarly combines their

oscillator strengths,

fΨ′,g = ∑
Ψ

〈Ψ|Ψ′〉 fψ,g. (2.10)

If a given Rydberg state has especially high oscillator strength, the EDDI will tend to

weaken it by diluting the dressed state with other, more weakly coupled levels. Conversely,

12



Chapter 2. The Rydberg Dipole-Blockade Interaction

(100𝑃3/2, 100𝑃3/2) (100𝑃3/2, 100𝑃3/2) 

(101𝑆1/2, 100𝐷3/2) 

(b) (a) 

Interatomic distance, r [µm] Interatomic distance, r [µm] 

R
el

at
iv

e 
En

er
gi

es
 [

M
H

z]
 

Figure 2.2: Section of the EDDI-shifted Rydberg spectrum for two 133Cs atoms [1]. (a)
Doubly excited levels as a function of distance between atoms that asymptote near the
atomic pair |100P3/2,100P3/2〉. As R decreases, the EDDI grows from a perturbative shift
to the dominant term in the Hamiltonian. (b) Weighting of the levels in (a) by their oscilla-
tor strengths to couple to the two-atom ground state. In the very strongly coupled regime
of R < 7 µm, coupling to the ground state is spread out among many shifted states.

states with low or no oscillator strength become more strongly coupled as they are mixed

with higher-strength states. Between these two effects, the EDDI tends to “spread out” the

available coupling strength, broadening the range of levels with significant coupling to the

ground state. In practice, the essential physics can often be captured by considering only

a single Rydberg level at a time, but multiple couplings must be taken into account when

the precise interaction strength is important. Both the EDDI-induced energy shift and its

effect on coupling strengths can be seen in Fig. 2.2, which shows the spectrum of a few

shifted states calculated by Yuan-Yu Jau [1].
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2.3 The Dipole Blockade

The EDDI is a two-body effect and so can be used to produce entanglement directly, but

a few of its properties make it unwieldy for this purpose. For one, the EDDI only acts

on states with two (or more) Rydberg atoms, so a strong EDDI goes hand in hand with

a high Rydberg population. The same properties that give Rydberg atoms their strong

interactions make them highly sensitive to external electromagnetic fields, so demanding

a high Rydberg population makes a system more susceptible to environmental noise. For

another, the effective EDDI potential scales as R−k (where k varies between 3 and 6), so

its gradient scales even more strongly with R, as R−(k+1). For small R, where the EDDI

is at its strongest, its gradient is also large, and the interaction strength varies sharply with

position. Not only does this magnify the impact of any experimental imprecision in the

atoms’ locations, it results in an interatomic force that can produce unwanted entanglement

between the atoms’ positional and electronic degrees of freedom.

To avoid these effects, we would prefer a protocol that can harness the entangling

power of the EDDI without actually exciting multiple Rydberg atoms simultaneously.

This suggests a blockade-type interaction, in which we generate entanglement by sup-

pressing double-excitation rather than driving it. In Chapter 1 and Fig. 1.1, we briefly

described a way to accomplish this using sequential pulses. We now outline a method

that relies on adiabatic dressing and is more directly applicable to the protocols in later

chapters. Consider the arrangement shown in Fig. 2.3. One of two ground states of a

neutral alkali atom, denoted as the “logical states” |0〉 and |1〉, is coupled to a high-lying

Rydberg state |r〉 by a laser with Rabi frequency Ωr and detuning ∆r. (For concrete-

ness, we show a cesium atom with logical states encoded by the hyperfine “clock states”,

|1〉= |6S1/2,F = 4,mF = 0〉, |0〉= |6S1/2,F = 3,mF = 0〉, and coupled to a 100P Ryd-

berg state.) In a frame rotating at the laser frequency and in units where ~= 1, the Hamil-
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tonian describing one such atom is

H(i) =−∆r |r〉〈r|(i)+
Ωr

2

(
|r〉〈1|(i)+ |1〉〈r|(i)

)
−EHF |0〉〈0|(i) , (2.11)

where EHF is the hyperfine splitting energy between |0〉 and |1〉 and we have set |1〉 to

zero energy to simplify subsequent expressions. For two such atoms, the total Hamiltonian

consists of two copies of H(i) plus the EDDI:

H = H(1)+H(2)+VDD |rr〉〈rr| . (2.12)

By treating VDD as a scalar, we are making the approximation from section 2.2 that the

EDDI gives two Rydberg atoms an effective R-dependent potential. Since both atoms

need to be in |1〉 for the system to be coupled to |rr〉, the states |00〉, |01〉, and |10〉 are

unaffected by the EDDI and behave only according to their single-body dynamics. To

understand the blockade, then, we can project the Hamiltonian onto the subspace where

both atoms are in |1〉 or |r〉,

H→−∆r (|1r〉〈1r|+ |r1〉〈r1|+2 |rr〉〈rr|)+Ωr

2

(
(|1r〉+|r1〉)〈11|+h.c.

)
+VDD |rr〉〈rr| .

(2.13)

Because of this Hamiltonian’s symmetry, it can be simplified by rewriting it in a two-atom

basis, with the single-Rydberg states expressed in terms of a symmetric “bright” state |B〉

and an antisymmmetric “dark” state |D〉,

|B〉 ≡ |1r〉+ |r1〉√
2

, |D〉 ≡ |1r〉− |r1〉√
2

,

H =−∆r(|B〉〈B|+ |D〉〈D|)− (∆r−VDD) |rr〉〈rr|+
√

2Ω

2
(|B〉〈11|+ |rr〉〈B|+h.c.).

(2.14)

The |11〉 state is coupled to the bright state, and from there to the double-Rydberg state,

with a Rabi rate enhanced by a factor of
√

2 over the original Ωr. The EDDI changes the

detuning of the |B〉 ↔ |rr〉 transition to ∆r−VDD while leaving the detuning of |11〉 ↔
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|B〉 at ∆r. The dark state is uncoupled from all other states and so can be ignored when

considering the ideal case, but it will become important when analyzing errors below.

If VDD � ∆r, the |11〉 ↔ |B〉 transition can be much closer to resonance than the

|B〉 ↔ |rr〉 transition, especially if ∆r is chosen to have the same sign as VDD. This allows

strong excitation of a single Rydberg atom while suppressing excitation of the second

atom; Rydberg excitations beyond the first are blockaded. In the perfect blockade limit

where VDD→ ∞, |rr〉 drops out entirely and the collective Hamiltonian is reduced to two-

level coupling between |11〉 and |B〉. Like the EDDI that gave rise to it, this Hamiltonian

can produce entanglement. Most straightforwardly, a π-pulse turns the separable |11〉 into

the maximally entangled |B〉. But unlike the raw EDDI, it functions without driving mul-

tiple, simultaneous Rydberg excitations, and so avoids many of the disadvantages listed

above. In particular, when VDD is large enough that the blockade is essentially perfect,

2r

r

r Vdd

J  2ELS

(1)

r

r

Ram

100P J

Ram

r

(a) (b)

2r

6PJ

6S1/2

Figure 2.3: (a) Schematic of relevant energy levels and laser couplings in cesium atoms:
Qubits are encoded in the hyperfine clock states, controlled by two-photon Raman lasers.
Interactions between qubits are mediated by off-resonant excitation near a highly excited
Rydberg state |100PJ′〉, tuned to dress either |0〉 or |1〉. (b) Dressed Rydberg interaction
for two atoms: The logical state |x1x2〉, x ∈ {0,1}, is dressed by the bright state, with one
atom in the Rydberg level; the doubly excited state is blockaded. The result is a two-atom
light shift with an entangling component κ.
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the blockade interaction becomes independent of its exact value. Thus, at small R where

the EDDI is at its strongest, the blockade interaction is robust to fluctuations in the atoms’

positions.

The dipole blockade is also easily generalized to systems of more than two atoms. In a

system of N atoms, all within a blockade radius of one another, any one Rydberg atom will

blockade the excitations of all other atoms. The blockade becomes a many-body effect,

in which the laser drives a single, collective Rydberg excitation throughout the ensemble.

The singly-excited bright state for N atoms is a so-called W-state:

|BN〉=
1√
N

N

∑
i=1
|1〉(1)⊗|1〉(2)⊗ . . . |r〉(i)⊗ . . . |1〉(N) . (2.15)

The ground state |1〉⊗N is coupled to |BN〉 by N copies of H(i), each acting on a differ-

ent atom. A given H(i) couples the ground state to the ith term of the sum in |BN〉 with

Rabi rate Ωr; including the normalization factor, this means 〈BN |H(i) |1〉⊗N = Ωr/(2
√

N).

Multiplying this by the N copies of H(i) gives

〈BN |
N

∑
i=1

H(i) |1〉⊗N =

√
N

2
Ωr, (2.16)

i.e. the N-body Rabi rate is enhanced by a “superradiant” factor of
√

N. In some sense, the

entire ensemble becomes a single, two-level qubit with N-dependent laser coupling. This

makes blockaded atoms a natural platform for exploring symmetric many-body dynamics,

e.g. in Bose-Einstein condensates [51]. We discuss such dynamics further in Chap. 5.

As a final aside, Eq. (2.13) also exhibits interesting properties when ∆r ≈VDD/2. Un-

der these conditions, the blockade is replaced by an “anti-blockade”: single Rydberg ex-

citation is far off resonance, but double excitation becomes a near-resonant, two-photon

process. This regime also exhibits entangling dynamics, as |B〉 is not strongly excited and

Rydberg states tend to be created in pairs. All the protocols here avoid this regime because

it is subject to the same drawbacks of double-Rydberg population as the raw EDDI, and

because many-body resonances make analysis considerably more complicated beyond two
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atoms if the second excitation is not strongly suppressed [52]. However, the anti-blockade

has been used to generate neutral atom entanglement in, e.g., [53].

2.4 Blockade Dressing

Even though the Rydberg blockade involves excited states beyond the ground subspace,

our final goal is to produce ground-state entanglement. Some Rydberg population will

necessarily be excited over the course of any entangling protocol, but we are ultimately

interested in Rydberg dynamics only insofar as they lead to effective interactions in the

ground manifold. Motivated by this, we now treat the dipole blockade as a ground state

dressing interaction, similarly to our treatment of the Rydberg-dressing EDDI above. This

leads us to a picture in which the effect of Rydberg excitation is reduced to an interaction

between dressed ground states.

2.4.1 Ideally Blockaded Dressing Interactions

We begin by returning to the Hamiltonian for a single, Rydberg-coupled atom. In Eq. (2.11),

this Hamiltonian is expressed in terms of the bare states, i.e. the eigenstates of the atomic

Hamiltonian without interaction with a laser field. In this basis, the laser couples bare

states together. We can also diagonalize the Hamiltonian exactly, taking us to a basis in

which the bare ground states are dressed by some admixture of Rydberg character, and

vice-versa. In this basis, the states are not coupled but have energies dependent on the

laser parameters,

H(i) =−∆r

2
1− sign(∆r)

2

√
∆2

r +Ω2
r

(
|r̃〉〈r̃|(i)−|1̃〉〈1̃|(i)

)
−(EHF−

∆r

2
) |0〉〈0|(i) , (2.17)

where 1 denotes the identity and tildes denote the dressed states that connect to their cor-

responding bare states when the laser coupling is adiabatically returned to zero with red
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detuning. The dressed states are superpositions of the original states with their coupled

counterparts, according to a mixing angle θm that depends on the coupling strength:

θm =−arctan
(

Ωr

∆r

)
(2.18)

|1̃〉= cos
(

θm

2

)
|1〉+ sin

(
θm

2

)
|r〉 (2.19)

|r̃〉= sin
(

θm

2

)
|1〉− cos

(
θm

2

)
|r〉 . (2.20)

If the laser coupling is weak, Ωr � ∆r, each state is dressed by a small admixture of the

other, and the system is well-described by a laser-driven “light shift” (∆ELS1) of the bare

states’ energies. Taking the lowest-order expansion of Eq. (2.17) in Ωr
∆r

gives the well-

known weak dressing light shift, ELS1 ≈± Ω2
r

4∆r
. For strong laser coupling, each dressed

state has substantial population in both bare states, and so can no longer be considered as a

shifted bare state. Regardless, the essential physics is the same in both regimes, so we will

use the terms “dressed ground” and “dressed Rydberg” states to refer to any eigenstates of

the coupled Hamiltonian, regardless of coupling strength.

A single atom in |1〉 is dressed according to Eq. (2.17), and we take the laser detuning

to be small compared to the ground state hyperfine splitting so that atoms in |0〉 are not

dressed at all. Therefore, two-atom states with at most one atom in the |1〉 state behave

simply: |00〉 exhibits no light shift, while |01〉 and |10〉 are shifted by ELS1 as defined

above. Absent the EDDI, |11〉 would experience two independent light shifts, for a total of

2ELS1. The presence of the Rydberg blockade, however, modifies the dressing interaction,

leading to a two-body light shift ELS2 6= 2ELS1. The magnitude of this new shift can be

easily seen from Eq. (2.14), at least in the perfect blockade limit. If |rr〉 is completely

blockaded, then |11〉 and |B〉 form a two-level system analagous to |1〉 and |r〉 in the

single-atom case. The only difference is that ΩR has been enhanced by a factor of
√

2 for

two atoms, so Ω2
r is replaced by 2Ω2

r in the dressed energy formula. Knowing this, we can
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write the dressed ground Hamiltonian,

ELSn =−
1
2

(
∆r− sign(∆r)

√
∆2

r +nΩ2
r

)
(2.21)

P̂g̃HP̂g̃ =−2EHF |00〉〈00|+(ELS1−EHF)(|0̃1〉〈0̃1|+ |1̃0〉〈1̃0|)+ELS2 |1̃1〉〈1̃1|

(2.22)

where P̂g̃ is the projector onto the dressed ground subspace. To distill the interacting ele-

ment of this Hamiltonian, we can separate out the single-atom Hamiltonians H(i), giving

P̂g̃H(i)P̂g̃ =−EHF |0〉〈0|(i)+ELS1 |1̃〉〈1̃|
(i)

(2.23)

P̂g̃HP̂g̃ = P̂g̃

(
H(1)+H(2)

)
P̂g̃ +κ |1̃1〉〈1̃1| , κ≡ (ELS2−2ELS1) . (2.24)

The differential light shift, κ,1 describes the two-body component of H that is nonsepara-

ble, and thus encapsulates the interaction’s entangling power between the dressed ground

states [46]. The H(i) do not affect the system’s entanglement and so can be largely ignored

for our purposes. More formally, any action by H(i) can be reversed through an appropriate

single-body operation on the ith atom, during or after the entangling process. Experimen-

tally, this could be accomplished via a single-atom light shift. What remains is a simple yet

powerful picture: the blockade-dressed interaction shifts the energy of |1̃1〉 by κ compared

to all other dressed ground states. According to the Schrödinger equation, a state’s energy

determines the rate at which it accumulates phase. Heuristically, the two-body energy of

|1̃1〉 determines the rate at which it accumulates an entangling phase. Based on this in-

tuition, we might guess that a full “rotation” from separable to entangled states requires

an entangling phase of π, so the Blockade-dressed interaction should be able to produce

maximal entanglement in time π/κ. Indeed, this speed limit plays a central role in all the

protocols described below.

In general, the value of κ for given laser parameters does not simplify beyond the

difference between two square root factors. Two particularly illustrative limits, though,

1The differential light shift is often denoted J in the literature [54] but we reserve J to denote
collective spin in Chap. 5.
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deserve special mention. For weak dressing, κ can be Taylor expanded to lowest order

in Ωr
∆r

. As noted above, the single-atom light shift scales as Ω2
r for weak dressing, but

the quadratic term for two atoms is exactly twice that for a single atom, and they cancel

out in κ. Instead, we must expand to the next order to find a nonvanishing term, giving

κ ≈ ± Ω4
r

8∆3
r
. For weak dressing, then, the entangling interaction is much weaker than the

single-atom energies. In the opposite limit, where the laser is on resonance and dressing

strength is at maximum, En =
√

nΩr. This gives κ = ±(2−
√

2)Ωr ≈ ±.6Ωr, meaning

κ is linear in the laser’s Rabi rate and comparable in strength to the single-atom shift.

Because of this huge discrepancy in strength between the two regimes, we typically find

that strong dressing parameters are preferable, both in theory and in experiment [39]. This

is especially true in the context of decoherence. Any experiment with laser-excited neutral

atoms will suffer some decoherence due to photon scattering, i.e. absorption of a photon

followed by spontaneous emission, and minimizing its impact is an important concern.

In the weak dressing regime, the photon scattering rate γ scales as ∆−2
r . The single-atom

light shift scales more weakly with ∆r (as ∆−1
r ), so increasing ∆r causes γ to drop off

more sharply than light shift strength. As a result, increasing the laser detuning is an

effective way to reduce the impact of photon scattering in experiments that are speed-

limited by the single-atom light shift. By contrast, κ drops off more sharply than γ, as

∆−3
r . In experiments that are speed-limited by κ, increased laser detuning suppresses the

useful interaction more than it does the photon scattering rate, and minimum scattering

decoherence is achieved at or near resonance.

2.4.2 Effects of Imperfect Blockade

The above analysis provides an especially clean and intuitive picture of Rydberg dressing

in the perfect blockade limit. When the blockade is imperfect, the overall structure of

the interaction remains the same, although calculation of its quantitative strength becomes

more complicated. For laser detunings we consider, the |1̃1〉 state is always the only
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one that experiences any kind of entangling interaction, so the concept of an “entangling

energy” κ holds in all regimes, as does the identity κ = ELS2−2ELS1. The effect of an

imperfect blockade is to modify ELS2 from the value given in Eq. (2.21). Here we describe

some mechanisms by which this occurs.

The simplest type of blockade imperfection is one in which the scalar blockade ap-

proximation holds, but is small enough to allow some double-Rydberg excitation, i.e.

Ωr � VDD � ∞. In this case, the blockade-dressed interaction is weakened compared

to its ideal value, and regains some explicit dependence on VDD. Since the Hamiltonian

acts on the 3-dimensional {|11〉 , |B〉 , |rr〉} subspace, its eigenvalues are roots of cubic

polynomials, and κ always admits an analytic form. However, the general solution is com-

plicated and offers little insight, so we instead focus on two illustrative limits. If VDD

is large enough that |rr〉 population remains small, we can find the effect on κ by treat-

ing 〈rr|H |B〉 as a second-order perturbation. This gives a correction to the light shift of

∆κ ≈ |〈B|1̃1〉|2
2VDD

Ω2
r ; the exact value depends on both VDD and the dressing strength, but it

is generally small and quadratic in Ωr. If the EDDI is very weak, then VDD itself can be

treated as a first-order perturbation, giving κ≈ |〈rr |1̃1〉 |2VDD. In this limit, the interaction

is no longer blockade-based in any meaningful sense. Rather, double-Rydberg dressing

is mediating a van der Waals interaction between dressed ground states. Both of these

regimes are exemplified by the blue dotted curve in Fig. 2.4, which shows κ as a function

of R for typical laser parameters; the interaction initially grows as R−6, like a van der

Waals interaction, with decreasing R, then tapers off to a VDD-independent plateau as the

blockade becomes nearly perfect.

