University of New Mexico UNM Digital Repository

Water Resources Professional Project Reports

Water Resources

5-10-2011

Erosion potential of the main branch of the Piedras Marcadas Watershed, Petroglyph National Monument, New Mexico

Elaine S. Brouillard

Follow this and additional works at: https://digitalrepository.unm.edu/wr_sp

Recommended Citation

Brouillard, Elaine S.. "Erosion potential of the main branch of the Piedras Marcadas Watershed, Petroglyph National Monument, New Mexico." (2011). https://digitalrepository.unm.edu/wr_sp/89

This Other is brought to you for free and open access by the Water Resources at UNM Digital Repository. It has been accepted for inclusion in Water Resources Professional Project Reports by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Erosion potential of the main branch of the Piedras Marcadas Watershed, Petroglyph National Monument, New Mexico

Submitted in partial fulfillment of the requirements for the degree of Master of Water Resources Administration

То

Dr. Michael Campana, Chair Dr. William Fleming Dr. Richard Heggen

Qn:

March 29, 1999

Elaine S. Brouillard 526-15-2121

ACKNOWLEDGEMENTS

New Mexico State Highway and Transportation Department, Research Bureau

Funding for this work is from the Research Bureau.

David Albright, Research Bureau Chief. I am indebted to David for his encouragement and observations concerning roads and equity for our New Mexican communities. Mr. Albright believes in and promotes strong research as the corner stone to understanding and resolving inequities in transportation. I am grateful for the gift of his vision.

Michelle Skrupskis, Planning Research Supervisor, for her research involvement, expertise, and friendship during my study.

ATR Institute

Judith M. Espinosa, Director, who worked out all the details so that I had the freedom to follow this path of study.

Fredrick Shean Jr., my field assistant, who was courteous and never complained of the heavy loads he was required to carry.

National Park Service, Petroglyph National Monument

Judith Cordova, Superintendent, who took a high interest in this study and then allowed many services in kind from her staff.

Michael Quijano, Chief Ranger, who opened his office for many conversations and suggestions.

Mike Medrano, Interpretation Specialist, who accompanied me on walks and performed the GPS mapping of my erosion pin and bridge stations.

Diane Souder, Assistant Superintendent, who briefed me on the historical aspects of the Monument and also roller-bladed my blues away.

Kerri Mich, GIS Specialist, of the NPS Intermountain GIS Support Center, for displaying my data in GIS format.

City of Albuquerque, Open Space Division

Dr. Matt Schmader, Assistant Superintendent, who was always available for discussions on the prehistoric to historic of this area.

United States Geological Survey

Dr. Allen Gellis, a geomorphologist who visited the study site and made practical suggestions and gave me great encouragement in collecting this information.

ii

ABSTRACT

The Piedras Marcadas Watershed covers approximately 6 square miles west of the Rio Grande in Albuquerque, New Mexico. This watershed is semi-arid and has arroyos, ephemeral streams that empty into a retaining dam. During the fall of 1998, eleven erosion pins and bridges were placed to record the sediment eroded or aggraded. The erosion pins recorded erosion in a range of 0.05 to 4 mm erosion and aggradation of 2 to 10 mm. The erosion bridges recorded erosion in a range of 3 to 9 mm and 1.5 to 10.7 mm ranges of aggradation. Two modified universal soil loss equations were applied and contrasted to predict sediment loss for this watershed. The first equation values ranged from 0.5 to 17.5 and the second equation values ranged from 0.01 to 1.35 tons per acre per year. Sedimentation is a watershed management concern. Water and wind processes acting upon this area exhibit accelerated erosion.

The study site has a basalt escarpment rising 70 to 90 in as many feet. Four associated arroyos drain the watershed. Additionally, this area has 46 investigated gullies, four arroyo profiles, and one measured stratigraphic column.

The suggested erosion management plan is to monitor sediment loss in the main arroyo branch, eradicate non-native species, and plant black willows.

-iii

Erosion potential of the main branch of the Piedras Marcadas Watershed, Petrogylph National Monument, New Mexico

Table of Contents

	· · · · · · · · · · · · · · · · · · ·				
Acknowledgements					-i
Abstract			:		iii
List of Figures			1 - A		vi
List of Tables					vii
List of Maps		•			viii
Introduction					1
Why this project	was chosen	· . · ·			1
Watershed Pers	pective: Define	ed			2
Report Content					4
Description of the Pie	dras Marcadas	Watershed		۰.	4
Geographic Set	ling			. • .	4
Boundary Chan	ges				- 6
Geologic Setting			19		8
Statigraphic Col	umn	•			9
Soils			•		9
Erosion Potential		1			12
Types of Erosion	n			•	12
Geomorphology	of Arroyos		1 - A		14
Study Area Arro	yos				16
Hydrology	•				17
Temperature	. • , •				17
Precipitation	.*				17
Runoff					18
Water Quality	· · · ·		• • •		19
Vegetation	· · · ·	•		· · ·	19
Study Site Erosion Val	ues			. *	22
Universal Soil L	oss Equation			۰.	22 [°]
AMAFCA Prefer	ence				23
Sediment Erosic	on Field Method	Collection	,		24
Erosion Pins				• •	24
Erosion Bridges					.27
Sediment Yield					30
Arroyo Direction	ł i				31
Arroyo Profiles	· .				32
Gully Inventory	•				37
Physical Improv	ements				39
Socioeconomic	Realities	* .	· · ·		41
Historical Huma	n Use				41

iv

	Recent Past Land Use: Air Phot	o Comparison	41
	1935	•	42
	1951		43
	1959	* . ,	43
	1967		· 44
• •	1973		45
· · ·	1991		46
	1996		47
Recomme	endations		49
Fo	r Future Researchers	:	49
Fo	r the Petroglyph National Monument	$\mathbf{X}_{\mathbf{r}} = \mathbf{A}_{\mathbf{r}}$	49
Fo	r the Open Space Division		51
Reference	es Cited		52

v

з,

Appendix A Appendix B Appendix C Appendix D

List of Figures

10

33-

34

35

36

Figure 1.	Stratigraphic Section
Figure 2.	Arroyo profile 1, number 1
Figure 3.	Arroyo profile 1, number 2
Figure 4.	Arroyo profile 1, number 3
Figure 5.	Arroyo profile 3, number 1