The VDD-dependence of κ further complicates matters for non-ideal blockades because

VDD is not constant. Even when the treatment of VDD as a single scalar is a good one, it

varies with the distance between the atoms R. Gradients in VDD then lead to an interatomic

force, which entangles the atom’s electronic state with its motional state and causes deco-

herence. These forces scale with |rr〉 population, providing a strong incentive to minimize
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Figure 2.4: Ground-state interaction strength J(R) as a function of distance between the
two cesium atoms in F = 4 clock states, for Ωr = 10 MHz and ∆r = 8 MHz. Calculated
using all l ≤ 6 atomic orbitals (s, p,d, f ,g,h, i; purple solid line) and more approximately
using only the nearest l ≤ 2 orbitals (s, p,d; blue dashed line). As seen in the more ex-
act calculation, below r = 8 µm there are resonances whose exact positions cannot be
predicted without taking higher-l states into account.

blockade-breaking, even beyond the desire to maximize the blockade-dressing strength.

This effect is examined in more detail in Chap. 4.

Finally, the blockade may exhibit imperfections that do not respect the approximation

of VDD by a scalar, and require consideration of the richer multi-level dynamics that gave

rise to the EDDI in the first place. Recall from Sec. 2.2 that the effect of the EDDI can

be calculated by finding the set of levels that couple significantly to the level of interest,

then (numerically) diagonalizing the dipole-dipole Hamiltonian in the subspace spanned

by those levels. The EDDI strength determines how many levels are coupled strongly

enough to be included, which in turn affects the complexity of the multi-level dynamics.

At large R, the EDDI is dominated by a few levels that shift away from resonance in “well

behaved” ways, and such imperfections are not a major error source. At smaller R, on

the other hand, increasingly many states come into play, so multi-Rydberg-level errors
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must be considered. Looking at the left-hand side of Fig. 2.3a, we see that the number

of level crossings becomes truly daunting. Fortunately, most of these crossings are not

cause for concern because they are only weakly coupled to |1〉. As the EDDI increases at

shorter distances to couple the target Rydberg state with more and more nearby states, the

target state’s population is spread out among all of them, and the Rydberg laser’s coupling

strength to |1〉 is effectively diluted. Fig. 2.3 shows the same level diagram weighted by

said coupling strength; we see that coupling drops off sharply in the very regime where

the number of crossings skyrockets. Nevertheless, it is expected that at least some of these

crossings are coupled strongly enough to cause atom loss and other decoherence [55].

What’s more, the many-level character of these errors makes them difficult to predict

precisely. Both curves in Fig. 2.4 show κ, calculated as in Sec. 2.2 by numerically diago-

nalizing the EDDI Hamiltonian with one ground and multiple Rydberg states2. The blue

curve was calculated using just a few Rydberg levels most strongly coupled to the ground

state, while the red curve includes hundreds of levels of various n and `. We see that the

overall shape of the curves match fairly well, especially in the strong-blockade regime.

However, the more exact curve shows a cluster of resonances that do not appear in the cal-

culation with fewer levels. Since perturbation theory breaks down at short distances, the

locations of these resonances vary strongly with the number of levels included, and they do

not show signs of converging before computational limits are reached. Therefore, it seems

likely that care must be taken when driving Rydberg excitations at small R, but exactly

how multi-level resonances will affect a given protocol will likely have to be answered

through laboratory experiment.

2Calculation by Yuan-Yu Jau [1].
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Adiabatic Quantum Computation

The solutions to certain mathematical problems can be encoded in the ground states of

many-body systems, e.g., an Ising model on a graph [56]. One method of solving such

problems is quantum annealing (QA), in which one continuously deforms a system’s

Hamiltonian to transform some easy-to-prepare initial state into the final, solution-encoding

ground state [57, 58]. QA has been studied extensively in a variety of platforms, and is

reviewed in, e.g., [59, 60]. Recently, interest in QA has been sparked by the work of the

D-Wave corporation, who claim to have produced annealing devices with 100+ supercon-

ducting qubits [61, 62].

In this chapter, we consider QA in neutral atom systems, using the Rydberg-dressing

interaction to generate Hamiltonians with computationally interesting ground states. More

specifically, we consider adiabatic quantum computation (AQC), a subclass of QA in

which the system remains in its ground state at all times [63]. AQC is implemented by

continuous transformation of the Hamiltonian from an initial form whose ground state is

easy to prepare to the final form whose ground state encodes the output of the algorithm;

in effect, the entire computation is performed by going from the bare- to the dressed-basis.

If the energy gap between the ground and excited states is sufficiently large, the transition
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from initial to final Hamiltonian can be accomplished efficiently. AQC is particularly at-

tractive because the existence of an energy gap can make the system inherently robust to

certain types of errors [64].

In contrast to quantum circuit implementations where atoms are excited to the Ryd-

berg state with a resonant π-pulse [24, 65, 66], here we base our proposal on adiabatic

Rydberg dressing of the atomic ground state. Far off-resonance dressing of this sort has

been studied previously in the context of dipolar gases [46, 67]. This leads to an entan-

gling mechanism that is more compatible with AQC, where interactions are always on and

can be continuously changed to transfer from the initial to final Hamiltonian. Such adia-

batic evolution has been employed in recent cold atom/ion experiments to study quantum

simulations of Ising models [68, 69]. As a specific example, we will show how our archi-

tecture can be used to implement "quantum annealing" (QA) in an Ising spin-lattice [70]

to solve an instance of the quadratic unconstrained binary optimization (QUBO) prob-

lem. We will model the physics of its implementation to benchmark the performance of a

proof-of-principle realization for a few qubits with nearest-neighbor interactions.

The goal of QUBO is to find the N-tuple of binary variables, ~x = (x1,x2, . . . ,xN),

xi ∈ {0,1}, that minimizes the function

f (~x) =
N

∑
i=1

hixi +
N

∑
i, j=1

κi jxix j. (3.1)

This is equivalent to solving for the ground state of a generic Ising model, a problem

that is generally NP-hard [71]. Nonetheless, specific instantiations of this problem map

onto a variety of satisfiability and related algorithms which are tractable, and thus provide

useful testbeds for the AQC architecture [72]. Moreover, because the algorithm can be NP-

hard, it is important to have multiple architectures (ion, superconductors, Rydberg atoms,

ground-state atoms, etc.) in which to cross-verify the solution [73].

To map QUBO onto a QA algorithm, each binary variable is replaced by a projector

acting on a qubit, xi ⇒ (I+ σ
(i)
z )/2, where the Pauli matrices are defined as usual on
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the qubit pseudospin, |0〉 = |↓〉 , |1〉 = |↑〉. The solution to QUBO maps onto finding the

ground state of the “problem Hamiltonian,” HP, in the Ising form

HP =
N

∑
i=1

h̃iσ
(i)
z +

N

∑
i, j=1

κ̃i jσ
(i)
z ⊗σ

( j)
z , (3.2)

where κ̃i j = κi j/4 and h̃i = hi/2+∑ j κ̃i j. Since the Hamiltonian commutes with all σ
(i)
z ,

the ground state is one of the computational basis states, which can be read out directly.

As a benchmark for performance of this architecture, we will study a class of QUBO

problems corresponding to a one-dimensional spin chain with symmetric interactions,

κ<i j> = κ, where <i j> denotes nearest neighbors. We choose the values hi to be equally

spaced and less than κ, hi = iδE with NδE < κ for N qubits. The solution to this QUBO

problem is the trivial antiferromagnetic ground state; minimization is achieved with the

state |1010 · · ·10〉 for even N or |0101 · · ·10〉 for odd N, i.e. the bits alternate between

1 and 0 and the final bit is 0. Further, the gap between ground and first excited states

scales as N−1, so the necessary evolution time to maintain adiabaticity grows linearly. We

consider this example only as a proof-of-principle of the method that can be modeled nu-

merically for a few qubits and address the critical issue of decoherence. In practice, we

can accomodate more complex Ising problems on more general graphs, as we will de-

tail later; in particular, a two-dimensional lattice would be a straightforward but NP-hard

generalization [71], and would require no qualitative changes to the protocol described

here.

To implement this test-bed algorithm in a neutral-atom system, we consider cesium

atoms with qubits encoded in two hyperfine magnetic sublevels in the ground-electronic

state of alkali-metal atoms, e. g., the “clock states” of 6S1/2
133Cs: |0〉= |F = 3,MF = 0〉,

|1〉= |F = 4,MF = 0〉. The atoms can be trapped in tightly focused optical tweezers with

interatomic spacings on the order of 10 µm, thereby allowing individual addressing of

qubits, similar to that already achieved in other neutral atom [74] and ion trap [75] exper-

iments. Arbitrary single qubit Hamiltonians of the form H = B ·σ can be achieved with
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stimulated two-photon Raman transitions in the standard manner, with negligible photon

scattering over the duration of the evolution for sufficient detuning and intensity of the

lasers. The last critical ingredient is the coupling matrix of pairwise interactions, κ̃i j.

As in Chap. 2 and Fig. 2.3, we generate these interactions by dressing the single-qubit

ground states with blockaded Rydberg states. The coupling constant is the difference in

the light shift (LS) between blockaded and non-interacting pairs of atoms. In the perfect

blockade limit with blue detuning,

κ = ELS2−2ELS1 ≈−
1
2

(
∆+

√
∆2 +2Ω2−2

√
∆2 +Ω2

)
. (3.3)

where Ω and ∆ are the Rabi frequency and detuning of the dressing laser, respectively.

We assume the detuning of the Rydberg laser is small compared with the ground-state

hyperfine splitting (9.2 GHz for 133Cs), but allow the laser to be tuned near resonance

with either |0〉 or |1〉 for each atom. This gives an effective interaction Hamiltonian of

Hint ≈ κ |x1x2〉〈x1x2|, with x∈{0,1}. Up to single qubit terms (that can be compensated by

individually addressed atomic LS), Hint⇒±(κ/4)σz⊗σz. The positive/antiferromagnetic

(negative/ferromagnetic) sign is achieved when x1 = x2 (x1 6= x2). The ability to choose

the signs of the elements of κ̃i j provides extra flexibility in this platform, even if the sign

of the physical coupling is fixed in the dressing interaction.

One fundamental limitation on the fidelity of operation is the scattering of photons due

to excitation of the Rydberg state at a rate γr = NrΓr, where Nr is the population in the

Rydberg state and Γr/2π is its linewidth. (The trapping lasers also contribute to photon

scattering, but their effect can be made negligible with blue detuned “bottle traps” [76].)

While Γr ∝ n−3 points to larger principal quantum numbers, a variety of practical consid-

erations limits the value of n, including the linewidth of the Rydberg excitation laser, the

sensitivity of the Rydberg state to ambient fields, and the sheer size of the Rydberg atom.

As a reasonable operating point for our architecture, we consider here the 100P3/2 state,

for which Γr/2π = 530 Hz and the radius of the atom r≈ 0.7 µm. By directly dressing the

ground state with the Rydberg state using a single optical field at λ = 318 nm, we avoid
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the strong photon scattering that arises in the conventional two-photon excitation scheme

via an intermediate excited state and reduce the total photon scattering rate by a factor of

10 or more.

Since the rate of photon scattering depends directly on our choice of Rydberg laser de-

tuning, finding the ∆ that minimizes photon scattering is an important consideration. More

precisely, we seek to maximize the figure of merit q = κ/γr so that we achieve a large

gap between the ground state and excited computational states of the problem Hamilto-

nian, while minimizing photon scattering over the duration of the evolution. Recall from

Sec. 2.4.1 that κ drops off more quickly than γr with increasing ∆, so q is maximized by

strong, near-resonant dressing. For this reason, one might expect that the highest fideli-

ties could be achieved on resonance, i.e. at ∆ = 0. However, ∆ is limited from below by

a competing requirement: the gap between dressed-ground and dressed-Rydberg states,

∆E =
√

2Ω2 +∆2, must be sufficient to ensure adiabatic evolution at all times, even near

the start and end of the protocol when Ω≈ 0. The optimal detuning is thus the minimum

detuning to satisfy this gap requirement.

A second fundamental limitation is the accuracy with which we can implement the

QUBO Hamiltonian using the Rydberg-blockade interaction. Ideally, we would like to

introduce only the desired pairwise couplings specified by the matrix κi j. In practice

there will be additional perturbations due to the long-range nature of the dipole-dipole

interaction and the strong blockade mechanism. For our geometry, this means that there

are residual next-nearest neighbor couplings and many-body effects (see, e.g., [77]) when

more than two atoms are close to the blockade radius. Both interaction types will add

unwanted terms to our final Hamiltonian, potentially shrinking the minimum gap or even

changing the final ground state if they are too large. However, as long as these effects

can be treated as a perturbation that is sufficiently small compared to the minimum energy

gap, they will not interfere with the adiabaticity of evolution, and the algorithm will still

give the correct answer; this sets a minimum acceptable energy gap and, by extension,
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constrains the size of problem that can be solved.

The qualitative discussion above holds only for a simplified model of participating

atomic levels and for a perfect dipole-blockade, i.e. when the probability of simultaneously

exciting two adjacent Rydberg atoms is zero. To obtain a more accurate description we can

find the dressed-state eigenvalues by diagonalizing the two-atom system in the presence

of the laser field, yielding a position dependent κ(R) [46]. Outside the blockade radius,

the result is κ(R) ∝ R−k, where k = 3 for the Förster regime or k = 6 for the Van der Waals

regime. As we are considering direct excitation to a p-state, there may be concern that

pairs of atoms would couple to noninteracting “Förster zero states” that evade the Rydberg

blockade [54]. Such zeros are avoided, however, in a more complete description of the

electric dipole-dipole interaction (EDDI) since mixing occurs not only between p- and s-

states but also with nearby d-states and higher angular momentum orbitals. Inside the so-

called blockade radius the situation becomes significantly more complex, as is discussed

in Sec. 2.4.2. We will restrict our attention here to r > 8 µm, which will give us sufficient

coupling and control over the atoms without having to address many of the issues that arise

at extremely short distances.

Including these limitations and the full doubly-excited spectrum shown in Fig. 2.2, the

optimal detuning is found empirically. For a Rydberg laser that achieves a Rabi frequency

Ωr = 10 MHz, we find that a good choice of detuning is ∆r = 8 MHz. Figure 2.4 shows

a calculation of κ(R) for these parameters, and its comparison to the simplified two-level

atomic model. For tightly trapped separated atoms, κ(R = 8 µm)/2π = −470 kHz. At

such a laser power and detuning, there is substantial dressing, with as much as ∼ 20%

of Rydberg character in the dressed ground states. The maximum photon scattering rate

is γr/2π ≈ 100 Hz, yielding an excellent figure of merit for AQC. Next-nearest-neighbor

and three-body interactions for these parameters are smaller than the minimum gap for

up to five atoms; increasing ∆r and r could increase the maximum problem size farther at

the expense of q. This requires more runs of the experiment, but as long as the fidelity is
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sufficient, the probability to find the ground state can be amplified.

With these parameters we model the performance of proof-of-principle experiments

to implement a simple example of QA. The basic protocol is as follows: One optically

pumps the atoms into a clock state and initializes the qubits in an eigenstate of σx through

the application of a Raman-resonant π/2-pulse. One then phase-shifts the Raman beam by

π/2, leaving the atoms in the ground state of the beginning Hamiltonian, HB =−Ω∑i σ
(i)
x ,

where 2Ω is the Raman-Rabi frequency. This initializes the quantum register in an equal

superposition of all computational basis states. The transition from initial to final QUBO

Hamiltonian is achieved by ramping down the Raman laser power while ramping up the

individual atoms’ Raman detunings that create the local Hamiltonians h̃iσ
(i)
z . Simultane-

ously, we linearly increase the Rydberg laser power that creates the coupling Hamiltoni-

ans κi jσ
(i)
z ⊗σ

( j)
z /4 with κi j = κ∀i= j±1, achieved when all atoms are arranged in an evenly

spaced lattice, and negligible next-nearest neighbor interactions, as discussed above. Note,

since in our problem the coupling parameter κ<i j> is positive while the physical κ is neg-

ative, we achieve the desired antiferromagnetic Ising coupling by using Rydberg laser

fields that individually address the atoms, alternately dressing nearest neighbors in |0〉 and

|1〉. At the final time, the answer to the algorithm can be read out using state-dependent

resonance fluorescence. We consider here linear ramps. More optimal time-dependent

evolution can improve adiabatic following, but will depend on the specific problem.

We take as our parameters Ω = κ<i j> = 2π×470 kHz, and hi = 2π× (i/N)118.5 kHz

for N qubits, achievable with the atom-laser interactions discussed above. The ramp time

is taken to be 35 µs, sufficiently long to maintain adiabatic evolution, but sufficiently short

compared to the photon scattering time. We treat spontaneous emission from the Rydberg

level as effectively randomizing the magnetic spin state as the population cascades back

to the electronic ground state. For practical reasons, the detection scheme does not distin-

guish between different magnetic sublevels in the same hyperfine subspace. All magnetic

sublevels in F = 4 are treated as logical-1 and those in F = 3 as logical-0. Our simula-
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tion for two qubits, with the correct solution to QUBO encoded in |10〉, gives a fidelity

of 0.997. For larger numbers of qubits, the fidelity scales favorably. For three and four

qubits, scaling up the evolution time linearly with qubit number, we find fidelities of 0.989

and 0.990.

The performance of the neutral-atom platform for AQC depends on a combination of

practical and fundamental questions. The minimum gap between the ground state and

first excited state determines the time scale for implementing the algorithm and thus the

probability of spontaneous emission, the fundamental source of decoherenece. For a given

problem size, the gap is constrained by κ arising from the Rydberg-dressing, whose op-

timal value for a given laser power depends on the details of the atomic level structure.

We found here that for reasonable power and detuning we could achieve κ = 470 kHz and

a fidelity of ∼ 0.99 in a proof-of-principle solution to an Ising model with ∼ 4 qubits.

Modest increases in this coupling would allow us to attain high-fidelity control with larger

numbers of qubits. However, unlike fault-tolerant universal quantum computation in the

quantum circuit model, for the purpose of solving optimization problems by QA, such

high fidelity is not necessary. One requires instead that the fidelity of finding the system

in the ground state be sufficiently high that one can amplify the success probability with k

independent trials. For our current parameters, this should allow us to explore the regime

of 10−20 qubits, where interesting physics beyond classical simulation is accessible.

Finally, while this initial proof-of-principle analysis focused on nearest-neighbor Ising

spin lattices, in principle this atomic architecture should allow us to explore more arbitrary

connected graphs associated with a general QUBO problem. For example, a complete bi-

partite graph is isomorphic to a square crosshatch of intersecting lines, where each line

represents a vertex of the graph and their interesctions are the edges [72]. This could be

achieved in our system by encoding logical qubits as Rydberg-coupled one dimensional

spin chains [78]. The proximity of these spin chains to one another in a designed trapping

geometry would determine the edges of the graph. Such an architecture would give sub-
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stantial flexibility to explore a wide range of computationally complex Ising problems and

open the door to deeper studies of QA and general AQC, as we will study in future work.
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Quantum Logic Gate

4.1 Introduction

In addition to directly simulating some problems of interest in AQC, the on-demand entan-

gling interactions provided by the Rydberg blockade can be applied to gate model quantum

computation [37, 79, 80]. In the gate model, unlike in AQC, the system’s Hamiltonians

are not adjusted to match the problem at hand. Instead, the computer has access to a

small, fixed set of “logic gate” unitaries, which can be applied in various sequences to

solve different problems. Here, we focus on generating a controlled-Z (CZ) gate, which

imparts a phase of −1 on a pair of atoms if both are in the logical-|1〉 state. Like all en-

tangling gates, the CZ can be combined with single-qubit gates to accomplish universal

quantum computation [4]. In the standard approach of fast gates, one employs short, res-

onant pulses in conjunction with the Rydberg blockade to induce the requisite entangling

interaction [54]. However, such a mechanism is not robust to thermal motion of the atoms,

which imparts random phases on the two-atom state that vary from shot to shot. Indeed,

such random phases are impediments to the direct observation of entanglement in the sig-

nature two-atom Rydberg blockade [37]. More generally, the decoherence arising from
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coupling internal (electronic) and external (motional) degrees of freedom is a dominant

source of error that limits the implementation of high-fidelity quantum gates [81].

Adiabatic Rydberg dressing provides an alternative approach, one which can be more

resilient against errors due to atomic motion. The original proposal of Jaksch et al. [24]

was such a dressing-based scheme, but it examined adiabatic evolution as a mechanism for

relaxing the requirement of single atom addressability, and only did so for atoms cooled to

the ground state of motion. Subsequent proposals have suggested various modifications,

but most either ignore thermal motion in order to focus on electronic effects [82, 83] or

require experimental parameters that are challenging to achieve [84]. Our motivation is to

use adiabaticity to substantially improve the robustness to errors caused by atomic motion,

and thereby achieve high-fidelity operation with current technology. Similar robustness

was recently studied in adiabatic passage of atoms to a doubly-excited Rydberg state [85],

which might be used as a mechanism to generate quantum logic gates.

Adiabatic evolution does not protect against all types of decoherence, however, and

the motional errors we consider are not strongly suppressed by adiabaticity alone. In fact,

motional errors have been among the main fidelity-limiting factors in recent attempts to

produce an adiabatic gate [43]. The protocol we consider is compatible with a “Doppler-

free” laser configuration, in which the qubits are excited by two counterpropagating beams

rather than just a single beam. Such a configuration does not directly reduce the terms in

the Hamiltonian that lead to motional decoherence, but it changes their form to one more

amenable to adiabatic suppression. Taken together, adiabatic dressing and a Doppler-free

configuration produce more than an order-of-magnitude reduction of motional decoher-

ence that neither change achieves on its own.
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4.2 Implementing a CZ gate

4.2.1 The Dressed-Blockade Interaction

As in previous chapters, we consider qubits encoded in single 133Cs atoms, individually

trapped in tightly focused optical tweezers, with a typical separation of 5–10 microns

(see Fig. 4.1). Qubits are encoded in the clock states, |0〉 ≡ |6S1/2;F = 4,MF = 0〉 and

|1〉 ≡ |6S1/2;F = 3,MF = 0〉. We consider direct excitation to a high-lying Rydberg level,

|r〉 ≡ |84P3/2;MJ〉 by a single exciting laser at λL ≈ 319 nm in the absence of the trap

which is turned off during the duration of the interaction so the atoms undergo ballistic

motion [80]. In the absence of the dipole-dipole interaction, each atom (labeled i = a,b)

interacts with a laser propagating on the interatomic z axis. The Hamiltonian individually

governing the dynamics of the two atoms is (in the two-level, rotating wave approximation,

~= 1),

Hi =
p2

i
2m
−∆ |r〉i 〈r|+

Ω

2
(eikLzi |r〉i 〈0|+ e−ikLzi |0〉i 〈r|). (4.1)

When including the dipole-dipole interaction of atoms in the Rydberg states, the two-atom

Hamiltonian takes the form,

H = Ha⊗1+1⊗Hb +Vdd(zb− za) |rr〉〈rr| , (4.2)

where Vdd(z) is the dipole-dipole potential for two atoms excited to the Rydberg state.

This form of the interaction energy is approximately correct for atoms separated by a large

enough distance such that the interaction is perturbative when compared to the splitting of

the atomic Rydberg levels (e.g., in the van der Waals regime). For more closely spaced

atoms, the electrostatic forces will strongly mix many atomic orbitals into molecular-type

orbitals, so that the double excitation is no longer of the form |rr〉〈rr|, for a single Rydberg

level [50]. Nevertheless, as long as the blockade is strong, we can obtain the essential

physics by considering only one doubly-excited state with a given dipole-dipole potential.
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Figure 4.1: (a) Schematic for the CPHASE gate. Two cesium atoms are trapped and cooled
in dipole traps, several µm apart. During the CPHASE gate, the trapping lasers are turned
off and the atoms are illuminated by a 319 nm Rydberg laser. A bias magnetic field ensures
that the laser’s propagation axis coincides with the atomic quantization axis. (b) In each
atom, the logical-|0〉 state is coupled to a |84P3/2;MJ〉 Rydberg state. The coupling laser
has Rabi rate Ω and detuning from atomic resonance ∆0, with a momentum-dependent
Doppler shift δD ≡ kl p/m. (c) In the two-atom basis, |00〉 is coupled to the bright state
|B〉, again with base detuning ∆0 and Doppler shift δD. Excitation to |rr〉 is blockaded by
the dipole-dipole interaction Vdd . Atomic motion further couples |B〉 to a dark state, |D〉,
outside the ideal blockade subspace.

The position dependent phases exp(±ikLzi) associated with photon recoil can be re-

moved from the Hamiltonian by moving to a frame where a Rydberg excited atom is

moving with a velocity vvv =−kL/m with respect to the lab frame, yielding,

Hi⇒
p2

i
2m
−
(

∆− kL pi

m

)
|r〉i 〈r|+

Ω

2
(|r〉i 〈0|+ |0〉i 〈r|). (4.3)

Here we have absorbed the constant recoil energy into the standard definition of the de-

tuning, ∆→ ∆− k2
L/2m. In this frame, the Doppler shift, kL pi/m, is explicitly visible.

The single atom laser induced light shift (LS) on the ground state at zero momentum is

∆E(1)
LS = 1

2

(
−∆+ sign(∆)

√
∆2 +Ω2

)
.

As the interaction is only a function of the relative atomic distance, it is useful to

re-express the Hamiltonian in terms of the center-of-mass Pcm = pa + pb and relative

prel = (pb−pa)/2 momentum coordinates. In addition, the laser field only couples the
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logical state |00〉 to a symmetric superposition of one excited and one ground state atom.

Defining the bright and dark states of this two-atom system, |B〉 ≡ (|r0〉+ |0r〉)/
√

2 and

|D〉 ≡ (|r0〉− |0r〉)/
√

2, Eq. (4.2) can be rewritten as

H ≈ H0 +H1,

H0 =−∆

(
|B〉〈B|+ |D〉〈D|

)
−
(

2∆−Vdd(z̄)
)
|rr〉〈rr|

+

√
2Ω

2

(
|B〉〈00|+ |00〉〈B|+ |rr〉〈B|+ |B〉〈rr|

)
,

H1 = T +Vgrad +VDop.

(4.4)

Written in this form, H0 is the “frozen atom” model including only the internal state dy-

namics, that show the usual
√

2Ω Rabi flopping between the double-ground |00〉, single-

Rydberg bright |B〉, and double Rydberg |rr〉 states. The blockade energy is taken at the

mean atomic separation z̄. H1 accounts for the effects of atomic motion according to

T ≡ P2
cm

4m
+

p2
rel
m

,

Vgrad ≡
dVdd

dz

∣∣∣
z̄
(z− z̄) |rr〉〈rr| , and,

VDop ≡
kLPcm

2m

(
|B〉〈B|+ |D〉〈D|+2 |rr〉〈rr|

)
− kL prel

m

(
|B〉〈D|+ |D〉〈B|

)
.

(4.5)

T is the kinetic energy; this term does not entangle internal and external degrees of free-

dom and thus is unimportant in the perturbation to the logic gate. Vgrad accounts for the

interatomic forces due to the local gradient of the dipole-dipole potential for the doubly-

excited Rydberg state and results from linearizing Vdd about the point z= z̄. VDop describes

the effect of the Doppler shift. This includes a term diagonal in the {|B〉 , |D〉} basis that

depends on the center of mass momentum. The off-diagonal terms in VDop account for the

coupling between bright and dark states due to the relative motion of the atoms, familiar

in studies of coherent population trapping [86]. This term leads to random phases induced

by thermal motion that cause errors and reduce the entangling action of the interaction.

The eigenstates of H0 are completely decoupled from the motional degrees of freedom

and define the adiabatic basis. The problem can be simply diagonalized; the general case
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has been studied in [46]. In a strongly blockaded regime, |Vdd(z̄)| � |∆|,Ω, excitation

to the doubly-excited state |rr〉 is suppressed by a factor of order (Vdd)
2/(Ω2 +∆2). The

ground state |00〉 and the entangled bright state |B〉 form an effective two-level system,

and coupling to |rr〉 can be treated as a perturbation. The two-atom ground-state light-

shift energy is then approximately, E(2)
LS ≈

1
2

(
−∆+ sign(∆)

√
∆2 +2Ω2

)
[46]. The effec-

tive atomic interaction strength κ is the difference between the two-atom light shift and

that for two atoms in the absence of the dipole-dipole force, κ ≡ E(2)
LS − 2E(1)

LS . For weak

dressing, Ω� |∆|, κ ≈ −Ω4/(8∆3). As we will see, however, the regime of the highest

fidelity operation occurs for strong dressing, close to equal superpositions of ground and

bright states. In our previous analysis, we found κ/2π = 500 kHz to be experimentally

feasible [1].

4.2.2 The CZ Gate Protocol

Given an interaction of this form, it is straightforward to produce a two-qubit logic gate

in a manner analogous to Jaksch et al. [24]. Adiabatically increasing the Rydberg laser

power while decreasing the detuning creates the coupling, κ(t). Concurrently, the instanta-

neous ground state of H0 evolves from the bare |00〉 state into a “dressed” state with some

admixture of Rydberg character, |0̃0〉 = c0 |00〉+ cB |B〉+ crr |rr〉, where the coefficients

c0, cB, and cr depend on the time-dependent parameters ∆(t) and Ω(t), as well as the static

blockade Vdd(z̄). Perfect adiabatic state transfer is ensured by satisfying the adiabatic con-

dition, | 〈e| d
dt H0 |0̃0〉 |� |E(e)−E(0̃0)|2, where |e〉 is any one of the instantaneous excited

states of H0. Inverting this ramp returns the system to the bare logical subspace, with the

addition of nontrivial phases. When the adiabatic condition is satisfied, κ(t) is the rate at

which the dressed ground state accumulates the entangling phase. Integrating the evolu-

tion over the total time duration of the gate, [0,T ], gives a unitary map, U (2)
LS , that, when
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restricted to the two-qubit-logical subspace, takes the diagonal form,

U (2)
LS = ∑

xy=0,1
e−iφxy |xy〉〈xy| , where,

φ11 = 0; φ10 = φ01 =
∫ T

0
dt E(1)

LS (t); φ00 =
∫ T

0
dt E(2)

LS (t).

(4.6)

Following this with the inverse of local single qubit unitaries, U (1)
LS = exp(−iφ10 |0〉〈0|),

cancels the single atom light shifts, yielding the controlled phase gate, UCφJ ,

UCφJ =
(
U (1)

LS ⊗U (1)
LS )†U (2)

LS = e−iφκ|00〉〈00|,

where φκ =
∫ T

0
dt κ(t).

(4.7)

The single-atom light shifts can be compensated by, e.g., applying microwave pulses or

Raman lasers. The case where φκ = π is of particular interest, since UCπ ≡ UCZ is the

controlled-Z (CZ) gate, which, up to local unitaries, is equivalent to a controlled-X (CX,

or CNOT) gate.

The speed of the gate is set by balancing the requirements that one adiabatically follows

the dressed ground state of the Hamiltonian during the implementation of the gate while

avoiding the errors that accumulate over time. One fundamental source of such errors

is the finite lifetime of the Rydberg state, Γ−1. Decay of |r〉 will not only dephase the

qubits, but with high probability optically pump them into magnetic sublevels outside

the computational space, so we treat this as loss. This effect can be described as the

action of a non-Hermitian, effective Hamiltonian with an imaginary part to the detuning:

∆→ ∆− iΓ/2. Over the full duration T of a gate, such loss will reduce the trace of the

density matrix. For a large detuning, the interaction strength scales as κ∼−Ω4/∆3, while

the decay rate due to absorption of a photon and decay of the Rydberg state scales as

γ∼Ω2Γ/∆2. This implies that it is not advantageous to remain in the large detuning limit,

but to instead adiabatically sweep to resonance, where the dressing is maximum, while

simultaneously avoiding, to the maximum degree possible, double excitation of two atoms

into the Rydberg state.
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The shape of the laser pulse can strongly influence the speed at which one can perform

the gate while remaining adiabatic; finding the optimal pulse shape for a given control goal

is an area of active research (see, e.g., [87]). For a sufficiently large energy gap (between

the dressed ground and excited states) such that the time required to achieve the desired

adiabaticity is short compared to other constraints such as finite Rydberg lifetime, one can

remain adiabatic solely by rounding the edges of an essentially square-topped pulse and

have minimal impact on gate time. In the opposite limit, when the energy gap is not very

large compared to other decoherence rates, to achieve very high levels of adiabaticity one

might require a more triangular pulse, where laser power increases slowly until half the

desired phase is accumulated at which point the process is reversed. The parameter ranges

we explored fell between these two extremes where adiabaticity was one of a few limiting

factors on the gate’s speed and fidelity. An example simulation of the time dependent

Schrödinger equation in the absence of decoherence is shown in Fig. (4.2) for the following

parameters: pulse rise time 1 µs, Rabi frequency sweep Ω/2π = 0→ 3 MHz, detuning

sweep ∆/2π= 6→ 0 MHz, Rydberg decay rate Γ/2π= 3.7 kHz, and interatomic separation

z̄ = 5 µm. These parameters produce a blockade shift of Vdd(z̄)/2π ≈ −6.4 MHz, giving

an interaction strength of κ/2π≈ 1.8 MHz at full power. For this example, the populations

are highly adiabatic; approximately 99.5% of the original population returns to the ground

state.

4.3 Motional Errors

The method described produces a high-fideity CPHASE gate when errors due to motional

effects are neglected. To account for the motional degrees of freedom, we must con-

sider the near-degenerate manifold of dressed ground states, all with the same electronic

character but different momenta, |0̃0〉⊗ |prel,Pcm〉. The perturbative effects of motion are

described by H1, Eq. (4.4). For a gate performed for atoms in free flight, the finite mo-
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Figure 4.2: Pulse shape and bare state populations over the course of a gate with experi-
mentally feasible parameters: pulse rise time 1 µs, Rabi frequency sweep Ω/2π = 0→ 3
MHz, detuning sweep ∆/2π = 6→ 0 MHz, Rydberg decay rate Γ/2π= 3.7 kHz (black-
body limited lifetime), and interatomic separation r = 5 µm. As the laser turns on and is
tuned to resonance, the bare ground state (red) is dressed by admixing significant bright
state (blue) population, while the blockaded |rr〉 state (green) remains mostly unpopulated.
Adiabaticity and available interaction strength set comparable constraints in this case, so
that the laser pulse shape that best achieves the desired evolution is neither square-topped
nor triangular.

mentum spread of the atoms leads to two types of errors corresponding to the two terms in

VDop, Eq. (4.5). First, the perturbation of the energy,

〈0̃0|VDop |0̃0〉= kLPcm

2m
(|cB|2 +2|crr|2), (4.8)

leads to a momentum-dependence of the light shift. This in turn leads to a momentum-

dependence of the phase accumulated over the course of the gate, which manifests as

decoherence after averaging over motional degrees of freedom. Second, the off-diagonal

terms, 〈D|Vdd |0̃0〉, transfer population from the ideal dressed ground states into electronic

dark states, potentially causing qubit loss as well as decoherence.

An adiabatic gate is naturally robust against some of these motional noise sources.

Specifically, the dressed ground manifold is “protected” from the excited dressed states by
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an energy gap, ∆E ≈
√

∆2 +Ω2, and by design, we assume that the laser intensity is turned

on slowly enough to stay adiabatic given this gap. As long as | 〈e|H1 |0̃0〉 | � |∆E|, aver-

aged over the atomic thermal distribution and for all excited states |e〉, any time-dependent

sweep of the laser parameters that is adiabatic for H0 will also be adiabatic for H0 +H1.

Since H1 does not significantly affect adiabaticity, we can completely characterize its ef-

fects by examining its action on the dressed ground subspace. By guaranteeing that we

remain in a dressed ground state, we make the gate robust against errors that couple the sys-

tem to states outside the desired 3-level space, {|00〉 , |B〉 , |rr〉}. The off-diagonal bright-

dark coupling is such an error, so its effects are largely suppressed. The Doppler shift, on

the other hand, is not suppressed and remains a major source of error, even for cold atoms.