List of Tables

Table 1. Soil types	•••	11
Table 2. Average temperatures at Petrogylph National Monument		17
Table 3. Erosion Pin data		26
Table 4. Erosion Pin data with USLE 1 and 2 applied	· · ·	27
Table 5. Averaged erosion across the 1 meter bridge		29
Table 6. Erosion Bridge data with USLE 1 and 2 applied	· .	29
Table 7. Major cardinal direction of erosion pins and bridges		31
Table 8. Gully field descriptions	'	38

List of Maps

(All maps located in packets in the back)

- Map 1. Piedras Marcadas Watershed boundary outline.
- Map 2. Comparison of previous boundary assignments for Piedras Marcadas Watershed
- Map 3. Los Griegos USGS 1:24,000 topographic map, 1954 with watershed boundary

Map 4. Los Griegos USGS 1:24,000 topographic map, 1990 with watershed boundary

- Map 5. Proposed Transportation Corridor Map
- Map 6. Geologic Map
- Map 7. Piedras Marcadas Watershed soil types
- Map 8. Study Area arroyo inventory and dirt road locations
- Map 9. Location of Petroglyphs and Erosion Pins and Bridges

Map 10. Land Use comparison

Introduction

Why this project was chosen

I chose the Piedras Marcadas Watershed's southwestern escarpment as the study area because it combined issues I consider important in southwestern watershed management, namely arroyo erosion in culturally sensitive areas. The proposed Paseo del Norte transportation corridor, a four lane commuter highway that runs east-west in Albuquerque, New Mexico, is now allowed to extend through an area that previously was the National Park Service, Petrogylph National Monument's (Monument). This proposed transportation corridor would disturb a prehistoric to currently-used Native American sacred site. This proposed transportation corridor is also the northern boundary of the Atrisco Land Grant, marking the first Europeans, the Spanish colonists who settled in this area. This proposed transportation corridor also generally separates the cities of Paradise Hills and the West Side of Albuquerque, New Mexico. This road is a nexus of cultures, land use, and desires. Many people have strong feelings on the best use of this parcel of land.

The Piedras Marcadas is a small watershed located west of the Rio Grande (Map 1) in Bernalillo County, New Mexico that reflects this multiple ownership and authority dilemma. A federal authority is the Petroglyph National Monument. The Monument currently has authority over a large area of land that encompasses the basalt escarpment on the western edge of the City of Albuquerque. The Monument runs in a northeast to southwest direction and was a barrier to all roads that would run west of the natural landforms defining the City of Albuquerque. The Monument exists in the north

from the city political boundary approximately five and a half miles south to just north of Interstate 40. A September 1998 U. S. Congressional vote [Public Law 105-174 (9-30-1998)] removed the federal portion of this proposed transportation corridor, allowing for the extension of the road past the Monument boundary and into undeveloped land. Paseo del Norte would run to the west and connect with the proposed Middle Unser Boulevard. These transportation corridors would allow the regional connection of the cities of Rio Rancho, Sandoval County, Paradise Hills, an unincorporated city in Bernalillo County, and Albuquerque, New Mexico.

The New Mexico State Highway and Transportation Department's Research Bureau (NMSHTD/RB) funded this research. The Alliance for Transportation Research (ATR) Institute, University of New Mexico, U.S. Geological Survey, Albuquerque Office, and the Petroglyph National Monument supported this research in kind.

Watershed Perspective: Defined

All the high points that allow water to flow downhill to a river, lake, or ocean define a watershed boundary. Dunne and Leopold (1978) defined a drainage basin or watershed as the area of land that drains water, sediment, and dissolved materials to a common outlet at some point along a stream channel. When a watershed includes an urban area, gullies, streams, groundwater bodies, urban storm drains, industrial-cooling systems, and irrigated fields are linked as components of the drainage basin. Many authors have described a watershed boundary (Potter, 1990; Tolisano, 1990; Fleming, 1983; Sheng, 1986). A watershed is not just a surface water system, but rather the

complex web of life, landscape, and commingled groundwater. This life includes the human populations living within its boundaries as well.

The geology and geomorphology of an area such as a watershed can define and shape a culture. Human populations evolved and flourished on the banks of alluvial rivers such as the Nile and Euphrates. Our own Rio Grande is an alluvial stream, a stream that transports the sediment in which its channels lie. I suggest that water is more than a commodity; it has many significant cultural, religious, and legal aspects interwoven with its own riparian and groundwater complexity. My definition of a watershed includes these human aspects or values along with the scientific observations and methods used in the engineering, geological, and biological disciplines. The science and engineering aspects are required components in understanding the watershed. It is also important to understand and collect information on the land use patterns, cultural needs, and community assessments within the watershed. This information is now also required. Understanding the human component, that which has been more the domain of public policy rather than science, is important for present and future discussions with the community on the condition or changing conditions of their watershed. This research will address a small portion of a watershed assessment of the Piedras Marcadas Watershed, that of the erosion potential of the arroyos below the escarpment in southern portion of Unit 23 in the Petrogylph National Monument.

In summary, each generation of man leaves their mark on the hill. We now have bulldozers that within a day can destroy what geologic time has created. Luna Leopold (1962) suggested that a watershed network based on simple observations begin. This

network, which he called the Vigil Network, would be a baseline of studies within a watershed to describe its soil, geology, topography, and vegetation. This is what I have investigated at this study site. I have compiled this information and used simple, but accurate, techniques to describe the arroyo and slope erosion potential.

Report Content

This report will discuss the Piedras Marcadas watershed with respect to the arroyo and slope erosion observed in the fall 1998 and the land use change through time as observed from aerial photography spanning from 1935 to 1996. The main body of investigation is the scientific and physical observations of the watershed with respect to erosion. This will include the disciplines of geology, soils, and hydrology. The second portion is the historical observations aerial photography affords.