To ensure that Doppler errors are also suppressed, we can make use of a “Doppler-free”

configuration. We can achieve this through the addition of the light-shifts from counter-

propagating laser-beams on two Rydberg transitions such that the Doppler shift cancels to

first order in p. Consider counter-propagating lasers with opposite helicity, σ+/σ−, tuned

to address two different sublevels in the Rydberg manifold (see Fig. 4.3),

σ+ : |0〉= |6S1/2,F = 4,mF = 0〉

→ |r1〉= |84P3/2,mJ = 3/2〉 |I = 7/2,mI =−1/2〉

σ− : |0〉= |6S1/2,F = 4,mF = 0〉

→ |r2〉= |84P3/2,mJ =−3/2〉 |I = 7/2,mI =+1/2〉

(4.9)

Note, we choose a nP3/2 Rydberg multiplet because this has much larger oscillator strength

than the corresponding nP1/2 mutiplet [88]. We can suppress the coupling of the mF = 0

ground state to the mJ = ±1/2 sublevels with a sufficiently large Zeeman shift so that

those transitions remain well off resonance (e.g., B ≈ 10 G). Because the two beams are

differently detuned and orthogonally polarized, we avoid standing waves in intensity and

polarization.

Given the couplings in Eq. (4.9), we can write the single-atom Hamiltonian as in Eq.
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(4.1),

HA =
p2

2m
−∆(|r1〉〈r1|+ |r2〉〈r2|)

+

(
Ω1

2
eikLz |r1〉〈0|+

Ω2

2
e−ikLz |r2〉〈0|+h.c.

)
.

Including counter-propagating laser beams doubles the incident power, so in order to make

a fair comparison to a single laser beam we will assume that Ω2
1 = Ω2

2 = Ω2/2. In such

a configuration, there are coupled and uncoupled excited states for the each of the atoms

|r±〉 ≡ (Ω1 |r1〉±Ω2 |r2〉)/Ω. As before, we can go to a comoving frame, yielding the

single atom Hamiltonian

HA =
p2

2m
−∆

(
|r+〉〈r+|+ |r−〉〈r−|

)
+

kL p
m

(
|r−〉〈r+|+ |r+〉〈r−|

)
+

Ω

2
(
|r+〉〈0|+ |0〉〈r+|

)
.

(4.10)

For this configuration, as in Eq. (4.4), we can split the two-atom Hamiltonian into H0 for

“frozen atoms” and a perturbation H1 due to motion. Thus,

H0 = HA⊗1+1⊗HA +Vdd

=−∆(0) ∑
i=±

(|Bi〉〈Bi|+ |Di〉〈Di|)

+ ∑
i, j=±

(
V i j

dd(z̄)−2∆(0)
)
|rir j〉〈rir j|

+

√
2Ω

2
(|B+〉〈00|+ |r+r+〉〈B+|+h.c.)

+
Ω

2

[
(|r+r−〉+ |r−r+〉)〈D−|

+(|r+r−〉− |r−r+〉)〈B−|+h.c.
]
,

(4.11)

H1 =T +V =
P2

cm
4m

+
p2

rel
m

+
kL Pcm

2m
(σr

x⊗1+1⊗σ
r
x)

− kL prel

m
(σr

x⊗1−1⊗σ
r
x)

+ ∑
i, j=±

dV i j
dd

dz
(z− z̄) |rir j〉〈rir j| .
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We have defined the Pauli-x operators acting on Rydberg states to be σ
(r)
x ≡ |r−〉〈r+|+

|r+〉〈r−| as well as the bright and dark states,|B±〉 ≡ (|r± 0〉 + |0r±〉)/
√

2 and |D±〉 ≡

(|r± 0〉− |0r±〉)/
√

2. The effect of gradient forces now depends in the dipole-dipole po-

tential for the different Rydberg states, V i j
dd(z) = 〈ri|Vdd(z) |r j〉.

We see that for the counter-propagating σ+/σ− geometry, H0 is block diagonal in

the electronic degrees of freedom as well as diagonal in p. The states |00〉, |B+〉, and

|r+r+〉 form a block described by our desired 3-level blockade Hamiltonian, while |B−〉,

|D−〉, |r+,r−〉, and |r−,r+〉 form a separate block; the state |D+〉 is completely uncoupled

from all other states. The terms in V arising from the Doppler shift scale as kL pσr
x/m, but

because this coupling is off-diagonal, its effect will manifest as a second order perturbation

to the energies of |B+〉 and |r+r+〉. This counter-propagating laser configuration can thus

be considered as “Doppler-free” to first order. By contrast, with a single laser beam,

〈B|V |B〉 was nonzero, leading to contributions to the dressing energy that are first order

in the Doppler shift. To zeroth order in p, our scheme only involves the states in the 3×3

ideal block; the other states are only included through perturbations. Restricting H0 to this

subspace leaves

H0 =V++
dd (z) |r+r+〉〈r+r+|−∆

(
|B+〉〈B+|+2 |r+r+〉〈r+r+|

)
+

√
2|Ω|
2

(
|B+〉〈00|+ |00〉〈B+|+ |r+r+〉〈B+|+ |B+〉〈r+r+|

)
,

(4.12)

a Doppler-free Hamiltonian (see Fig. 4.1).

The ability to suppress motional error via this Doppler-free configuration is a key ben-

efit of the adiabatic gate approach. For comparison, consider the effects of the same error

Hamiltonians on a gate protocol based on fast pulses [54]. Such a gate involves the appli-

cation of resonant lasers on one atom at a time in a series of unitary evolutions: a π-pulse

excites a control qubit in one logical state to the |r〉 state followed by a 2π-pulse applied

to the target qubit; the control qubit is then de-excited by another π-pulse. During its time

T = 2π/Ω in the Rydberg state, the control qubit freely evolves, resulting in a phase ac-

cumulation due to the Doppler shift, exp(−2πi kL p
mΩ

). This error is first-order in p, as in the
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Figure 4.3: (a) Schematic for the “Doppler-free” configuration. Two cesium atoms are
trapped and cooled in dipole traps, several µm apart. During the CPHASE gate, the trap-
ping lasers are turned off and the atoms are illuminated by two counterpropagating, 319
nm Rydberg lasers. The two Rydberg lasers have opposite circular polarizations, so they
couple the atoms to orthogonal magnetic sublevels of the Rydberg manifold. Both Ryd-
berg lasers propagate along the interatomic separation axis; a bias magnetic field ensures
that this coincides with the atomic quantization axis. (b) In each atom, counterpropagat-
ing lasers couple the logical-|0〉 state to the mJ = ±3

2 magnetic sublevels of the |84P3/2〉
Rydberg manifold. The two lasers have the same Rabi rate Ω/

√
2 and detuning from res-

onance ∆0, but experience opposite Doppler shifts, δD ≡ kL p/m. Zeeman splitting should
be made large enough that coupling to mJ = ±1

2 can be neglected. (c) In the two-atom
basis, the states |00〉, |B+〉, and |r+r+〉 are coupled by the ideal blockade Hamiltonian
with no Doppler shifts. Instead, motional noise manifests as a coupling to the dark state
|D+〉. Because |D+〉 is outside the ideal adiabatic basis, we can suppress the effects of this
coupling through adiabatic evolution.

single-laser adiabatic protocol. Using the counter-propagating σ+/σ− laser geometry, the

situation is similar, except that now each atom evolves according to the Hamiltonian HA,

Eq. (4.10). During the time T the off-diagonal terms of the Hamiltonian cause the control

qubit to evolve from |r+〉 to cos(2π
kL p
mΩ

) |r+〉+sin(2π
kL p
mΩ

) |r−〉. Any population transferred

to |r−〉 will be uncoupled from the de-exciting π-pulse, and this leads loss of probability

amplitude that is first-order in p. The fast pulse scheme cannot be made “Doppler-free”

to first order. In contrast, adiabatic evolution suppresses population transfer to states out-

side the 3×3 ideal block, so this population loss is greatly reduced; it only manifests as a
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second-order energy perturbation, which leads to errors a factor of ∼ kL p
mΩ

smaller.

In addition to the effect of finite momentum spread, recent work has shown that the

Rydberg interaction itself can lead to further two-body decoherence when the blockade is

imperfect [89]. Because the dipole-dipole energy Vdd varies with interatomic distance, it

can produce an interatomic force when the system is in |rr〉. In our case, the effect of the

force is captured by Vgrad , Eq. (4.5), which does not change in the Doppler-free geome-

try. The perturbation on the dressed ground state is 〈0̃0|Vgrad |0̃0〉= |crr|2 f racdVdddz(z−

z̄), leads to a displacement on the relative momentum of atoms in this state, δprel =∫ T

0
|crr(t)|2

dVdd

dz
dt. Higher order perturbations take the system out of its dressed ground

state to some excited state |e〉; as long as the evolution remains adiabatic, they are sup-

pressed by an extra order of | 〈e|Vgrad |0̃0〉 |/∆E. For a near “perfect blockade,” where

|Vdd| � ∆,Ω, and crr ≈ 0, this force can be neglected entirely.

4.4 Simulated Gate Fidelities

To evaluate the performance of the gate, we use as our metric the fidelity to produce the

desired output given an input of all the logical states, |ψ0〉 = (uH⊗uH) |00〉, where uH is

the Hadamard gate. This fidelity F = 〈ψtar|ρout |ψtar〉, where |ψtar〉 is the target state ob-

tained through a combination of local unitaries and an ideal CZ gate, |ψtar〉=UCZ |ψ0〉=
1
2 (|11〉+ |10〉+ |01〉− |00〉), while ρout is the actual state in the logical space produced

in the presence of the error sources described above: nonadiabatic dressing, decay of the

Rydberg state, Doppler shift, and dipole-dipole forces for an imperfect blockade,

ρout =Trext

[
e−i|00〉〈00|⊗δprelzUeff

(
|ψ0〉〈ψ0|⊗ρ

ext)U†
eff× ei|00〉〈00|⊗δprelz

]
. (4.13)

Here ρext is the thermal state associated with the “external” (motional) degrees of freedom,

δprel is the total momentum displacement caused by the dipole force, and Ueff is the total

effective action of the gate including all decoherence sources other than the dipole-dipole
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Figure 4.4: Simulated gate error rates (1−F ) as a function of adiabatic ramp time. The
upper pair of curves were generated with the parameters given in Fig. 4.2, while the lower
curves used a higher Rabi rate for the exciting laser. Ignoring interatomic forces but in-
cluding all other errors (green triangles), the higher Rabi rate improves both gate speed and
fidelity. Including interatomic forces (red circles), any gain in fidelity from the increased
speed is offset by stronger forces owing to a larger |rr〉 population when the blockade is
imperfect. This suggests that beyond a certain threshold, increased laser power requires a
commensurately stronger blockade interaction in order to improve fidelity.

force. It is nonunitary due to the non-Hermitian Hamiltonian arising from decay of the

Rydberg state and thus we treat the map as generally non-trace-preserving. We are able to

separate out the effects of the dipole force through a first-order Baker-Campbell-Hausdorff

expansion; since H0 commutes with momentum displacements, all higher-order terms will

scale as the products of already small error Hamiltonians and can be ignored. Because Ueff

does not couple different logical states, it is convenient to expand F in the logical basis,

giving

F =
1
4 ∑

x,y,x′,y′
(−1)δxy,00−δx′y′,00 〈xy|ρout |x′y′〉 (4.14)

where |xy〉 are over the two-qubit logical states.

To understand the effects of atomic motion on gate errors, consider the contribution to
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the fidelity from each of the matrix elements in Eq. (4.14) under the assumption of perfect

adiabatic evolution of the dressed states. When both atoms are in the logical-1 state, we

assume no coupling to the laser, and thus there is no error contribution from 〈11|ρout |11〉.

When both atoms are in the logical-0 state, both photon scattering and motional effects

come into play. Motional dephasing has no effect on populations, only photon scattering

contributes error on the diagonal terms of ρout ,

〈0̃0|ρout |0̃0〉= 1
4

e−γT , (4.15)

where the factor e−γT accounts for loss due to the finite lifetime of the Rydberg state γT =

Γ
∫ T

0
(
|cB(t ′)|2 +2|crr(t ′)|2

)
dt ′. On the other hand, the off-diagonal terms are affected by

both loss and dephasing, leaving

〈11|ρout |widetilde00〉=−1
4

e−γT/2
∫

dPcmd prel e−iφDop

×〈Pcm, prel|ρext |Pcm, prel〉

=−1
4

e−γT/2
∫

dPcmd prel e−iφDop
e
− P2

cm
4∆p2

th e
−

p2
rel

∆p2
th

4π∆p2
th

.

(4.16)

We have assumed a thermal state of motion associated with the initial trapped atom of mass

m with mean vibrational quantum number n̄, with ∆p2
th = (n̄+1/2)mωosc. Since Doppler

effects do not couple different velocities, this thermal state can be treated as a classical

velocity distribution to obtain the above expression. The additional phase, e−iφDop , is due

to perturbation of the dressed ground state energy arising from the Doppler shift,

φDop(Pcm, prel)≡
∫ T

0

(
〈0̃0(t ′)|VDop |0̃0(t ′)〉

+∑
e

∣∣∣〈e|VDop |0̃0(t ′)〉
∣∣∣2

〈0̃0(t ′)|H0 |0̃0(t ′)〉−〈e|H0 |e〉

)
dt ′.

(4.17)

With a single coupling laser the correction to the light shift, Eq. (4.8), is first order in p,

and Eq. (4.16) can be integrated analytically. This leads to a reduction in the fidelity of
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order e−(n̄+1/2)η(ωoscT )2
, where η = Erecoil/~ωosc is the Lamb-Dicke parameter. For exam-

ple, using the parameters in Fig. 4.2 and n̄ = 5, we find that the 〈11|ρout |00〉 coherence

is reduced to ∼ 0.90 of its original value due to Doppler effects — an order of magnitude

more decoherence than from any other source. In contrast, with the Doppler-free config-

uration, the first order correction vanishes, thereby strongly suppressing the effect of the

Doppler shift. The |01〉 and |10〉 states experience similar Doppler perturbations to their

single atom light shifts, which are generally different from the light shifts on |00〉. This

implies that the coherences between {|01〉 , |10〉} and {|11〉 , |00〉} are also significantly

reduced by Doppler effects, and the Doppler-free configuration likewise suppresses these

decoherences.

The effect of the dipole-dipole force is seen in the coherences 〈xy|ρout |00〉, where xy 6=

00. Because atoms in |00〉 will experience a relative momentum kick when the blockade is

imperfect and they are both excited into the Rydberg state, this local basis state will contain

“which way” information relative to the other basis states. Tracing over the motional

degrees of freedom, this leads to a reduction of the coherences,

〈xy|ρout |00〉 ∝ Trext

[
e−iδprelzρext

rel

]
=

∫
d prel 〈prel +δprel|ρext

rel |prel〉= e−
(n̄+1/2)δp2

rel
2Mω .

(4.18)

Because δprel scales with |rr〉 population, this decoherence provides a strong penalty for

increasing the exciting laser power beyond the point of “breaking” the blockade (see

Fig. 4.4). For this reason, strong blockade interactions as well as high Rabi rates will

be required to achieve very high fidelities.

Finally, the gate’s fidelity is reduced by imperfect adiabatic following. Diabatic tran-

sitions during the ramps to and from resonance generally cause both population loss and

dephasing for each atom’s |0〉 state, so nearly every element of ρout is affected. The mag-

nitude of the resulting fidelity loss must be found by numerical simulation, but because

adiabaticity is basically independent of motional noise, the simulation can be performed

quickly using only electronic degrees of freedom.
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Figure 4.5: Simulated gate error rates (1−F ) as a function of adiabatic ramp time. For
comparison, the red triangle curve ignores motional effects and includes errors due solely
to diabatic transitions and finite Rydberg lifetime. For ramp times below ∼ 1.5 µs, all
curves predict low fidelities because the gate is not adiabatic. As the ramp time and adi-
abaticity are increased, other error sources become limiting factors. Including all error
sources while using the Doppler-free configuration (blue circles), we can reach error rates
of ∼ 2× 10−3, with finite blockade strength as the primary fidelity-limiting factor. By
contrast, the single-laser configuration (green squares) suffers more than an order of mag-
nitude greater error than its counterparts.

To calculate the fidelity according to Eq. (4.14), we simulate the evolution according

to the (non-Hermitian) time-dependent Schrödinger equation governed by He f f . This gen-

erates the (non-trace-preserving) evolution Ue f f , accounting for errors due to imperfect

adiabatic evolution, loss of atoms due to excitation to the Rydberg state, and decoherence

due to thermal spread of Doppler shifts. We use the simulated excitation to |rr〉 to calcu-

late the relative momentum kick given to atoms due to the dipole-dipole force, and from

this include the additional decoherence effect described in Eq. (4.18).

As an example, we take the parameters given in Fig. 4.2. This requires a ramp time

on the order of 1 µs to stay adiabatic, so that one can perform a CPHASE gate in ∼

2.3 µs. Putting together all of the error sources discussed, we calculate a gate infidelity
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of 1−F ∼ 2× 10−3 for the Doppler-free configuration. The gate error arises in small

part from the second-order effect of Doppler shifts and finite Rydberg lifetime, but it is

dominated by interatomic dipole forces owing to an imperfect blockade (see Fig. 4.5). By

contrast, without the Doppler-free configuration, the same parameters give an infidelity of

1−F ∼ .04, almost all of which is due to the spread in Doppler shifts.

4.5 Conclusion

We have studied a method for robustly implementing a CZ gate between neutral cesium

atoms based on adiabatic dressing of the ground state via the Rydberg blockade. The

main advantage of this approach is that it strongly suppresses random phases between

bright- and dark-state superpositions that arise due to atomic motion. In addition, by

employing two counterpropagating Rydberg lasers in a σ+/σ− configuration, one can

eliminate the Doppler shift to first order. All effects of thermal motion then take the form

of coupling to a dark state outside the ideal blockade subspace, which is suppressed by an

energy gap during adiabatic evolution. When both adiabatic dressing and the Doppler-free

configuration are used together, errors from thermal motion are reduced by more than an

order of magnitude compared to either strategy used alone.

With motional errors reduced in this way, the main remaining source of error is en-

tanglement between internal and external degrees of freedom due to dipole-dipole forces

when the Rydberg blockade is imperfect. Such error is highly nonlinear in laser power; it

can be kept small as long as the Rydberg blockade is nearly perfect, but increases rapidly

when laser power is increased beyond the point of breaking the blockade. This implies

that the available blockade strength sets an upper limit on useful laser power, which in

turn limits both the fidelity and speed of the gate. If the blockade shift can be increased by

bringing atoms into closer proximity or by the appropriate choice of Rydberg levels, the

gate errors will be limited solely by finite Rydberg lifetime.
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As a final note, we have considered here gates performed while atoms are untrapped

and fall ballistically. Recapturing the atoms after the gate will generally cause the atoms

to heat [90]. This effect is not reflected in our error estimates because it does not affect

the fidelity of any one gate, but it could increase decoherence if multiple gates are per-

formed successively with no re-cooling in between. In principle, all of these errors would

be substantially reduced in a “magic trap” which traps electronic-ground-state and Ryd-

berg atoms equivalently [91]. In that case, cooling the atoms to the vibrational ground

state would completely remove Doppler shifts as well as suppress decoherence due to the

dipole-dipole force in an imperfect blockade, providing a potential path to high-fidelity

quantum logic.
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Symmetric Control

While the logic gate described above can be used as a component of a universal quan-

tum computer, it is at its heart only a two-body operation. The dressed-Rydberg interac-

tion can also be used in an inherently many-body context, to produce entangled ensemble

states. Beyond their intrinsic interest as highly non-classical states, entangled many-body

states are a valuable resource for quantum information. Premade entangled states can be

used to simplify the tasks of quantum computation [92] and error correction [93]. Many-

body entanglement is also a crucial ingredient in metrology beyond the standard quantum

limit [94] and schemes for encoding logical qubits [95].