Description of the Piedras Marcadas watershed

Geographic Setting

The Piedras Marcadas watershed is located west of the Rio Grande in Albuquerque, New Mexico. The watershed boundary is outlined on Map 1. This watershed covers approximately 6 square miles or 1320 hectares. The Arroyo de las Calabacillas bounds this small watershed to the north and the Boca Negra bounds it to the south. The headwaters are a high point to the west. The drainage is dendritic with some sense of a palmate pattern. Previous authors (Simons, Li & Assoc., 1985; Molzen-Corbin & Assoc. et al., 1993) have described this watershed as approximately 5.6 square miles and as having a further western boundary (Map 2). The topography at the Albuquerque Corporate Boundary denotes the mesa as increasing in topography until it reaches a dip at the 5500-foot contour interval. I have placed the western edge of the watershed at the first 5500-foot contour line after field checking this location. Acreage west of this boundary drains to the Boca Negra Arroyo. The contractors have used a different shaped watershed to calculate the erosion and flood potential. I believe that these numbers are incorrect due to the boundary supplied or delineated. A comparison of these different shapes is provided as two boundary lines on Map 1.

The study area can be divided into three sections. The first section is the upper watershed that is currently undeveloped rangeland, but could be developed in the future. The second section is the escarpment area that is included within the Petroglyph National Monument. This section is currently in a conservation state, except for the narrow transportation corridor that is now legally allowed to traverse the Monument. The third section is the lower portion of the watershed and is the urban section that is predominantly zoned with residential single dwelling homes and light commercial establishments.

There are four main ephemeral streams within the Piedras Marcadas watershed. The north branch runs predominantly due north and is directly east of the current Golf Course Road. The middle branch drains the main Piedras Marcadas Canyon within the Petroglyph National Monument and drains from the west to a southeast direction. The main stem of the Piedras Marcadas is the area of study for this report. This arroyo

drains from the northwest to the southeast and runoff will flow into the AMAFCA Piedras Marcadas Dam, built in the Spring of 1984. The south branch flowed from the south to the north and is now a developed drain within the Taylor Ranch subdivision of Albuquerque's West Side.

The branches of the Piedras Marcadas did at one time flow unhindered into the Rio Grande. The construction of the AMAFCA Corrales Main Canal in 1933 provided a new diversion path to the Rio Grande. The drainage, prior to the City of Albuquerque flood intervention, is projected to have flowed into the Rio Grande near the current Petroglyph National Monument lands east of Coors Boulevard (Map 1). This federal site is conserving an estimated 1000 room prehistoric Indian community. The cottonwood trees mark the last flood cycle of the Rio Grande, outlining an ancient oxbow. The prehistoric Indian community resided on the banks of the ancient oxbow and along side the Piedras Marcadas Arroyo. The Monument was created in 1990 to protect and conserve this cultural heritage site. In 1984 AMAFCA built the Piedras Marcadas Dam and the dam has become an artificial barrier to the Rio Grande. My outline of the watershed now has a second eastern limit of the dam as its boundary.

Boundary changes, 1954 to 1990

Comparison of the Los Griegos, New Mexico, 1954 United States Geological Survey (USGS) topographic map (Map 3) as compared to the updated 1990 Los Griegos (Map 4) topographic map shows changes to the watershed boundary, branches, and culture. The east boundary where the arroyo entered the Rio Grande has significantly changed with the installation of Corrales Main Canal in 1933 and with the installation of the Piedras Marcadas Dam in 1984. The ephemeral arroyo waters no

longer naturally enter the Rio Grande, but are instead detained by the flood control dam. This in effect decreases the watershed to approximately 6 square miles.

A comparison of these two maps shows that the Main branch of the Piedras Marcadas is left off the 1990 map. The dashed blue line symbol does not exist in the 1990-updated version.

The cultural changes to the watershed are significant from the 1954 to the 1990 USGS maps. There were only two windmill symbols on the 1954 map signifying little to no cultural land use. The middle and south branch are not distinguishable within the development of West Side in the 1990 map. The 1990 map shows 40 percent (1,377 acres) of the watershed developed. The main residential development is single family homes and light commercial development. There are 396 acres protected by the Petroglyph National Monument within this watershed. This leaves 2,463 acres undeveloped in 1990.

In September 1998, the United States Congress removed a small width of the federal layer from the Petroglyph National Monument in order to allow for the proposed construction of the extension of Paseo del Norte, a four lane commuter highway, through the Monument. The proposed transportation corridor (City of Albuquerque, 1993) is in the south part of this study area (Map 5). The construction of a road would create additional sedimentation and drainage requirements. This one season collection of slope and arroyo sedimentation is offered as data to consider prior to designing any road through this Monument.

Geologic setting

This study area lies within the Middle Rio Grande Rift system. The rift basin is about 102 (164-km) miles long in the north-south direction and 25 to 40 miles wide in the east west direction (Kelly, 1977). The basin is filled, at maximum depth, with 12,000 feet of sandstone, mudstone, and gravel of the Santa Fe group of Miocene-Pliocene age (Map 6). The Albuquerque Basin is developed from the Rio Grande Rift. A series of two parallel down-dropped faults define the rift, which the present Rio Grande follows. The separation of the two sections of the North American Continental Plate caused a large segment of the Earth's crust to sink, creating the rift depression. The volcanism on the West Side is a response to the thinning of the crust at the rift system axis.

The modern topography of the Rio Grande Valley is largely a product of block faulting in late Tertiary time (King, 1977). The river is structurally controlled within the rift and has found and followed this pre-established rift trough (Chronic, 1987).

The study area also has a geologic feature called reverse topography. The fissure eruptions extruded lava that flowed into the lowest reaches of the topography, or the then current arroyos. Through geologic time, the resistant basalt flows are now on top, or reversed, as the cap rock to the Santa Fe group. The current flows outline the previous gullies. This is probably most clearly seen in the crescent shape of the eastern-most mesas in this study area. The eroding sediments under the basaltic cap are the prior arroyo's sediments. This explains the fine to medium-grained nature of the sand and the associated silts below the basalt cap. There is little to no clay associated with the current arroyo debris.

Stratigraphic section

The stratigraphic section was measure to define the study area's stratigraphy. The stratigraphic section (Figure 1) shows two stratigraphic units in this field area. The youngest unit is the Basalt mesa cap rock, extruded 110,000 years before present. This basalt flowed from a long crack in the earth that the five West Side volcanoes now mark. The multiple flows filled the low-lying drainage areas such as valleys and arroyos. This has produced a reverse topography, which allows geologists an insight into the previous drainage system.

The older unit is the Tertiary Santa Fe group (Chronic, 1987) and consists of arkosic and quartz-rich, unconsolidated silty sand. This sand is light tan in color. This lithology is friable or easily eroded to the touch. There are large amounts of blow sand in the area.

Soils

There are ten exploratory soil borings in the Piedras Marcadas Watershed conducted by Geo-Test (1993). Of these ten borings, one is in the field study area and five are proximate to the field study arroyos. These borings found that a thin layer of topsoil covering the volcanic material characterizes the mesa top above the escarpment. Secondly, the soil structure below the escarpment shows typical soil layering with no volcanic material within the borings. Third, the sampled arroyos showed typical silty sand material for the entire depth of the bore with no change in lithology encountered at depth (Molzen-Corbin & Associates et al., 1993). My field observations of these arroyos confirm the borings.

Time Scale

Santa Fe Group

Lithology Description

0 m

A_{MB}- Alameda sandy loam

B₂

Β,

В

Ά

Section B **QB** Basalt Massive, dark grey basalt with little vesicularity to heavy vescularity.

Unit 2 Flow

- Olivine-rich basalt with high vesicle density (nine/2.5 mm).

- Oval-shaped vugs ranging in size from .5 to 5 cm.

- Unit 1 Flow
- fine-grained, massive basalt with little to no vesicles.
- Vug size ranging from .3 to .6 mm.
- Abrupt lower contact.
- Section A Santa Fe Group Arkosic, quartz-rich loamy sand.
 - Well sorted.
 - Unconsolidated.
 - Light tan in color.
 - Fine-grained sand with 15% medium-sized sand component.
 - Stratigraphic Column

 Π Basalt

Loamy sand

k.a. = thousand years before present

Figure 1. Stratigraphic Section

The soil types within the field area are: AmB (Alemeda sandy loam) [Note: Alameda is the correct Spanish spelling for a nearby town and for a cottonwood tree, however the Soil Conservation supplies a different spelling] on top of the West Mesa, KR (Kokan-Rock outcrop association) which is a thin line of top of the basaltic escarpment, BCC(Bluepoint loamy fine sand) in the arroyos to the west and the floor of this area, and BKD (Bluepoint-Kokan association) in the south within arroyo 1 (Map 7) (USDA Soil Conservation Service, 1977). The soil properties are displayed in

Table 1. The soil types within the study area and their associated water runoff, soil blowing capacity, soil permeability, and propensity for water erosion (USDA Soil Conservation Service, 1977).

Soil Type	AmB Alemeda sandy Ioam	KR Kokan-Rock outcrop association	BCC Bluepoint loamy fine sand	BKD Bluepoint- Kokan association
Runoff	Medium	Slow/rapid on basalt outcrop	Slow	Slow
Soil blowing	Moderate or severe		Severe	
Permeability	Moderate		Rapid	Rapid
Water erosion	Slight	Moderate/slight on basalt outcrop		Moderate to severe

The USDA Soil Conservation Service, 1977 describes these soil types as the following:

• AmB or Alemeda sand loam is found on 0 to 5 percent slopes. From 10 to 30 percent of this mapping unit is a basalt rock outcrop and Akela soils. The soil is used for range, wildlife habitat, watershed, and community development.

- BCC or Bluepoint loamy fine sand is found on 1 to 9 percent slopes. This soil series consists of deep, somewhat excessively drained soils that formed in sandy alluvial and eolian sediments on alluvial fans and terraces. The slopes are 1 to 15 percent. The soil is slightly calcareous and mildly or moderately alkaline.
- BKD or Bluepoint-Kokan association is approximately 50 percent a loamy fine sand on 5 to 15 percent slopes and approximately 40 percent a gravelly sand on steep slopes of 15 to 40 percent. In Bernalillo County it has been a major source for sand and gravel products.
- **KR** or Kokan-Rock outcrop association is approximately 75 percent a gravelly sand on 25 to 45 percent slopes and 10 percent nearly vertical basalt rock outcrop. This unit is at the edge of the basalt mesa breaks on the West Mesa.

Erosion Potential

Types of Erosion

The four types of rainfall erosion are: raindrop splash, sheet erosion, rilling, and gulling (Roberts, 1995). Rain splash erosion is an important overall element to semiarid climates. A raindrop posses considerable kinetic energy, and falls at terminal velocity. In high-intensity rains, drops usually reach a maximum size of approximately 6mm and a terminal velocity of about 9m/sec (Ritter, 1978). This impact can directly displace a soil particle 10 mm in diameter downslope. The amount of soil moved by a splash is dependent on the kinetic energy of the raindrops, the type of soil, and the steepness of the slope. Free (1960) found that the kinetic energy (E) is E^{1.46} for sand

and discovered that over a five-year period the total splash loss from a sandy surface is calculated at 1600 tons/acre. I suggest that rain splash erosion is a primary method of soil erosion on slopes and in arroyos in this field area in non-monsoon seasons. The data collected from the erosion bridges and pins demonstrate the high movement of soil despite little sustained precipitation.

Sheet erosion is the removal of soil from sloping land in thin sheets or layers (Roberts, 1995). Sheet erosion is the transport mechanism for soil dislodged by the raindrop splash. Sheet erosion is suggested as a one of the main mechanisms for transporting soil downslope.