The group of Poul Jessen has pioneered techniques for control of high-dimensional

qudits encoded in the internal hyperfine magnetic sublevels of cesium [96, 97, 98, 14].

In this chapter, we build on that work by applying the same control techniques to the

collective states of atomic ensembles. Specifically, we are interested in symmetric control

of ensembles, in which we produce some entangled state by applying a Hamiltonian that

acts on every atom in the ensemble equivalently. Such restricted dynamics still allow for

the creation of interesting entangled states, but have lower experimental requirements than

completely arbitrary control. Symmetric many-body control has been shown in ionic [7]
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and photonic [99] systems, and has been proposed for Bose-Einstein condensates [100].

Here, we describe a method for symmetric many-body control of ensembles of neutral

atoms.

5.1 The Jaynes-Cummings Hamiltonian

We consider as our system a collection of N 133Cs atoms, all packed within a volume

whose radius is smaller than the Rydberg blockade radius. As in previous chapters, each

atom’s logical states are encoded in the clock states, |0〉 ≡ |6S1/2;F = 3,MF = 0〉 and

|1〉 ≡ |6S1/2;F = 4,MF = 0〉. The ensemble is uniformly illuminated by a laser, coupling

|1〉 to |r〉 in every atom with the same Rabi frequency Ωr and detuning ∆r. The Hamilto-

nian for this system is a generalization of the two-body expression in Eq. (2.12). In the

frame rotating at the laser frequency and units with ~= 1,

H(i) = EHF |1〉〈1|(i)+(EHF −∆r) |r〉〈r|(i)+
Ωr

2

(
|r〉〈1|(i)+ |1〉〈r|(i)

)
, (5.1)

H =
N

∑
i=1

H(i)+VDD, (5.2)

where EHF is the ground-state hyperfine splitting and VDD is the Hamiltonian describing

the EDDI-induced blockade interaction. If we assume a perfect blockade, this Hamiltonian

is symmetric under the exchange of any two atoms, so we can restrict our attention to

symmetric states, i.e. states that are unchanged by any permutation of atom labeling.

Because a symmetric state cannot, by definition, specify which atoms are in which states,

it can be described entirely by specifying how many atoms are in each state – that is, how

many atoms are in each of |0〉, |1〉, and |r〉. Because the total number of atoms is fixed

at N, the number of atoms in |0〉 is always equal to N minus the number of atoms in the

other two states, and so is not an additional degree of freedom. Thus, for any given N, a

basis for the symmetric subspace can be compactly denoted by two indices: the number

of atoms nr in the |r〉 state, and the number of atoms n in the |1〉 state.
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The blockade Hamiltonian, VDD, acts to modify the energies of states with nr > 1.

Following the arguments of Sec. 2.3, the effect of this is to suppress the simultaneous

excitation of multiple Rydberg states. In the perfect blockade limit, second-and-higher

excitations are prevented entirely, so VDD can be conveniently accounted for by projecting

into the subspace of states with nr ≤ 1. Rydberg excitation becomes a binary degree of

freedom: either the ensemble has a collective Rydberg excitation, or it does not. We as-

sume a perfect blockade for all analysis in the remainder of this chapter, so our state space

of interest is indexed by n and a binary variable (here taking the values {r,g}) denoting the

presence/absence of a Rydberg excitation. In any future analysis where an ideal blockade

is not assumed, the state space cannot be truncated in this matter, and the precise structure

of VDD must be accounted for.

Explicitly, the basis states for the symmetric, perfectly blockaded subspace are

|g,n〉 ≡ Sym.
(
|1〉⊗n⊗|0〉⊗N−n

)
,

|r,n〉 ≡ Sym.
(
|r〉⊗ |1〉⊗n⊗|0〉⊗N−n−1

)
,

(5.3)

where Sym. denotes symmetrization over all possible permutations. For example, if N = 3,

|r,1〉= 1√
6

(
|r10〉+ |r01〉+ |1r0〉+ |10r〉+ |0r1〉+ |01r〉

)
. (5.4)

In the literature, the symmetric ground states |g,n〉 are often referred to as the “Dicke

states” for N qubits, following from Dicke’s seminal work on symmetric ensembles of

two-level atoms [101].

The Rydberg laser excites atoms from |1〉 into |r〉 (and vice-versa), so it couples every

ground state |g,n〉 to its Rydberg counterpart |r,n−1〉. As shown in Eq. (2.16), the collec-

tive coupling of n atoms to a Rydberg state simultaneously is enhanced by a factor of
√

n

over the single-atom coupling strength, so the total Hamiltonian in the symmetric basis is

H =
N

∑
n=0

nEHF |g,n〉〈g,n|+(nEHF −∆r) |r,n−1〉〈r,n−1|

+

√
nΩr

2

(
|r,n−1〉〈g,n|+ |g,n〉〈r,n−1|

)
.

(5.5)
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This expression is similar in form to the familiar Jaynes-Cummings (JC) Hamiltonian [102];

in fact, it is known [103] that the two Hamiltonians can be made isomorphic with the

appropriate transformations, as we now show. In second quantized form, we take the all-

atoms-in-|0〉 state, |g,0〉, to be the “vacuum” state. Let â†
1 be a bosonic operator that creates

one atom in the |1〉 state, symmetrically across the ensemble. Let ĉ†
r be a fermionic oper-

ator that creates one atom in the |r〉 state, again symmetrically across the ensemble. The

analog of the Pauli exclusion principle allows only one Rydberg atom at a time, enforcing

a perfect blockade. Rewriting Eq. (5.5) in terms of these operators gives

H = EHF â†
1â1 +(EHF −∆r)ĉ†

r ĉr +
Ωr

2
(ĉ†

r â1 + â†
1ĉr). (5.6)

We now make the Jordan-Wigner transformation [104] from fermionic to Pauli operators;

since we have one “mode”, ĉr→ σ̂−, ĉ†
r → σ̂+, and ĉ†

r ĉr→ σ̂+σ̂− = (1+ σ̂z)/2. Substitu-

tion into Eq. (5.6) yields the Jaynes-Cummings Hamiltonian,

HJC = EHF â†
1â1 +(EHF −∆r)

(
1+ σ̂z

2

)
+

Ωr

2
(σ̂+â1 + â†

1σ̂−). (5.7)

Here, the presence or absence of a Rydberg excitation plays the role of the two-level spin

in a conventional JC cavity, and atoms in |1〉 take the place of photons as the system’s

bosonic degree of freedom. Other aspects of the isomorphism between the JC model and

the symmetric-Rydberg-coupled ensemble are given in Table 5.1.

Returning to the form of Eq. (5.5), we see that this Hamiltonian is block-diagonal, with

2×2 blocks each consisting of some |g,n〉 and its partner |r,n−1〉. Each block takes the

same form as a single-atom light shift Hamiltonian, but with a
√

n enhancement of the

laser’s effective Rabi rate. These blocks can be diagonalized exactly, giving

H =
N

∑
n=0

(nEHF −
∆r

2
)(|r̃,n〉〈r̃,n|+ |g̃,n〉〈g̃,n|)

− sign(∆r)

2

√
∆2

r +nΩ2
r (|r̃,n〉〈r̃,n|− |g̃,n〉〈g̃,n|),

(5.8)

where tildes denote dressed states, i.e. eigenstates of the 2× 2 blocks. As in previous

chapters, we quantify the entangling power of this Hamiltonian by the nonlinear light
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Cavity QED Symmetric Atomic Ensemble
Two-level system 2-level atom, {|g〉 , |e〉} Presence or absence of Rydberg excitation
Bosonic mode |n〉= n photons in cavity mode |n〉= n atoms in logical-|1〉
Vacuum |0〉=no photons in cavity mode |0〉⊗N =all atoms in logical-|0〉
Bare states |g〉⊗ |n〉 , |e〉⊗ |n〉 Sym.(|0〉⊗N−n |1〉⊗n), Sym.(|0〉⊗N−n |1〉⊗n−1 |r〉)
Dressed states α |g,n〉±β |e,n−1〉 Sym.(|0〉⊗N−n |1〉⊗n−1 [α |1〉±β |r〉)
Frequency scales boson= ωc, 2-level= ωeg, Rabi= g boson= EHF , 2-level= EHF −∆r, Rabi= Ωr
Qubit control Rabi oscillations on 2-level atom Rabi oscillations on collective Rydberg excitation
Boson control Field driving cavity mode Rabi oscillations between clock states

Table 5.1: Isomorphism between the cavity QED Jaynes-Cummings model and symmetrically controlled atomic
ensembles.

shift,

κ = 〈g̃,2|H |g̃,2〉−2〈g̃,1|H |g̃,1〉 . (5.9)

Since we are no longer dealing with just two qubits at a time, there are further modifica-

tions to the light shift strength for n ≥ 3; nevertheless, the two-body κ provides a good

estimate of the speed at which we can perform control. In the weak dressing limit, H

becomes quadratic, and its nonlinearity is fully described by κ according to

〈g̃,n|H |g̃,n〉−n〈g̃,1|H |g̃,1〉 ≈ (n2−n)
κ

2
. (5.10)

Depending on the system’s initial state, HJC by itself can generate entanglement over

time. In particular, HJC can turn the spin coherent state |ΨSC〉 = (|0〉+ |1〉)⊗N/2N/2 into

a highly entangled cat-like state. More precisely, we consider applying HJC to the dressed

counterpart |Ψ̃SC〉 of the bare state |ΨSC〉, defined by

|ΨSC〉=
(
|0〉+ |1〉√

2

)⊗N

=
N

∑
n=0

cn |g,n〉

|Ψ̃SC〉 ≡
N

∑
n=0

cn |g̃,n〉 ,
(5.11)

where cn are the expansion coefficients of |ΨSC〉 in the Dicke basis. Single-atom light
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shifts can be used to cancel the linear component of Eq. (5.10), leaving H ≈ n2κ/2. Ap-

plying this H to |Ψ̃SC〉 for a time t leaves us with

e−iHt/2 |Ψ̃SC〉=
N

∑
n=0

cne−in2κt/2 |g̃,n〉 , (5.12)

that is, each |g̃,n〉 accumulates a phase of−n2κt/2. If we choose t = π/κ, the accumulated

phase becomes−n2π/2; modulo 2π, this is zero for all even n and−π/2 for all odd n. This

generates the state

e−iHπ/(2κ) |Ψ̃SC〉=
N

∑
even n

cn |g̃,n〉− i
N

∑
odd n

cn |g̃,n〉

=
1− i√

2

(
1+ i√

2

N

∑
even n

cn |g̃,n〉+
1− i√

2

N

∑
odd n

cn |g̃,n〉

)

=
1− i

2

N

∑
n=0

cn |g̃,n〉+
1+ i

2

N

∑
n=0

(−1)ncn |g̃,n〉

= e−iπ/4 |Ψ̃SC〉+ iσ⊗N
x |Ψ̃SC〉√
2

.

(5.13)

Up to phases, this state is a superposition of |Ψ̃SC〉with its parity image formed by flipping

every qubit, i.e. a cat state. Note that the time required for this method does not depend on

n; maximal entanglement can be generated in time π/κ regardless of the number of qubits.

HJC can also produce cat-like states when dressing is strong, although the mechanism

is less obvious. When a conventional, cavity JC system is prepared in the state |g〉⊗ |α〉,

with the atom in its ground state and the field in a coherent state, the system’s Rabi os-

cillations will exhibit collapse and revival [105], going from high- to zero-amplitude and

back in time t ≈ 2π
√

n̄/g. Gea-Banacloche showed [106] that if the mean photon num-

ber n̄ = |α|2� 1, at half the revival time the atom and field become disentangled again;

their state becomes (|g〉+ i |e〉)⊗(|α̃〉+ |−α̃〉), where |±α̃〉 are slightly squeezed coherent

states. At this time, the field is a near-cat state of the cavity mode. In the context of the

symmetric Rydberg ensemble, for large N, an initial preparation in |ΨSC〉 is analogous to

the initial condition |g〉⊗ |α〉. If we allow the system to undergo Rabi oscillations in the
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Figure 5.1: Entanglement generated in the collapse of JC Rabi oscillations. We simulate 10
atoms initially prepared in a separable state, (|0〉+ |1〉)⊗10, and allowed to evolve under
HJC with the Rydberg laser on resonance (EHF −∆r = 0). At a time t = π

√
5/Ωr, the

system approaches a cat-like state. The spin Wigner function plotted here exhibits large
interference fringes (blue positive, red negative), indicating strong entanglement.

presence of a Rydberg laser, then at half the revival time we expect the state to be close to

Sym.
(
(|0〉+ i |r〉)⊗ (|0〉⊗N−1 + |1〉⊗N−1)

)
. A final pulse, with the appropriate phase, will

remove the single Rydberg excitation, and return a cat-like state — such as the one shown

in Fig. 5.1 — in the ground subspace. Both collapse and revival [107] and the resulting

generation of cat states in a related protocol [41] have been proposed previously.

5.2 Controllability

The above protocols employed the JC Hamiltonian to generate particular entangled states.

Here, we pursue the broader objective of complete control over an atomic ensemble’s

Dicke subspace. Most generally, a system is considered controllable if one can perform
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an arbitrary quantum transformation on it through appropriate choices of the system’s free

parameters. We specifically consider state-to-state controllability; that is, we want the

ability to map any given input state of our ensemble to an arbitrary but fixed output state.

Other types of control, such as generating arbitrary unitary transformations [108, 109], are

mostly beyond the scope of this chapter but use many of the same tools and concepts as

state-to-state control.

By itself, the JC Hamiltonian only includes pairwise couplings between states, so it

must be augmented with some additional “control Hamiltonian” to achieve full quan-

tum control. This kind of control has long been studied in cavity QED [110] and ion

traps [111], and more recently in circuit QED [112]. In all cases, the JC Hamiltonian

itself is the same, but the nature of the control Hamiltonian can vary depending on what

sorts of interactions are most straightforwardly implemented in a given system. Some of

these control procedures can be directly ported over to the atomic ensemble platform. For

example, Law and Eberly showed [113] how arbitrary superposition states of N photons

in a cavity could be synthesized through a series of SU(2) rotations on the “carrier and

red-sidebands” of the JC model, a procedure implemented in ion traps [114] and circuit

QED [115]. In atomic ensembles, the carrier and red-sideband transitions, |g,n〉 ↔ |r,n〉

and |g,n〉↔ |r,n−1〉 respectively, are equivalent to lasers driving the |0〉↔ |r〉 and |1〉↔

|r〉 transitions respectively, in the presence of the Rydberg blockade. One can employ this

protocol to create arbitrary states in the Dicke-subspace.

The mapping to symmetric atomic ensembles considered here gives also gives us a

unique control option: by driving atomic ground-state transitions, we can act directly on

the system’s bosonic degree of freedom and perform transformations not possible with

a true harmonic oscillator. For our control Hamiltonian, we consider a microwave (or

Raman transition) coupling |0〉 to |1〉 in each atom. The Rabi rate and detuning are fixed

at Ωµw and ∆µw, respectively, but we allow the microwave’s phase to vary as a function of

time. As with the Rydberg laser, we assume the microwave illuminates the entire ensemble
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(a) (b) (c)

κ

Figure 5.2: The Rydberg JC Hamiltonian for two atoms. (a) Basic level structure for
the three-level atom: a qubit is encoded in the ground hyperfine states, and logical-|1〉 is
optically coupled to a Rydberg state, while logical-|0〉 is far off resonance and effectively
uncoupled. (b) Bare states for two atoms, symmetrically coupled, under the condition of
a perfect blockade. (c) Two-atom dressed states, which exhibit the nonlinear JC ladder
energy-level structure. If the microwave is tuned to resonance for flipping one qubit (in
the presence of a light shift), double spin flips are blockaded by the dressing interaction κ.
The microwave thus drives transitions from |g,0〉 to |g̃,1〉, a maximally entangled state in
the dressed-ground subspace.

symmetrically, so it is described by a sum of identical Hamiltonians acting on all atoms

individually. In the frame rotating at the microwave frequency,

Hµw(t) =
N

∑
i=1

Ωµw

2
(e−iφ(t) |1〉〈0|(i)+ eiφ(t) |0〉〈1|(i))−ωµw |1〉〈1|(i) , (5.14)

where φ(t) is an arbitrary, time-dependent phase and ωµw = EHF +∆µw is the microwave

frequency. (The full ωµw appears instead of ∆µw as a coefficient because EHF is already

included in HJC.) The full Hamiltonian, including both Hµw and HJC from Eq. (5.8),

is illustrated for two atoms in Fig. 5.2. The effect of Hµw is most easily understood in a

“pseudo-spin” picture, in which we map the Dicke states to an effective spin with J =N/2.

In this picture, the collective spin operator J is related to the Pauli operators on each qubit

~σ(i) according to J = ∑
N
i=1~σ

(i)/2. The Dicke states are the simultaneous eigenstates of

J and Jz, so that |g,n〉 → |J = N/2,M = n−N/2,g〉. Similarly, the symmetric Rydberg
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states can be mapped to an effective spin with J = (N − 1)/2: setting aside the single

Rydberg atom, we treat the remaining N − 1 atoms as comprising another set of Dicke

states, and we can say |r,n〉 → |J = (N−1)/2,M = n− (N−1)/2,r〉. Putting Eq. (5.14)

in this basis, we find that the effect of the microwave is to rotate the pseudo-spin about the

x- or y-axis, depending on its phase:

Hµw(t) = Ωµw(cos(φ(t))Jx + sin(φ(t))Jy)−ωµw(Jz +
N
2
). (5.15)

Note that this Hamiltonian applies the same set of operators to both the ground and Ryd-

berg pseudo-spins; the two manifolds undergo SU(2) rotations in parallel.