Rill erosion occurs when rainfall and flow become intense, and small shallow channels may form. Rills form in fine-grained soils and display a set of well-defined sub-parallel channels (Ritter, 1987). Rills are commonly seen in construction zones where the land has been bulldozed and is exposed to runoff without vegetative cover, or natural topography or channels. Surprisingly, rills are not seen in this study area. There are rills immediately outside the study at the current construction locations and near the storm drain that conveys the Middle Branch arroyo.

Gully erosion is the result of a concentrated flow much greater than in rills (Roberts, 1995). In the southwest large gullies are termed arroyos and comprise the ephemeral drainage. There are four major arroyos in this study area.

Overgrazing of land has been shown to increase erosion, sedimentation, and encourage the development of arroyos (Thornthwaite et al., 1942; Antevs, 1952; Cooke and Reeves, 1976). War I and II intensified the need for wool and beef and New Mexican ranchers were offered incentives to overgraze their lands for the war effort

(Peña, 1997). This study area includes the historic grazing property of the Atrisco Land Grant. This study site may have been overgrazed in the past.

Geomorphology of Arroyos

Arroyos are ephemeral flow stream channels characterized by steeply sloping or vertical banks of fine sedimentary material and flat, generally sandy beds (Fairbridge, 1968). Gary et al. (1972) define an arroyo as "a term applied in the arid and semiarid regions of the southwestern U.S. to the deep, flat-floored channel or gully of an ephemeral stream or of an intermittent stream usually with vertical or steeply cut banks of unconsolidated material at least 60 centimeters high, that is usually dry, but may be transformed into a temporary water course or short lived torrent after heavy rains."

In the Albuquerque area, arroyos are the main conduit for the occasional thunderstorm induced runoff and the associated sediment derived from their watersheds. The Piedras Marcadas watershed is composed of highly erodible soils and flooding is normally caused by high-intensity thunderstorm events. This combination of soil and storms carries a high potential for significant erosion and or deposition of large quantities of sediment (Simons, Li & Assoc, Inc., 1985). This arroyo system discharges water only when the monsoon season produces heavy rains, a typically late summer event. The fall (August 26 through November 17, 1998) rains that this study sampled are of too low of an intensity to provide runoff. These rains also do not cover a basin wide area and therefore did not have enough input over the basin area to provide for runoff.

Cooke and Reeves (1976) reviewed arroyo development and concluded that the initial cause of erosion for many arroyos is the development of roads and trails or other activities that confine the flow and permit incision to occur. The other primary theories for historical arroyo incision and backfilling are due to climate change (Love, 1979), the exceedence of geomorphic thresholds (Schumm and Hadley, 1957; Schumm, 1973; 1977), and intrinsic arroyo geomorphic variables (Elliot et al., 1999; Patton and Schumm, 1975). Ironically, the link between roads and arroyos goes back to the 1600s. The American Geological Institute found a definition for a gully that described it as that feature which could not be crossed with the wheel of a wagon.

It is important for professionals in all aspects of development to understand how arroyos form and evolve within the Albuquerque basin. This knowledge will aid those professionals in better planning how to development of our community. Best practices in land and water use management requires planners and others to understand the basic science and engineering principles for competent infrastructure development. Geomorphologists suggest identifying which stage of evolution the arroyo in question has achieved prior to placing infrastructure or erosion control. The stages of arroyo development as defined by Gellis (1998) are incision, widening, and development of an incipient flood plain, complete filling or alternately re-incision of fine load to a wider channel. The study area's middle section arroyos are incised and without terraces or flood plains. There is little to no incision in the upper section of the watershed, that area on top of the mesa. The AMAFCA channels in the lower section are concrete lined and do not qualify as arroyos.

Study Area Arroyos

The Piedras Marcadas Basin morphology is a dendritic pattern that has two orders of streams using Horton's (1945) drainage composition method. The slope of this watershed demonstrates a typical arid slope profile in having a cliff with an abrupt vertical angle, a debris slope, and a desert plain (Ritter, 1978). The arroyos have a continuous gully system in the study area. The study area is below the escarpment and within the Petroglyph National Monument. The area is the southern portion of Unit 23 of the Monument. Arroyo 1 (Map 8) has a V shape or a broad inverted triangular shape, as Arroyos 2 and 3. Arroyo 4 has a very broad, flat-bottomed U shape.

Accelerated erosion in the West is a problem of great social and economic importance (Leopold and Miller, 1956). Arroyo development and incision can cause failure of bridge crossings and damage to utility crossings (Shen et al., 1981). Channel erosion can cause increased sediment delivery downstream that can lead to either increased flooding or a decrease in the reservoir capacity (Mussetter et al., 1994). Arroyo incision can also lead to a lowering of the water table and this in turn threatens the survival of floodplain vegetation. This vegetation usually increases the resistance of the channel to lateral erosion (Gellis et al., 1991). A watershed approach to maintaining the watershed is a proactive method to maintain both cultural developments and the integrity of the natural watershed environment.

Hydrology

Temperature

The study area has a semi-arid climate. The fall temperatures ranged from an average low of 25° F to an average high of 94° F (U.S. NOAA, 1998). The wind velocity is not available for this area.

Table 2. Petroglyph National Monument, New Mexico (station 6754) low and high average temperatures for the fall of 1998 (Appendix A).

1998 Month	Average Low (°F)	Average High (°F)
August	63°	94°
September	59°	91°
October	44°	74°
November	32°	62°
December	25°	56°

Precipitation

The average annual precipitation on this watershed is 7 to 10 inches (Simons, Li & Assoc. Inc., 1985). The year I have sampled is classified as an El Niño year that is also demonstrating the associated change into a La Niña weather year. The La Niña weather properties in New Mexico are traditionally years of less precipitation to extreme drought (Clifford Dahm, UNM, pers. comm., 1998). The Petroglyph National Monument rain gage, located approximately three miles south of the study area, provided the precipitation data used in this study area (Appendix A). For the study period of August 26 through November 17, 1998, 2.27 inches or approximately 60 mm of precipitation was recorded at the Monument Visitor's Center. This rain occurred in eighteen events.

Runoff

There was no runoff recorded during this investigation. No gage exists on this watershed. The developed portions of the watershed require drainage control. The drainage control in the Main branch has been developed into a concrete-lined trapezoidal channel that runs without meanders to the Piedras Marcadas Dam. The channel was walked on 2-14-99 and there was no sediment within the channel, except where a large concrete pylon was discarded, trapping sediment behind it. The area above the channel is concrete-lined and borders to mason walls of private houses.

Piedras Marcadas Dam

The Piedras Marcadas Dam is approximately one-half mile south and west of the Coors Boulevard and Paseo del Norte intersection. The Dam is approximately 1200 feet by 900 feet (Map 4) and was completed in June, 1984. The Piedras Marcadas Dam is an earthen structure 28 feet in height above the ground at the centerline. The bottom of the dam is also dirt.

AMAFCA controls the flow from the southeast portion of the dam to the Corrales Main Canal. Once in the Corrales Main Canal it flows south and intersects the Rio Grande just north of the current La Orilla Road. Floodwaters can be released from the dam when the floodwaters recede in the Corrales Main Canal.

The north branch empties into the main branch concrete-lined channel. The middle branch empties into the main branch just above the point where the concrete main channel begins. The south branch turns north and is channeled into the dam.

This facility has the following design parameters (Molzen-Corbin & Associates et al., 1993):

a design storage capacity of 249 acre-feet (AF) at elevation 5032.0 feet

dam crest elevation of 5043.5 feet

a principal spillway capacity at elevation 5032.0 feet of 90 cubic feet per second (cfs)

• The 24-hour storm runoff volume table has the volume of sediment as: 40 AF of sediment with the existing condition with a 20% sediment load.

The dam is not designed for long-term accumulation, but rather to be cleaned when required. The maintenance records show the annual sediment accumulation to be 0.02 acre-ft/mi²/year (Heggen, 1992).

This dam has adequate containment capacity for the 100-year, 6-hour storm event (Molzen-Corbin & Associates et al., 1993). Molzen-Corbin & Associates et al (1993) strongly suggest that with increased development within the watershed, the increased runoff will exceed the capacity of the Piedras Marcadas Dam. The 1993 peak discharge reaching the dam is approximately double the level from the historic condition (Ibid.).

Water quality

There are no water quality data for interpretations in this watershed.

Vegetation

The undeveloped portion of the watershed contains a diverse native and nonnative flora. Common trees, shrubs and grasses of Petrogylph National Monument are:

- Cupressaceae (*Juniperus monosperma*), One-seed Juniper, "berries" are cones and are a food source
- Anacardiaceae (Rhus trilobata), Lemonade Bush, food source
- Asteraceae (Gutierrizia spp.), Snakeweed, indicator of overgrazing, medicinal herb
- Agavaceae (Yucca glauca), Soapweed yucca, fruit bearing
- Asteraceae (Artemisia filifolia), Sand Sage, indicator of deep sandy soils
- Cactaceae (Opuntia imbricata), Cane Cholla, fruit bearing
- Cactaceae (Opuntia polyacantha), Plains Prickly Pear, fruit bearing
- Chenopodiaceae (Krascheninnikovia lanata), Winterfat, high nutritional value
- Fabaceae (Psorothamnus scoparius), Broom Dalea, very aromatic
- Chenopodiaceae (*Atriplex canescens*), Four-Wing Saltbush, nutritionally important to browsers
- Globemallow (Spheralcea angustifolio)
- Jimsom Weed (Daturo inoxia)
- Threeawn Grass (Aristida pansa)
- Needle Grama (Bouleloua aristoides)
- Side-Oats Grama (Bouteloua curtipendula)
- Black Grama (Bouteloua eriopoda)
- Fluffgrass (*Erloneuron putchellum*)
- False Buffalograss (Monroa squarrosa)
- Indian Ricegrass (Oryzopsis hymenoides)
- Burrograss (Scleropogon brevifolius)

- Spike Dropseed (Sporobolus contractus)
- Sand Dropseed (Sporebolus cryptandrus)
- Mesa Dropseed (Sporobolus giganteus)
- Needle-and-Thread Grass (Stipa neomexicana)
- Porcupine Grass (Stipa spartea)
- Six Weeks Fescue (Vulpia octoflora)
- Ring Muhly (*Muhlenbergla pungens*)

The common mammal species present in the Monument are listed below. Coyotes and hawks are present in the upper and middle watershed and as predators are indicators of an adequate ecosystem web. It is assumed that these mammals may be present in the undeveloped upper and middle portion of the Piedras Marcadas watershed.

- Coyote (Canis latrans), common
- Whitetail Antelope Squirrel (Ammospermophilus leucurus), common
- Rock Squirrel (Citellus variegatus), near roads
- Spotted Ground Squirrel (Citellus spilosoma)
- Pronghorn Antelope (Antilocapra americana), rarely seen
- Kangaroo Rat (Dipodomys spp.), common
- Deer Mouse (Peromyscus maniculatus), Hanta virus carrier
- White-throated Wood Rat (*Neotoma albigula*), packrat
- Black-tailed Jackrabbit (Lepus californicus), common

• Desert Cottontail (Sylvilagus auduboni), common

Study Site Erosion Values

Universal Soil Loss Equation

I will be using two Universal Soil Loss Equations (USLE) for this study. The first will be a modified USLE equation used in watershed management, which gives the computed soil loss in tons per acre per year. The second equation is a USLE equation used in hydrologic engineering and calculates soil loss in tons per acre per storm event. Both will be presented and compared for this study.