To see how such bosonic driving can be used with with the nonlinearity associated

with the Rydberg blockade to create entanglement, consider the two-qubit scheme shown

in Fig. 5.2c. Both qubits begin in the logical-|0〉 state, while logical-|1〉 is strongly dressed

by the Rydberg laser. The microwave is tuned to resonance including the single-atom light

shift (i.e. ∆µw = (∆r−
√

Ω2
r +∆2

r )/2), so it resonantly drives the |g,0〉 ↔ |g̃,1〉 transition.

On the other hand, the |g̃,1〉 ↔ |g̃,2〉 transition is off resonance by the two-body light

shift κ. If κ�Ωr, the interaction creates a “spin-flip blockade”, suppressing excitation to

|g̃,2〉. This is the dressed-ground analog of the optically induced Rydberg blockade. With

a perfect spin-flip blockade, a π-pulse can take |g,0〉 to |g̃,1〉; adiabatically ramping down

the Rydberg laser then transfers this state to the bare |g,1〉, leaving maximal entanglement

between ground-state atoms. This procedure was used by Jau et al. to generate a two-

atom Bell state with fidelity ≥ 81% [39]. For an arbitrary number of atoms, the equivalent

procedure would generate a W-state, defined in Eq. 2.15.

While the spin-flip blockade provides a simple way to generate entanglement with a

constant microwave phase, it has limitations. Firstly, it is slow, since the duration of the

microwave pulse must be sufficiently long compared to 1/κ in order to avoid off-resonant

excitation and thus induce a near perfect spin-flip blockade. In addition, we can achieve a

much broader range of control tasks if φ is allowed to vary with time. In fact, an arbitrary

φ(t) makes the system completely controllable; that is, for any states |Ψin〉 and |Ψout〉 in
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the symmetric space of N atoms, there exists a phase as a function of time φ(t) such that

the total Hamiltonian HJC +Hµw(t) generates a unitary mapping |Ψin〉 to |Ψout〉. In the

weak-dressing limit of Eq. 5.10, the effective Hamiltonian acting on the dressed ground

states takes the form of a “single-axis twisting” interaction on the collective spin [116],

H ≈
(

Ω2
r

4∆2
r
− Nκ

2

)
Jz +

κ

2
J2

z . (5.16)

This nonlinear term is a well-known collective entangling Hamiltonian that allows for

arbitrary control in the symmetric subspace with the addition of SU(2) rotations [96, 117].

We now outline a proof that a JC Rydberg ensemble with microwaves is controllable more

generally, even with strong dressing; the full proof is given in Appendix A.

5.2.1 Outline of Controllability Proof

The conditions for controllability of a system can be understood in terms of the available

set of Hamiltonians that can be manipulated, as initially laid out for finite dimensional

Hilbert spaces in [118]. For a general control task, the total Hamiltonian consists of a

constant part H0 and one or more adjustable parts H j,

H(t) = H0 +∑
j

c j(t)H j, (5.17)

where c j(t) are the time-dependent control parameters. A d-dimensional system described

by such a Hamiltonian is controllable if we can choose c j(t) to generate any element of

the Lie group SU(d). This, in turn, is true if and only if the operators {H0,H1, ...,Hn}

are a generating set for the Lie algebra su(d). The algebra generated by a set of oper-

ators consists of all operators that can be reached by repeated commutations and linear

combinations of the original set elements. Thus, the system is controllable if and only

if we can create all elements of su(d) through commutators and linear combinations of

{H0,H1, ...,Hn}.
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If d is fixed and finite, the controllability of a system can be checked algorithmically.

One can calculate the commutators of all pairs of operators in {H0,H1, ...,Hn}, keeping

track of which results are linearly independent of the original set. The new, independent

operators are added to the set, and the process is repeated until the set spans su(d) (mean-

ing the system is controllable) or no more linearly independent operators can be generated

(meaning it is not). In a system with variable d, like the N-atom ensemble considered

here, the situation is more complicated; since there is no upper bound to the size of su(d),

we cannot generate all of its elements through brute force. Instead, we need some form

of induction to guarantee that su(d) can be generated regardless of d. Here, we rely on

two theorems due to Seth Merkel [119], which together tell us that our entire system is

controllable if we can generate Jx, Jz, and any irreducible, rank-two tensor, on the ground

and Rydberg manifolds independently. This means that instead of having to generate all

of su(d), we need only generate six operators: two sets of {Jx,Jz,T}, projected onto the

ground and Rydberg manifolds, where T is such a rank-two tensor.

We begin our proof with the system’s full Hamiltonian, which is a combination of

Eqs. 5.5 and 5.14: H(t) = HJC +Hµw(t). Fitting this to the form of Eq. (5.17), we find that

H0 =−∆µw(Jz +
N
2
)+(EHF −∆r)Pr

+
N

∑
n=1

√
nΩr

2
(|g,n〉〈r,n−1|+ |r,n−1〉〈g,n|),

H1 =Jx, c1(t) = Ωµw cos(φ(t))

H2 =Jy, c2(t) = Ωµw sin(φ(t)),

(5.18)

where Pr(g) = ∑n |n,r(g)〉〈n,r(g)| is the projector onto the Rydberg (ground) manifold.

Qualitatively, H0 encapsulates the nonlinear couplings of HJC and the effects of detuning,

leaving Jx and Jy as our variable control Hamiltonians. Immediately, we have [Jx,Jy] = iJz,

which acts symmetrically on the two manifolds. By twice commuting Jz with the nonlinear

component of H0, we obtain its antisymmetric counterpart; up to linear combinations with
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previous operators,

[H0, [H0,Jz]]→ PrJzPr−PgJzPg. (5.19)

Adding (subtracting) this with the original, symmetric Jz leaves Jz projected onto the Ry-

dberg (ground) manifold. One more commutator allows us to spread the ground- and

Rydberg-projections to Jx,

[Pr(g)JzPr(g),Jy] =−iPr(g)JxPr(g). (5.20)

Now that we have projected versions of Jx and Jz, we need to produce an irreducible, rank-

two T , which we can do with a few more successive commutators. In Appendix A, we

show each commutator individually; here, we write them as a single step for compactness.

Again up to linear combinations with previous operators,[[
[[H0,Jz],PgJzPg], [H0,Jz]

]
,PgJxPg

]
→ Pg (JzJy + JyJz)Pg, (5.21)

which is an irreducible, rank-two tensor operator. The same formula holds with Pg replaced

by Pr, giving us a T projected onto both manifolds. Combined with projected Jx and Jz

and the theorems cited above, this shows that our system is completely controllable.

5.3 Finding Optimal Parameters

Given that the system is controllable, we know there is always some (non-unique) wave-

form φ(t) that will produce a given target state; our goal is to find such a φ(t). In general,

φ(t) can be any function of time, but here we restrict it to a piecewise constant function

to simplify analysis. Under this restriction, a control waveform consists of a sequence of

s “phase steps” of length ∆t, for a total run time of T = s∆t. The full range of possible

control waveforms can thus be parameterized by an s-dimensional vector,~φ. Our goal is to

find a~φ such that the fidelity of the output state with some target state, F (~φ,Ψtar), is suf-

ficiently high. This procedure has been successfully employed to find optimal waveforms

for control of hyperfine qudits [96].
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Figure 5.3: Simulated control fidelities to produce a six-atom cat state in the dressed basis,
starting from |g,0〉. Plotted as a function of Rydberg laser detuning ∆r and total run time
T , using the minimum of s = 25 phase steps. For any given ∆r, there is a well-delineated
control time above which fidelity is arbitrarily close to one. As ∆r increases, κ decreases
and the minimum control time gets longer.

We accomplish this with a GRAPE gradient ascent algorithm [120], beginning with a

random~φ (i.e. s random phases). We calculate the gradient of F at~φ, which tells us the

“direction” in parameter space in which fidelity is increasing most rapidly. We then adjust

our vector of phases in this direction, updating it according to

~φ→~φ+δ∇F |~φ, (5.22)

where δ is a small parameter, chosen empirically to optimize run time. This procedure is

repeated many times, and~φ “climbs” the fidelity landscape until F either exceeds some

predetermined threshold or stops improving. If both T and s are sufficiently large, the
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control landscape has no local maxima, and GRAPE can produce fidelities arbitrarily close

to one [121]. The results are illustrated in Fig. 5.3 for a six-atom ensemble.

The choice of optimal parameters such as laser/microwave power and detuning will

depend on fundamental sources of error such as decoherence as well as practical exper-

imental concerns. In particular, it is desirable to minimize the runtime and complexity

of our protocol, so we typically seek the minimum T and s needed for high-fidelity con-

trol. It takes 2d− 1 real numbers to specify a d-dimensional target state, so this puts a

lower bound on s. For N atoms including both ground and Rydberg symmetric states, this

gives s ≥ 4N + 1. In practice, we find that this inequality can often be saturated. More

heuristically, we can predict that κT & π, the minimum time required to generate strong

entanglement. Whether this bound can be saturated depends on the choice of experimental

parameters, as detailed below.

To achieve optimal fidelities, we seek to perform control in the shortest possible time

compared with our system’s decoherence time. Decoherence due to photon scattering,

occurring at rate γ, is of particular concern, so maximizing κ/γ is an important goal. Since

κ is higher-order in Ωr and ∆r than the single-body light shift, scaling as Ω4
r/∆3

r in the

weak dressing regime, it is highly sensitive to the power and detuning of the Rydberg

laser. By contrast, γ scales as Ω2
r/∆2

r , so κ/γ ∝ Ω2
r/∆r increases with increased laser power

and decreased detuning. Based on this, increasing our dressing strength — especially by

increasing Ωr — is a winning strategy in the fight against decoherence, and has the added

benefit of reducing total run time. This suggests that maximum laser power, at or near

resonance, is the best choice of parameters.

No matter how short the control time is in principle, though, we must still have s phase

steps, and quickly switching a microwave’s phase is not a trivial task. With resonant laser

power that yields a Rabi frequency of a few MHz and∼ 10 atoms, the required ∆t per phase

step can easily shrink to tens of nanoseconds or less. Demands on the microwave switch

time are even more strict, since the phase must change quickly enough to preserve the
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piecewise-constant approximation of φ(t). The number of steps in the control waveform,

then, is a primary limiting factor in the speed and feasibility of this protocol. Step quantity

is also an important obstacle to the scaling of this type of control. κ is independent of N, so

we do not expect the minimum T to depend strongly on the size of the ensemble; indeed,

at least in the weak dressing regime described by Eq. (5.10), it is known that a cat state

can be produced in time π/κ independent of atom number [106, 122]. On the other hand,

s scales linearly with N, so fitting all the required steps into the available T is increasingly

difficult with larger ensembles. Any speed limit on phase switching, no matter how small,

will eventually limit the total control time beyond a certain N.

Once control time is limited by experimental restrictions on ∆t rather than by κ, in-

creasing κ is no longer beneficial; stronger dressing will only increase γ and other sources

of error without any offsetting benefit. On the other hand, as long as κ is the limiting fac-

tor, increased dressing strength is advantageous as per the reasoning above. The optimal

parameter regime, therefore, is highly dependent on the particulars of the experiment: ∆r

should be large enough to make the two speed limits match, if possible, but no higher.

5.4 Ground State Control

Having characterized some of the fundamental limitations of optimal microwave control,

we can better understand its advantages and disadvantages compared to other entangle-

ment generating protocols. In particular, we wish to compare optimal microwave con-

trol with the two other protocols described in Sec. 5.1: weakly-dressed spin squeezing

in the quadratic κ regime, and Gea-Banacloche cat state generation through Rabi oscil-

lation collapse and revival. Regardless of the protocol used, minimizing the run time to

avoid decoherence is a primary goal, so we first compare speed limits. As noted above,

weakly-dressed spin squeezing produces a maximally entangled state in exactly t = π/κ.

Through simulations, we find that optimal microwave control also works in t = π/κ for all
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Scheme Run Time Regime Target States Control Steps
Weakly-dressed squeezing π/κ ∆r�Ωr squeezed or cat states 1

Gea-Banacloche ∼ .21
√

Nπ/κ ∆r = 01 cat-like states only 1
Microwave control π/κ2 any any symmetric state 4N +1

Table 5.2: Quantum defects for low-` Rydberg states of Alkali atoms, from [3]. At higher
`, so little of the valence electron’s wavefunction penetrates the core that quantum defects
become negligible.

but the smallest detunings; when ∆r .Ωr/4, symmetries in the control Hamiltonian make

the control time somewhat longer [2] (see Fig. 5.4). The Gea-Banacloche protocol takes

t = π
√

n̄/Ωr; since it requires a resonant Rydberg laser, we can put this in terms of κ by

solving Eq. (5.9) with ∆r = 0. Plugging in the result, and noting that n̄ = N/2 for a spin

coherent state, we find t = (
√

2−1)
√

Nπ/(2κ)≈ 0.21
√

Nπ/κ.

Importantly, the run times for all three protocols scale as κ−1. This supports our pre-

vious intuition that the rate of entanglement generation is generally linear in the strength

of the Rydberg-dressing interaction. Despite this parallel, however, the three speed limits

differ in significant ways. While weakly-dressed spin squeezing is limited only by κ, it

requires ∆r to be large enough for κ to be approximately quadratic. In this limit, κ itself

will generally be small, resulting in slow entanglement generation compared with proto-

cols that can work close to resonance. The Gea-Banacloche protocol, meanwhile, works

on resonance (so κ is maximized), but its run time also scales with
√

N, which can be sig-

nificant for large ensembles. Neglecting the phase step requirement, optimal microwave

control works in t = π/κ even with near-resonant dressing, making it the fastest of the

three schemes. On the other hand, when N is high enough for phase switching time to

be the limiting factor, the control time will increase linearly with N. This implies that

the other, “single-step” protocols will be more effective for sufficiently large ensembles.

1The Gea-Banacloche protocol only works exactly in the large-N limit. For finite N, it produces
a state with some residual entanglement between the system’s spin and bosonic degrees of freedom.

2For very small detuning, ∆r . Ωr/4, microwave control time is increased due to Hamiltonian
symmetries.
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Figure 5.4: Simulated infidelities, 1−F , to produce a seven-atom cat state in the dressed
basis, starting from |g,0〉, as a function of Rydberg laser detuning. The blue curve shows
control with run time π/κ and only 2N + 1 = 15 phase steps, associated with control
solely on the dressed-ground manifold; it fails at small ∆r, but succeeds when ∆r is large
enough to suppress dressed Rydberg population. The red curve uses run time π/κ and
the 4N + 1 = 29 phase steps needed for control on the full space of dressed-ground and
dressed-Rydberg states, so it can succeed with smaller ∆r. At the smallest detunings,
the symmetries in our system’s geometry make control more difficult [2], while at large
detunings, the vast numerical mismatch between Ωµw and κ becomes unwieldy; in both
cases T = π/κ is no longer sufficient. The yellow curve shows full Hilbert space control
with a more generous T = 3π/κ, and succeeds in all regimes.

Finally, both the weakly-dressed spin squeezing and Gea-Banacloche protocols can only

generate a small subset of entangled states, so optimal control based on the JC Hamilto-

nian plus microwaves is the only protocol of the three that can generate arbitrary target

states. These differences are summarized in Table 5.4.

Since phase switching requirements limit the speed of microwave control — both in

absolute terms and relative to other entanglement protocols — control could be signifi-

cantly accelerated by reducing the number of phase steps needed. At first glance this may

seem impossible, since our system occupies a 2N + 1 dimensional Hilbert space and we

need 4N + 1 parameters just to specify a target state. However, if our goal is to produce
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an entangled ground state (i.e. a superposition of Dicke states), the Hilbert space of in-

terest is practically cut in half, and we need only 2N + 1 parameters to specify a target

in it. The dressed Rydberg states, while essential to producing the entangling interaction,

are not in our target state subspace and thus correspond to extraneous degrees of freedom.

If we can suppress population of these states, our control waveforms can be shortened to

accommodate only the dressed ground states we are interested in controlling.

To see how this can be accomplished, we return to Eq. (5.14), describing the effect of

coupling induced by the microwave or Raman transition. In the bare basis, the microwave

couples |0〉 to |1〉 without acting on |r〉, so 〈r,m|Hµw |g,n〉 = 0. By contrast, dressed Ry-

dberg states |r̃,n〉 have some |g,n〉 character, so the microwave coupling between dressed

ground and Rydberg states is nonzero. The mixing angle in Eq. (2.18) gives us the rough

magnitude of this coupling in the weak dressing regime:

〈r̃,m|Hµw |g̃,n〉 ∼ sin
(

1
2

arctan
(√

nΩr

∆r

))
〈g,m|Hµw |g,n〉 ∼

√
nΩr

∆r
〈g,m|Hµw |g,n〉 .

(5.23)

The effective Rabi rate is suppressed by an order of Ωr/∆r for dressed ground-Rydberg

compared to ground-ground couplings. Excitation is also suppressed by detuning; again

in the weak dressing limit, the saturation parameter is on the order of Ω2
µw/∆2

r . Combining

these suppressing factors, we find that the microwave will approximately preserve dressed-

ground population as long as

√
NΩrΩ

2
µw

∆3
r

� 1. (5.24)

Under this condition, we find that dressed ground control can be performed in 2N + 1

phase steps, as expected. Because this condition requires a large ∆r, it goes hand in hand

with a small κ, so ground manifold control is much slower than full Hilbert space control

if phase steps are allowed to be arbitrarily short. Whether the tradeoff between κ and s is

worthwhile will depend on the N and the minimum ∆t in a given experiment.
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(a) (b)

Figure 5.5: Optimal parameters for different control regimes. (a) For full Hilbert space
control, both ground and Rydberg levels need to be strongly coupled. The microwave
should be tuned between the two manifolds, and Ωµw should be larger than the energy
gap

√
nΩ2

r +∆2
r . (b) For dressed ground control, ground-ground coupling should be much

stronger than ground-Rydberg coupling. The microwave should be tuned near ground-
ground resonance (including the single-atom light shift), and Ωµw should be too small to
overcome the energy gap.