The Universal Soil Loss Equation (USLE) was developed by the United States Department of Agriculture (USDA) Agricultural Research Service in 1965 in order to have a more widely applicable erosion prediction technique for agricultural plots under natural rainfall (Brooks et al, 1997). The basic USLE equation (Wischmeier and Smith, 1965; 1978) is:

A = RK(LS)CP

(Equation 1)

where A is a computed soil loss in tons per acre; R is a rainfall erosivity factor for a specific area; K is a soil erodibility factor for a specific soil horizon; LS is a topographic factor; C is a dimensionless cropping management factor; and P is an erosion control practice factor. This field site is not under agriculture, but is a rangeland. The USLE is modified to be applicable in rangelands and forests. The cropping management (C)

factor and the erosion control practice (P) factor are replaced with a vegetation management (VM) factor to form the Modified Soil Loss Equation (MSLE):

(Equation 2)

where VM is the vegetation management factor, the ratio of soil loss from land managed under specific conditions of vegetative cover. Within the VM factor, three effects are noted: the canopy cover; low-growing vegetative cover, mulch, and litter; and bare ground with fine roots. These three factors multiplied together create the VM factor. A visual inspection of the vegetation using a four feet square area in this field area provided the VM information.

AMAFCA Preference

The Modified Universal Soil Loss Equation (MUSLE) preferred by AMAFCA (Mussetter et al., 1994) and described by Williams and Berndt (1972) is

$$Y_s = \alpha (Vq_p)^{\beta} KLSCP$$

(Equation 3)

where the Y is the sediment yield for the storm in tons; V is the runoff volume for the storm in acre-feet; q_P is the peak discharge of the storm in cfs; K is the soil erodibility factor; LS is the topographic factor representing the combination of slope length and slope gradient; C is the cover and management factor, and P is the erosion control practice factor. The values for α and β are dimensionless numbers derived from

experimental watersheds in Texas and Nebraska (Mussetter et al., 1994). The α value is modified for the Albuquerque area to be 285 and the β value of 0.56 is taken from the out-of-state experimental watersheds.

In both equations the topography coefficient, denoted by LS, is measured at the nail and bridge sites for the slope up to the top of the mesa. This measurement is not expanded to the entire watershed. The calculated number represents the study site in the second section of the watershed

Engineered flood control of our arroyos is the city's public policy. The AMAFCA Board and staff are recently allowing aesthetics, joint use, and wetlands protection as the evolving engineering of flood control (John Kelly, Chief Engineer, AMAFCA, pers. comm., 1999).

Sediment Erosion - Field Collection Method

Eleven erosion pins and eleven erosion bridges were constructed in this field site. The erosion pins were placed within the arroyos and the bridges were placed on the slopes. Map 9 shows the location of the bridges and pins. At each station the vegetative cover percentage is noted. The grain size of the sand or soil was determined using a common field identification grain size folder (Gamma Zeta Chapter, 1968). A comparison between the pins and bridges is then a comparison between arroyo erosion and slope erosion in the study site.

Erosion Pins

The erosion pins are of two types, the first is a galvanized nail 6.8 mm in length with an associated washer, and the second is a steel nail 10.6 mm in length with an

associated washer. The galvanized pins have a higher variety of measurement as compared to the steel pins placed 6 cm apart. I choose to use the steel data for this investigation. The erosion pins were placed flush in the ground with the nail heads exposed. They were checked periodically (field data are in Appendix B) and measured and recorded for erosion or aggradation. Since this field site is in a National Monument and has an Open Space designation, the erosion pins were placed in the least visible locations. Hiding these pins meant placing them closer to grasses and bushes than was desired for erosion data collection. However, field visits to these pin sites that were not hidden did have human disturbance. People would pull the erosion pins completely out the ground and leave them at the site. People, pets or game stepped on the erosion pins. These disturbances resulted in a new placement. While some stations had data loss, there is still enough information to give a seasonal description of the erosion or aggradation.

A few weeks after placement of the erosion pins, it was discovered that several sites were buried, rather than eroded away. This resulted in a change of placement method. I decided to adjust several of the pins 2-cm out of the ground. This was only done with the steel pins because they are longer. This adjustment allowed for the collection of aggradation in a direct manner. I measured the galvanized nail by poking the measurement tool to the top of the nail head and adding the width of the nail head to provide the correct number.

The erosion for this site is high, in both the arroyos and slopes. The collected data highlight that one season of erosion or aggradation is higher than the suggested tolerance level (Rollins, 1981). Rollins (1981) suggested to the world community that 1

ton of soil loss per acre per year is sustainable soil loss. Further, 1 mm of soil loss per acre is equivalent to 1 ton per acre per year.

The following data has negative numbers for erosion and positive numbers for aggradation. The ranges of values are 1.0 to 4.0 mm-eroded soil loss and 2.0 to 10.0 mm for soil aggradation.

Table 3.	Field data	from the	steel	erosion	pins,	fall season	1998.

Erosion Pin Station	Steel (mm)	
	Average erosion	
• • • • • • • • • • • • • • • • • • •	Fall 1999	
EP-1	- 2.0	:
EP-2	- 1.0	
EP-3	+ 2.0	
EP-4	- 2.0	
EP-5	+ 2.0	
EP-6	+10.0	
EP-7	- 1.0	
EP-8	- 2.0	
EP-9	- 1.0	
EP-10	- 0.05	
EP-11	- 4.0	
Table 4. Comparison of the field data for fall season 1998 with the calculated Modified Universal Soil Loss Equations 1 and 2 applied.

		the second s
Erosion Pin Station	MSLE	MUSLE
	 Equation 1 	Equation 2
	tons/acre/year	tons/acre/avg. event
EP-1	1.61	.28
EP-2	0.38	.06
EP-3	0.09	.02
EP-4	3.20	.57
EP-5	1.10	.19
EP-6	1.43	.25
EP-7	1.33	.23
EP-8	0.10	.02
EP-9	0.14	.03
EP-10	0.38	.07
EP-11	0.93	.16

The equation 1 values range from 0.09 to 3.2 tons per acre per year of sediment accumulation. Equation 2 calculations show no averaged storms producing the sediment that exceeds the recommended soil loss. Using Rollins's (1981) suggestions of tolerating only one ton per acre per year of rangeland soil loss, this study site has five sites that exceed Rollins's recommendation for a healthy rangeland. 1 mm of soil loss over an acre of rangeland is equivalent to one ton per acre of erosion (W. Fleming, UNM, pers. comm., 1998). The MSLE equations are calculated using observations from the field sites (Appendix B). The second USLE follows using field observations and using the recommended values for K for use in the Albuguergue area (Appendix B).