Dressed ground and full Hilbert space control are optimized with qualitatively different

choices of microwave and laser parameters. In full control, the system traverses all parts

of Hilbert space to get to its destination, so all states must be coupled strongly to each

other. Since the light shift provides a gap between the ground and Rydberg manifolds of

order ∼
√

Ω2
r +∆2

r , Ωµw needs to be at least that large to strongly drive both transitions at

once. Both to relax this condition and to maximize interaction strength, ∆r should be kept

small compared to Ωr. The microwave resonance should also be tuned around halfway

between the ground and Rydberg states in the rotating frame (ωµw ≈ EHF +∆R/2), so

that one manifold is not coupled much more strongly than the other. If these conditions

are not met, population transfer between the ground and Rydberg manifolds will be slow

compared to intra-manifold transfer, and control can be bottlenecked by population getting

“stuck” in the Rydberg manifold for extended periods.
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0
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(a)

(b)

Figure 5.6: Producing a seven-atom cat state in the dressed ground basis. Line plots
show the piecewise-constant microwave phase, φ(t). Bar charts show the real part of
the 15× 15 density matrix at various moments in time. (a) Full Hilbert space control.
Microwave power is large compared to Rydberg laser detuning, so all 15 symmetric states
are populated during control. Consequentially, 4N + 1 = 29 phase steps are needed, and
phase switching time must be on the order of nanoseconds to achieve κ-limited control
speed. (b) Dressed ground control. Microwave power is small compared to Rydberg laser
detuning, and only the 8 dressed-ground states are strongly coupled. Only 2N + 1 = 15
phase steps are needed, so demands on phase switching time are less stringent. This comes
at the price of maximum speed; weaker Rydberg coupling reduces κ by more than an order
of magnitude, with a commensurate increase in run time.

On the other hand, dressed ground control relies on the assumption that population

will never need to be dynamically de-excited from the Rydberg manifold, so parameters

should be chosen to minimize coupling between manifolds. Ωµw should be small com-

pared to the light shift gap, and a large ∆r makes this easier to accomplish. Likewise, the

microwave should be tuned near resonance with the transitions between dressed ground
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states (ωµw ≈ EHF +ELS1) to allow strong ground-ground coupling with minimal ground-

Rydberg coupling. The microwave power also needs to be on the order of κ in order for

Eq. (5.24) to hold over the entire control time, so Ωµw should scale inversely with ∆r. If

these conditions are not met, significant population can leak into the Rydberg manifold,

where 2N +1 free parameters are no longer enough to bring it back to ground. These pa-

rameter differences are outlined in Fig. 5.4. Dressed ground and full Hilbert space control

provide two complimentary methods that function well in different regimes, as demon-

strated in Fig. 5.4 for seven atoms. The two methods produce waveforms — each optimal

for its respective parameter regime — that reach the same destination in Hilbert space but

take qualitatively different paths to get there. This is illustrated in Fig. 5.6, which shows

how both types of control can be used to produce a seven-atom cat state.

5.5 Conclusion

The isomorphism between symmetric, Rydberg blockaded ensembles of neutral atoms and

the Jaynes-Cummings model provides a powerful framework for studying control in such

ensembles. Many existing techniques for JC control can be borrowed from other platforms,

for both specific and general control tasks. Symetrically controlled atomic ensembles

also admit novel control techniques, based on SU(2) rotation of the “bosonic” degree of

freedom, with no natural analogue in conventional cavity JC. With a time-varying phase,

such rotation is sufficient to drive arbitrary control in the Dicke subspace.

The time required for this type of control is limited by two factors: the interaction

strength between qubits, and the phase-switching speed required to produce a control

waveform. The former depends on the available power and detuning of the Rydberg-

coupling laser, while the latter depends on the size of the Hilbert space being controlled.

To relax the limits set by phase-switching speed, we introduced the idea of dressed ground

control, in which the system’s dressed excited states are suppressed to remove extraneous
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degrees of freedom. We showed how microwave parameters can be chosen to implement

dressed-ground control in neutral atom ensembles, but the idea of control on a restricted

Hilbert space could be a useful tool in any platform whose state space admits some parti-

tioning.

All the analysis in this chapter assumed an ideal blockade and neglected experimental

imperfections, so incorporating decoherence and other imperfections is a natural direc-

tion for future study. While symmetric control can in principle work for any number of

atoms given sufficient time, noise sources such as photon scattering will put a time limit

on high-fidelity control and determine the maximum ensemble size that can be realisti-

cally controlled. Assuming decoherence can be managed for at least a few µs, controlling

several atoms should be viable with current technology. Errors due to imperfect Rydberg

blockade and Hamiltonian asymmetry will be especially interesting to explore, as they

couple the ground and single-Rydberg Dicke states to a larger Hilbert space. As such,

their effects might be a source of not only decoherence, but richer dynamics.
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Summary and Outlook

In this work, we explored the flexible entangling power of the Rydberg-dressing inter-

action. Using this interaction, one can convert the Rydberg blockade effect — already

a broadly useful tool in the neutral atom toolbox — into a direct interaction between

dressed ground states. While the physics of Rydberg interactions is rich and complex,

the Rydberg-dressing interaction works by avoiding simultaneous excitation of multiple

Rydberg atoms, so many of these complexities need not be considered. In addition to sim-

plifying analysis, this prevents some adverse effects of strong Rydberg excitation. Because

the size of the interaction depends on dressing strength as well as the Rydberg blockade

itself, it can be adjusted by changing the power and/or detuning of the Rydberg-exciting

laser. Such a tunable interaction can be useful as a static parameter (choosing the best

interaction strength for the task at hand) or a dynamic one (varying interaction strength

over the course of a single experiment). In particular, by continuously sweeping the in-

teraction from zero- to full-strength, one can map a bare ground input state to the dressed

basis for straightforward interaction. When the interaction is done, one can sweep back to

zero strength, leaving pure ground-state entanglement.

The structure of the Rydberg-dressing interaction lends itself to the adiabatic model
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of quantum computing, in which an entire computation is in some sense performed by

going into the dressed basis. An adiabatic computation begins with a Hamiltonian whose

ground state is easy to prepare. By slowly ramping to a Hamiltonian whose ground state

encodes the solution to a problem, one can transform the easy-to-prepare initial state into

its solution-encoding counterpart. Rydberg-dressing can provide an interaction term in

the final Hamiltonian, opening the door to NP hard problems such as the 2D Ising model.

Since the final Hamiltonian must be ramped up smoothly, the tunability of the Rydberg-

dressing interaction is essential to this protocol. To evaluate the experimental viability

of this protocol, we modeled a sample computation for 2–4 qubits, with realistic laser

parameters and including photon scattering. We found that fidelities of ∼ 0.99 should

be achievable, and we expect that fidelities will stay acceptably high up to 10–20 qubits

where classically difficult simulation is accessible.

To obtain higher fidelities, in this or any adiabatic computation, future study could

focus on optimizing the shape of the control functions that connects the initial and final

Hamiltonians. To remain adiabatic, the ramp speed is limited by the energy gap between

ground and excited states; a ramp whose speed tracks the changing gap could offer faster,

higher-fidelity computation without sacrificing adiabaticity. Alternatively, one might con-

sider modifying the details of the Rydberg-dressing to produce interaction types beyond

the σz⊗σz terms we described. For example, a scheme that employs simultaneous σz and

σx interactions in the same lattice is currently under development [123]. Given a suffi-

ciently large set of interactions, Rydberg-based AQC could be applied to problems that

offer a true quantum speedup. Grover’s search algorithm provides an especially attractive

target for this, as an adiabatic implementation is already known [124].

If the Rydberg-dressed interaction is applied to just two qubits at a time, it can generate

an entangling logic gate, which can then be incorporated into larger circuits for universal,

gate model computation. In the dressed basis, the nonlinear energy shift from the interac-

tion gives rise to an “entangling phase” that accumulates over time; with properly chosen
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dressing duration, this leads to a CPHASE gate. We modeled the effects of atomic thermal

motion on such gates, and showed that a “Doppler-free” setup with counterpropagating

lasers could suppress their impact by more than an order of magnitude. Using this tech-

nique, we found that gate infidelities of ∼ 2× 10−3 should be possible. Interestingly,

the Doppler-free setup does not offer the same error suppression in resonant-pulse-based

gates; it only works in tandem with the intrinsic robustness of adiabatic dressing.

Since gates in this scheme require adiabatic ramps into the dressed basis and back,

optimally shaped Hamiltonian transformations could improve these gates in the same way

they could improve AQC. Beyond this, the basic principles of the Doppler-free scheme

could be generalized to other error sources. Any coherent error that takes the form of a

coupling outside the computational subspace will be naturally suppressed through adia-

batic following. By modifying the gate protocol to put as many errors as possible in this

form, one could make it robust against a wide range of decoherence sources. Indepen-

dent of fidelity concerns, the basic gate design could also be generalized to take advantage

of the Rydberg-dressing interaction’s many-body character. For instance, if three atoms

are dressed simultaneously, they will experience a three-body entangling shift in addition

to the 3κ that we would expect from a purely pairwise interaction. This shift could be

harnessed to generate a doubly-controlled-PHASE gate which, up to local unitaries, is

equivalent to a Toffoli gate.

Outside the context of quantum computing, the Rydberg-dressed interaction can be

used to produce many-body entangled states. In the perfect blockade limit, a symmet-

rically dressed ensemble of neutral atoms is isomorphic to the widely studied Jaynes-

Cummings model; they are thus amenable to a range of entangling protocols developed

for other Jaynes-Cummings platforms. In addition, microwaves can drive rotations in the

model’s bosonic sector, offering an entanglement method unique to neutral atoms. We

proved that together with the nonlinearity of the Rydberg-dressed interaction, driving the

system with a microwave field with time-dependent phase is sufficient to generate arbitrary
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symmetric states of the ensemble. We compared this control scheme with two other pro-

tocols for Jaynes-Cummings entanglement. We found that microwave control compares

favorably in terms of its flexibility and dependence on laser parameters, but that demands

on the phase switching rate present a major obstacle to achieving maximum control speeds.

To ameliorate this, we propose a dressed ground control scheme, in which the microwave

parameters are chosen to maximize ground-ground coupling while suppressing Rydberg

excitation. This halves the effective size of the Hilbert space being controlled, and by

extension the number of phase steps required.

Unlike with the two quantum computing protocols above, we have not modeled er-

rors for this control scheme in any detail. Decoherence due to system inhomogeneities

(whether in the laser, microwave, or Rydberg blockade) merits special attention, as it will

break the assumed symmetries of the control task; properly addressing this type of er-

ror will likely require expanding the ideal JC Hilbert space to include some asymmetric

states. Given the structural parallels between our microwave control and Rydberg-dressed

gate schemes, it is likely that some variant of the Doppler-free laser setup could reduce

control errors. The tools of optimal control can also be used to build robustness against

errors into the control waveform itself [14], so addressing these types of imperfections is

both important and non-trivial. A particularly interesting possibility is engineering robust-

ness to variations in atom number; waveforms with this type of robustness could generate

ensemble states of a particular class — such as cat states — even in ensembles whose size

is not precisely known.

In summary, we have shown how the Rydberg-dressing interaction can be used in

three distinct, but related, quantum information processing protocols. Beyond solving

interesting problems in their own right, these protocols offer insight into questions of en-

tanglement speed and adiabatic error suppression. They also illustrate the advantages of

Rydberg-dressing as an interaction mechanism, especially in terms of its tunability and ro-

bustness. Ultimately, we hope that the principles explored here will inform the application
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of Rydberg-dressing to a broader range of challenges in neutral atom physics.
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Appendix A

Proof: HJC With Microwaves is

Controllable

To reiterate from Sec. 5.2.1, the total Hamiltonian for a general control task consists of a

constant part H0 and one or more adjustable parts H j,

H(t) = H0 +∑
j

c j(t)H j, (A.1)

where c j(t) are the time-dependent control parameters. A d-dimensional system described

by such a Hamiltonian is controllable if and only if the operators {H0,H1, ...,Hn} are a gen-

erating set for the Lie algebra su(d). Therefore, we can show that a system is controllable

by generating all elements of su(d) through nested commutators and linear combinations

of {H0,H1, ...,Hn}. In the case we consider here, our full Hamiltonian is a combination of

Eqs. 5.5 and 5.14: H(t) = HJC +Hµw(t). Splitting this into constant and variable portions
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gives

H0 =−∆µw(Jz +
N
2
)+(EHF −∆r)Pr

+
N

∑
n=1

√
nΩr

2
(|g,n〉〈r,n−1|+ |r,n−1〉〈g,n|),

H1 =Jx, c1(t) = Ωµw cos(φ(t))

H2 =Jy, c2(t) = Ωµw sin(φ(t)),

(A.2)

where Pr(g) = ∑n |n,r(g)〉〈n,r(g)| is the projector onto the Rydberg (ground) manifold.

Our goal is to produce the full Lie algebra for our system through commutators and lin-

ear combinations of these three Hamiltonians. Before beginning, we take three steps to

simplify subsequent notation. First, we define the “coupling” portion of H0,

HC ≡
N

∑
n=1

√
nΩr

2
(|g,n〉〈r,n−1|+ |r,n−1〉〈g,n|). (A.3)

Second, without loss of generality, we switch to units of energy with Ωr/2 = 1, leaving

H0→ HC−∆µw(Jz +
N
2
)+(EHF −∆r)Pr. (A.4)

Third, because the trace of H0 will at most contribute an overall phase which can be ig-

nored, we subtract −∆µw
N
2 + EHF−∆r

2 from the overall energy to leave H0 traceless:

H0→ HC−∆µwJz +
EHF −∆r

2
(Pr−Pg). (A.5)

Note that H1 and H2 are entirely off-diagonal operators, and so are already traceless.

Immediately, we can commute Jx and Jy to get

Jz =
N

∑
n=1

(
n |g,n〉〈g,n|+(n−1) |r,n−1〉〈r,n−1|

)
− N

2
Pg−

N−1
2

Pr

= H2
C−

1
2

Pr−
N
2
1.

(A.6)

Because Jz is diagonal in the {|g,n〉 , |r,n〉} basis, it commutes with the projector and iden-
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tity in H0, and their commutator is greatly simplified,

[H0,Jz] = [HC,Jz] = [HC,H2
C−

1
2

Pr−
N
2
1] =−1

2
[HC,Pr]

=
1
2

N

∑
n=1

√
n
(
|r,n−1〉〈g,n|− |g,n〉〈r,n−1|

)
≡ i

2
H̄C.

(A.7)

Commuting with Jz again,

[H̄C,Jz] =i
N

∑
n=1

√
n
(
(n−1− N−1

2
) |g,n〉〈r,n−1|− (n− N

2
) |r,n−1〉〈g,n|

− (n− N
2
) |g,n〉〈r,n−1|+(n−1− N−1

2
) |r,n−1〉〈g,n|

)
=− 1

2
i

N

∑
n=1

√
n
(
|g,n〉〈r,n−1|+ |r,n−1〉〈g,n|

)
=−1

2
iHC.

(A.8)

We can now use HC directly in subsequent steps, which will avoid complicating terms

from the microwave and laser detunings. Our next step is to commute HC with H̄C, giving

[HC, H̄C] = 2i
N

∑
n=1

n
(
|r,n−1〉〈r,n−1|− |g,n〉〈g,n|

)
= 2i

(
Pr(Jz +

N−1
2

+1)Pr−Pg(Jz +
N
2
)Pg

)
≡ 2iJ̄z.

(A.9)

This operator breaks the symmetry between the manifolds, and we can combine it with the

original Jz to get operators projected onto each manifold individually,

Jz− J̄z = 2PgJzPg +
N
2

Pg−
N +1

2
Pr, (A.10)

Jz + J̄z = 2PrJzPr−
N
2

Pg +
N +1

2
Pr. (A.11)

Note that the projectors commute with any operator that does not couple the two manifolds,

so we can ignore them when commuting these projected Jz’s with other Ji’s. The resulting

commutators allow us to spread the ground- and Rydberg-projections to Jx and Jy,

[Jz− J̄z,J j] = 2εz jkPgJkPg, (A.12)

[Jz + J̄z,J j] = 2εz jkPrJkPr, (A.13)
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where εz jk is the Levi-Civita symbol with its first index fixed as z. This gives us indepen-

dent SU(2) rotations of the two manifolds.

To get from SU(2) rotation to complete control, we invoke a theorem due to Seth

Merkel [119]:

Theorem 1. Consider a manifold M that is describable by a collective pesudo-spin. Let

T be an operator that has nonzero overlap with at least one irreducible, rank-two tensor

operator on said spin. Then M is controllable with the Hamiltonians {Jx,Jy,T}.

Based on this, we need to generate a rank-2 irreducible Hamiltonian for each manifold

to make it controllable. This can be accomplished by commuting the projected Jz with H̄C:

[H̄C,PgJzPg] =−i
N

∑
n=1

n
√

n
(
|g,n〉〈r,n−1|+ |r,n−1〉〈g,n|

)
+

N
2

i
N

∑
n=1

√
n
(
|g,n〉〈r,n−1|+ |r,n−1〉〈g,n|

)
≡−iH ′C +

N
2

iHC

(A.14)

[H ′C, H̄C] = 2i
N

∑
n=1

n2
(
|r,n−1〉〈r,n−1|− |g,n〉〈g,n|

)
= 2i

(
Pr(Jz +

N−1
2

+1)2Pr−Pg(Jz +
N
2
)2Pg

)
= 2i

(
PrJ2

z Pr−PgJ2
z Pg +(N−1)PrJzPr

−NPgJzPg +

(
N +1

2

)2

Pr−
(

N
2

)2

Pg

)
.

(A.15)

This Hamiltonian has terms quadratic in n; we now condense it before commuting it with

Jx to obtain a nonlinearity in the ground manifold alone. The third and fourth terms of

the Hamiltonian are Jz on the ground and Rydberg manifolds, respectively, which we have

already generated and can subtract away. The first, fifth, and sixth terms, meanwhile,

commute with Jx, so we need only consider the second (J2
z ) term, which produces the

commutator,

[PgJ2
z Pg,PgJxPg] = iPg

(
JzJy + JyJz

)
Pg. (A.16)
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This is an anti-commutator between two J’s, so it is an irreducible rank-2 operator. The

same procedure with PrJzPr gives a comparable operator for the Rydberg manifold, so we

now have SU(2) rotations plus a rank-2 operator for both manifolds. This means that they

are independently controllable.

All that remains is to join the two manifolds together, and to show that they are con-

trollable as a whole as well as separately. For this, we invoke another theorem due to Seth

Merkel [119]:

Theorem 2. Consider two subspaces, L and M. Let |`〉 and |m〉 be particular states in

each of these spaces, respectively. If L, M, and the subspace spanned by {|`〉 , |m〉} are

each independently controllable, then the full space L⊕M is controllable.

We have already shown the controllability of the two subspaces, so we just need to

show controllability of any subspace consisting of one state from each. We arbitrarily

choose {|g1〉 , |r0〉}. Since both manifolds are controllable, we can generate any trace-

less Hamiltonians within them. In particular, we can generate |g0〉〈g0|− |g2〉〈g2| on the

ground manifold and |r0〉〈r0| − |r1〉〈r1| on the Rydberg manifold. Summing these and

commuting with HC gives[
HC, |g0〉〈g0|− (|g2〉〈g2|+ |r1〉〈r1|)+ |r0〉〈r0|

]
= [HC, |r0〉〈r0|]

= 2
(
|g1〉〈r0|− |r0〉〈g1|

)
= 2iσy

(A.17)

where σi denotes a Pauli operator on the two-state subspace. Commuting this with the

laser coupling Hamiltonian one last time,

[HC,σy] = 2i
(
|g1〉〈g1|− |r0〉〈r0|

)
= 2iσz. (A.18)

Two Pauli operators give us control over the two-state subspace, and therefore over the

entire space. �
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Boson Sampling with Distinguishable

Photons

B.1 Introdution

A universal quantum computer could solve a number of important problems – such as fac-

toring large numbers – thought to be intractable on classical devices. At present, however,

building such a device is not experimentally feasible, and significant advancements are

required before this changes. In the nearer term, it may be possible to build more nar-

rowly tailored quantum devices, less flexible than a universal computer but still capable

of efficiently solving one or more classically difficult problems. Aaronson and Arkhipov

recently investigated one such device: the boson sampling device, or boson sampler [125].

Under ideal conditions, a boson sampler uses only linear optics and photon detection to

efficiently solve a sampling problem that is classically difficult (up to widely accepted

complexity-theory conjectures). Beyond potential applications to practical problems (e.g.

[126]), such a device would be of theoretical interest in that it would provide experimen-

tal evidence against the Extended Church-Turing Thesis, and for the power of quantum
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computing more generally.

In a real experiment, however, no boson sampler will be ideal. At best, we can hope

for a boson sampler that is close to ideal, with imperfections small enough that its output

distribution is still classically difficult to sample from. More precisely, if the magnitude of

noise is characterized by some small parameter ε, there will be bounds on how large ε can

be while still solving a hard problem. If these bounds depend on the size of the system,

they must be taken into account when determining the scalability of the boson sampling

algorithm. After all, algorithm demanding exponentially high experimental precision is no

more scalable than one requiring exponential run time.

Several recent works have explored the effects of various types of noise on boson sam-

pling, and have generally found that polynomial precision (i.e. inverse polynomial scaling

of ε) is sufficient to maintain the classical hardness of the sampling problem. Specifi-

cally, polynomially small errors are known to be sufficient for unitary imperfections in the

linear optical network [127], photon loss rates [128], and coherent displacements of the

single-photon input states [129]. More recently, Shchesnovich showed that photon distin-

guishability does not interfere with the scaling of the boson sampling problem as long as

the photons’ wavefunction non-overlap is polynomially small [130]. In all of these works,

polynomial precision is treated as an “efficient” demand in the computer science sense,

analogous to the polynomial time/space requirements of any scalable algorithm. From

this, it is suggested that boson sampling scales efficiently in the face of noise, or at least

in the face of the specific noise types analyzed. However, we show here that polynomial

precision requirements are not an unusual feature of the boson sampler; rather, polyno-

mially small error is adequate for a broad range of quantum information tasks, including

universal quantum computation. A realistic boson sampler, then, is likely to be no more

scalable than a universal quantum computer without error correction.

The remainder of this appendix is organized as follows. In section B.2, we set up a

per-component model of errors and use this model to analyze the classical difficulty of
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simulating a noisy boson sampler. We find that in general, the sampling problem remains

classically hard if the error per component scales inversely with the total number of com-

ponents. In section B.3, we consider an alternative error metric, based on the probability

distributions of noisy variables, and show that it likewise requires at most polynomial pre-

cision. Finally, in section B.4, we interpret these results in the context of boson sampling

scalability.

B.2 Error Bounds for Scalable Boson Sampling

We begin by considering the structure of an ideal boson sampler, following [131]. Such a

device takes as input a state consisting of N indistinguishable photons distributed among

M modes,

|Ψin〉=
N

∏
i=1

â†
i |0〉

⊗M . (B.1)

This state is sent through a network of linear optics that transforms the photon creation

operators a†
i according to

â†
i →∑

i, j
Λi, jâ

†
j . (B.2)

The mode transformation matrix, Λ, is M×M and can be found efficiently for a given

physical configuration of the boson sampler [132]. The full action of the sampler on all

modes can be described by a unitary applied to the input state, U |Ψin〉 = |Ψout〉. The

output state is finally measured in each mode’s number basis, giving some sorting of N

photons into M modes with probabilities depending on the sampler settings. Each |Ψout〉

is thus associated with a probability distribution D̃ over the
(N+M−1

N

)
-dimensional space of

photon sortings. The probabilities in D̃ are in turn proportional to permanents of subma-

trices of Λ; calculating these permanents is in the complexity class #P-Complete, which

is strongly believed to not be efficiently solvable by classical devices. Even sampling from
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such a probability distribution is thought to be classically difficult, so measuring outputs

from an ideal boson sampler would demonstrate an exponential quantum speedup over any

classical algorithm [125].

A realistic boson sampler will likewise generate N-photon sortings according to some

D , but any imperfections will cause the probabilities in D to vary from their ideal values.

If these imperfections are large enough, D can become classically easy to sample from,

and the boson sampler will no longer demonstrate an exponential speedup. For example,

if a boson sampler’s input photons are completely distinguishable from one another, their

output statistics can be efficiently simulated by treating them as independent, classical

particles. Our goal is to determine under what conditions sampling from a realistic D

remains hard, and whether these conditions interfere with the boson sampler’s scalability.

Since any boson sampler is built up from a few, basic components — single photon

generators, phase shifters, beam splitters, and detectors — it is natural to consider errors

in “per-component” terms. That is, each component may have imperfections that cause

it to behave differently from its ideal counterpart, but errors in any two components are

considered independent from one another. We model each realistic phase shifter and beam

splitter as applying a unital map, i.e. a probabilistic sum of unitary operators, so that the

kth such component modifies the system’s density matrix according to

ρk =
∫

dαP(α)Uk(α)ρk−1Uk(α)
†, (B.3)

where P(α) is some probability distribution over the classical random variable α. This map

is in contrast to the single unitary operator, Ũk, that the kth component would apply in an

ideal sampler. Photon generators can be modeled similarly by treating errors as maps that

act immediately following ideal single-photon generation; in this case, Ũk is simply the

identity. For instance, if our first realistic component is a photon generator that produces
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a photon with a random time delay, this effect transforms the ideal state according to

ρ0 = |Ψin〉〈Ψin| ,

ρ1 =
∫

dαP(α)e−iωα
ρ0eiωα,

(B.4)

where ω is the frequency of the first photon and |Ψin〉 is the ideal input state from Eq. (B.1).

Likewise, realistic detectors can be modeled as imperfect maps acting immediately before

ideal detection.

The full, realistic process is thus described by a number-basis measurement of the

output state,

ρout =
∫

dαP(α)

(
K

∏
k=1

Uk(α)

)
|Ψin〉〈Ψin|

(
K

∏
k=1

Uk(α)
†

)
, (B.5)

where K is the total number of components. The probability to find a given output state,

|ψ〉, is then

〈ψ|ρout |ψ〉=
∫

dαP(α)

∣∣∣∣∣〈ψ| K

∏
k=1

Uk(α) |Ψin〉

∣∣∣∣∣
2

. (B.6)

In an ideal sampler, the probability to find |ψ〉 is given by the simpler expression,

〈ψ| ρ̃out |ψ〉=

∣∣∣∣∣〈ψ| K

∏
k=1

Ũk |Ψin〉

∣∣∣∣∣
2

. (B.7)

The realistic and ideal equations give two probability distributions over all |ψ〉, which we

denote D and D̃ , respectively; a good boson sampler will sample from a D that is close

enough to D̃ to retain the computational hardness of the ideal case.

Since the difference between realistic and ideal boson samplers is captured by the im-

perfect unitary operators Uk, we would like to find restrictions on Uk to insure that the

output distribution is still difficult to sample from. Finding necessary conditions for sam-

pling difficulty is a complex problem, and beyond the scope of this dissertation. However,

one sufficient condition for difficulty is to demand output states that stay close to the ideal
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case for all N; that is, ||D− D̃|| ∈ O(1) in the number of photons N. In order to relate this

global requirement to the error tolerances on individual components, we make use of the

following theorem. It is due to Bernstein and Vazirani[133] but has been modified to suit

the present context.

Theorem 3 (Unitary Errors Add). Let U1(α), . . . ,UN(α) be distributions over α of unitary

operators. Suppose an ideal sequence of operators would transform an initial state |ψ̃0〉

according to Ũk |ψ̃k−1〉= |ψ̃k〉, but the actual operators are incorrect such that

Uk(α) |ψ̃k−1〉= |ψk(α)〉 , where∫
dαP(α)|| |ψ̃k〉− |ψk(α)〉 ||= εk.

(B.8)

Then ||D̃−D|| ≤ ∑
K
k=1 εk = Kε̄, where ε̄ is the average error per unitary.

Proof. Let |ϒk(α)〉= |ψ̃k〉−|ψk(α)〉 , the orthogonal (non-normalized) “error” component

of |ψk(α)〉. Then

|ψ̃K〉= |ψK(α)〉+ |ϒK(α)〉 by definition (B.9)

=UK(α) |ψ̃K−1〉+ |ϒK(α)〉 by hypothesis (B.10)

=UK(α) · · ·U1(α) |ψ̃0〉+UK(α) · · ·U2(α) |ϒ1(α)〉+ . . .+ |ϒK(α)〉 . (B.11)

Subtracting the first term on the right and applying the triangle inequality we have

|| |ψ̃K〉−UK(α) · · ·U1(α) |ψ̃0〉 || ≤ || |ϒ1(α)〉 ||+ . . .+ || |ϒK(α)〉 ||, (B.12)

where we have made use of the fact that unitaries do not affect the norms of any |ϒk〉.

Finally, following [127] we show that the 2-norm distance between two states |ψ〉 and |ψ̃〉

is an upper bound on the trace norm of the same quantity.

|| |ψ〉− |ψ̃〉 ||tr =
√

1−
∣∣〈ψ|ψ̃〉 ∣∣2

≤
√

1−
(
Re〈ψ|ψ̃〉

)2

=

√
1−
(

1− 1
2

∥∥∥|ψ〉− |ψ̃〉∥∥∥)2

≤
∥∥|ψ〉− |ψ̃〉∥∥.

(B.13)
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As noted in [127], the trace norm distance between two states upper bounds the variation

distance between their respective output distributions, so

||D− D̃|| ≤
∫

dαP(α)
K

∑
k=1
|| |ϒk(α)〉 ||=

K

∑
k=1

εk. (B.14)

This theorem implies that errors in a boson sampler — as quantified in Eq. (B.8) —

are at worst additive over components. Therefore, if the average error per component de-

creases as ε̄ ∝ 1/K or faster with increasing K, then a boson sampler remains classically

hard to simulate as its size increases. The additivity of errors further allows us to divide the

components into subgroups and consider error bounds on each subgroup independently. In

particular, an N-photon boson sampler needs only N single photon generators, so photon

generator error can scale as 1/N without interfering with the classical difficulty of the sam-

pling problem. Error in other groups of components will generally need to scale inversely

with higher-order polynomials of N, but insofar as the total number of components is poly-

nomial in N, difficult boson sampling can be achieved with polynomially small error in all

components.

B.3 Bounds on the Form of P(α)

The above discussion quantifies errors via the average trace-norm distance between unitary

outputs, ε̄, but error magnitude could be measured in other ways. One physically motivated

option would be to look at bounds on P(α), the distribution of classical random variables

that change the system’s behavior from shot to shot. For instance, returning to the example

of time delayed input photons, bounds on P(α) would translate to requirements on how

narrow the distribution of firing times must be. Here, we show that the means and widths

of any P(α) need only scale polynomally in 1
N to achieve the desired bounds on ε̄.
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B.3.1 Integral of P(α)

We begin by expanding out the definition of ε from Eq. (B.8),

εk =
∫

∞

−∞

dαP(α)D(α), (B.15)

D(α)≡ 1−
∣∣∣〈Ψk(α)|Ψ̃k〉

∣∣∣2 , (B.16)

such that 〈Ψk(α)|Ψ̃k〉 is a continuous function of α. Without loss of generality, we assume

α = 0 corresponds to the ideal case, so 〈Ψk(0)|Ψ̃k〉 = 1. Note that D(α) depends only

on the overlap between the actual and ideal outputs of a single component, and so is

independent of N. On the other hand, we expect that the tolerable noise will shrink as

N increases, meaning that P(α) will get narrower. In the large-N limit, P(α) will be

very narrow compared to D(α), and we can Taylor expand D(α) to lowest nonvanishing

order. (More formally, if 1−Aα` is the lowest nonvanishing order expansion of D, we can

always choose some B > A such that ∀α 1−Bα` ≤ D(α) and use this lower bound for all

subsequent steps.) Since α = 0 gives maximum overlap by definition, D(0) = D′(0) = 0,

meaning D(α) ∈ O(α2) for small α.

To simplify analysis, we define a radius R(N) such that

D(R(N)) ∈ O
(

1
N

)
∀x ∈ [−R(N),R(N)]. (B.17)

In words, R(N) is the radius within which the photons are “close enough” to their ideal

states for our purposes. From the scaling argument above, we know that D(R(N)) ∈

O(R(N)2), which implies

R(N) ∈ O
(

1
N1/2

)
. (B.18)

Applying this bound to Eq. (B.15) gives

εk ≤
(

1−
∫ R(N)

−R(N)
dαP(α)

)
+ max

α∈[−R(N),R(N)]
D(α)

≤
(

1−
∫ R(N)

−R(N)
dαP(α)

)
+O

(
1
N

) (B.19)
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or, for εk as a whole to scale as 1
N ,

1−
∫ R(N)

−R(N)
dαP(α) ∈ O

(
1
N

)
. (B.20)

B.3.2 Mean and Width of P(α)

There are a number of ways in which one could quantify the precision of a distribution

P(α), and each could be given bounds using Eq. (B.20). One intuitive way is to fix the

functional form of P(α) while allowing its mean and width to vary with N:

P(α) =
1

∆(N)
Pk

(
α− ᾱ(N)

∆(N)

)
(B.21)

where Pk is an N-independent probability distribution, ᾱ(N) and ∆(N) are the N-dependent

mean and characteristic width of the original P(α), respectively, and the overall factor of
1

∆(N) allows both distributions to be normalized. Plugging this form into Eq. (B.20) and

performing a change of variables, we get

1− 1
∆(N)

∫ R(N)

−R(N)
dαPk

(
α− ᾱ(N)

∆(N)

)
∈ O

(
1
N

)
(B.22)

u≡ α− ᾱ(N)

∆(N)
(B.23)

1−
∫ (R(N)−ᾱ(N))/∆(N)

(−R(N)−ᾱ(N))/∆(N)
duPk(u) ∈ O

(
1
N

)
. (B.24)

Because our goal is to find each photon somewhere in α ∈ [−R(N),R(N)] with high prob-

ability, we can assume that ᾱ(N) must stay well within that interval for all N. Formally,

we require that lim
N→∞

R(N)/ |ᾱ(N)|> 1, which can only hold true if

ᾱ(N) ∈ O
(

1√
N

)
. (B.25)

Assuming this condition is met, we can define

R′(N)≡ R(N)−|ᾱ(N)| (B.26)
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as the radius such that if α is within R′(N) of its mean, it is within R(N) of zero. For any

ᾱ(N) that meets our requirements, R′(N)≤ R(N) and O(R′(N))∈O(R(N)), so we can use

R′ to simplify Eq. (B.24) without changing any of its scaling properties:

1−
∫ (R(N)−ᾱ(N))/∆(N)

(−R(N)−ᾱ(N))/∆(N)
duPk(u)≤ 1−

∫ R′(N)/∆(N)

−R′(N)/∆(N)
duPk(u) (B.27)

=
∫ −R′(N)/∆(N)

−∞

duPk(u)+
∫

∞

R′(N)/∆(N)
duPk(u) ∈ O

(
1
N

)
. (B.28)

Qualitatively, this expression tells us that the total probability in the “tails” of Pk,

outside the growing interval [−R′(N)
∆(N) , R′(N)

∆(N) ], must drop off as 1
N or faster. We can describe

the behavior of Pk in these tails by its asymptotic polynomial order m, defined by

lim
u→∞

Pk(u) ∝ u−m. (B.29)

(We have assumed, without loss of generality, that the order of Pk as u→ ∞ is ≤ its order

as u→−∞.) Because Pk is a bounded function, m > 1, but there are no other restrictions

on its value; m need not be an integer, and can be infinite if Pk is asymptotically sub-

polynomial. This asymptotic behavior determines the large-N scaling of Eq. (B.28), so we

can plug it in to make the equation integrable:

O
(∫ ±∞

±R′(N)/∆(N)
duPk

)
= O

(∫ ±∞

±R′(N)/∆(N)
du u−m

)
(B.30)

= O
((√

N∆(N)
)m−1

)
∈ O

(
1
N

)
(B.31)

∆(N) ∈ O
(

n−
m+1

2(m−1)
)
. (B.32)

This expression gives bounds on the width of our probability distribution for any asymp-

totic behavior of Pk. A few values of m offer especial insight:

• If Pk drops off exponentially (m is infinite), ∆(N) need only scale as 1√
N

.

• If we want ∆(N) to scale linearly in 1
N , Pk must drop off cubically or faster (m≥ 3).
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• For any bounded Pk, it is sufficient for ∆(N) to scale polynomially in 1
N , although

the necessary polynomial may be very high-order if m is close to 1.

Combining this with Eq. (B.25), we can say that the mean and width of our probability

distributions P(α) can shrink polynomially to ensure classically difficult sampling, similar

to ε̄.

B.4 Analysis

Both results above were framed in terms of boson samplers, but they apply equally well

to any quantum information process that can be described as a sequence of ideally-unitary

components followed by measurement. Such processes form a broad category that in-

cludes universal, circuit model quantum computation. For any of these processes, we have

shown that realistic output statistics can be kept close to the ideal case if the unital error

per component shrinks as one over the total number of components. How this should be

interpreted is up for debate. If one is willing to treat experimental imperfections as a re-

source, like memory or run time, which must be steadily improved to accommodate larger

problems, then this result is good news; it implies that error considerations will never

place exponentially stringent demands on an otherwise scalable problem. On the other

hand, it is widely believed that quantum error correction will be necessary for scalable,

universal quantum computation [134], a belief which is incompatible with the “precision

as resource” model. Quantum error correction is only a necessity if we require devices to

work scalably with sub-polynomial error reduction, and it is unlikely that boson samplers

meet this stricter condition. In particular, if neither total photon loss nor dark counts can be

constrained with increasing system size, the two combined can cause serious problems for

classical simulation difficulty [135]. Because of this, care must be taken when comparing

the power of a boson sampler to that of a universal quantum computer, and more generally

when considering boson sampling as a demonstration of scalable quantum supremacy.
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