Erosion Bridges

Erosion bridges were constructed from two four-foot rebar pieces. A measurement tool was constructed from a 1"x48" aluminum hollow square tube, 1/16"

thick purchased from a hardware store. This tube had a set of holes, one meter apart, drilled into the tube. These holes were drilled on one side only to accommodate the width of the rebar. This tool then had every five centimeters marked off in pen and cut in with a pocketknife.

To construct the bridge, the first rebar was pounded into the ground with a sledge. The measurement tool would then be placed on the initial rebar to find the second rebar placement. The rebar was then pounded into the ground until approximately 6 inches of rebar was left exposed. With rebar pieces in place parallel to the slope, the tool was placed on the rebar and a level was placed on the tool. Once the bridge was leveled, the tool was used to mark off every five centimeters of bridge and I would measure down to the slope in millimeters. I averaged the 20 numbers across the plane of the bridge to provide one number that defines the slope soil erosion. This information was recorded and statistical analysis was performed on the data (Appendix C). Erosion bridges are a simple, low cost and accurate method to determine the erosion potential of a watershed basin.

The field data for the erosion bridges show that from 1.5 to 10.7 mm of soil were lost from the stations on these slopes. Also, that 3 to 9.6 mm of additional soil was added at stations 2 and 3. It is not known if the soil aggraded at the site washed downhill or was wind blown to the site.

Erosion Bridge Station	Average Erosion in mm Fall Season, 1998
1	+1.5
2	- 9.6
3	- 3.0
4	+10.7
5	+2.2
6	+1.6
7	+6.2
8	+1.4
9	+6.3
10	+6.5
11	+7.0

Table 5. The averaged erosion across the 1-meter bridge measured in the fall of 1998.

The field data indicate that the measured slopes have a range of soil loss from 3

to 9.6 mm. The field data indicate that 1.4 to 10.7 mm of soil was added to the

measurement site.

Table 6. Comparison of the field data for fall season 1998 with the calculated Modified Universal Soil Loss Equations 1 and 2 applied.

Erosion Bridge Station	MSLE Equation 1 tons/acre/year/study site	MUSLE Equation 2 ton/acre/avg. event/study site
EB-1:	4.08	.49
EB-2:	5.10	.93
EB-3:	2.77	.18
EB-4;	0.54	.07
EB-5:	13.77	.92
EB-6:	2.01	.20
EB-7:	0.21	.01
EB-8:	8.16	.81
EB-9:	3.83	.64
EB-10:	17.55	1.35
EB-11:	4.00	.44

The erosion bridge data echo the erosion pin data. The differences in the final sediment loss within the study site, based on the main branch of the watershed, are higher than considered tolerable by most sustainable rangeland standards. These equations apply to the middle section of the study area, which is the escarpment and associated arroyos below. Rollins (1981) suggests one ton per acre per year is the tolerance level for rangeland erosion. Based on field observations and equation 1, this tolerance level has been surpassed in all but one site.

Equation 2 does not surpass the suggested soil loss tolerance. This equation is an averaged storm event equation using the 100, 50, 25, 10, 5, 2 year storm events (Appendix C).

Sediment Yield

Heggen (1992) recommends for planning and reservoir maintenance, a sediment volume of 0.3 acre-ft/mi²/yr is recommended for the historical basin and 0.2 acre-ft/mi²/yr for the existing basin. This study demonstrates the smaller two and ten year storms have only a minor effect to transport sediment to the dam. Additional conclusions are that the basalt layer contributes to the general stability that is observed in this watershed along with the presence of playas. However, Gellis, (1996) has found that a two-year storm can instigate and create new gullies within the Petrogylph National Monument.

The study conducted by Heggen (1992) has a best practices estimate for this watershed as 1.0 acre-feet/mi²/year. Using this estimate, the total basin sediment yield would be 6.0 acre-ft/year for the watershed boundary. My calculated yield for this

watershed is averaged from the pin and bridge field collection sites as 4.9 tons per acre per year.

Arroyo Direction

The major cardinal direction the arroyo or slope faces has some significance for the level of erosion seen. The north facing slopes have the highest amount of erosion, closely followed by those facing south. The east facing arroyos have the highest amount of aggradation. There is only one west facing slope and six associated gullies in the field area. It was unknown at the time of this study that direction would be an important aspect of erosion or aggradation and hence no slope collection device was placed on the west facing arroyos.

The higher aggradation in the east facing arroyos may be due to the prevailing east to west winds. It is recommended that future studies include wind velocity as an aspect of investigation. The precipitation alone may not be the cause of this aggradation.

Arroyo direction	North	South	East	West
# of Bridges	1, 4, 5, 7	11,2,6,8	9	10
# of Pins	1,7	2,3,4,9,10,11	5,6,8	
High value	B: +10.7	B: +9.6	B: +6.3	B: +6.5
(mm)	P: -2	P: -4	P: +10	P: no value
Low value	B: +1.5	B: +1.4	B: +6.3	B: +6.5
(mm)	P: -1.0	P: -0.05	P: -/+2.0	P: no value

Table 7. Major cardinal direction of the erosion bridges and pins comparing high and low erosion values.

Wind velocity can be an important aspect of road design and development. A vegetative screening and enhanced construction design will be needed in mitigation of high velocity winds and the debris and snow that is carried with the wind.

Arroyo Profiles

Four baseline arroyo profiles were drawn (Map 8). Arroyo 1 had three profiles drawn (Figures 2, 3, 4) along the arroyo and Arroyo 3 had one profile (Figure 5). In order to measure the width of the arroyo two rebar stakes were pounded into the soil at the edges of the main portion of the arroyo. A foot tape was stretched between the rebar and at every foot a measurement to the bottom of the arroyo in centimeters was taken and recorded. This information is a baseline survey. I suggest that personnel at the Petroglyph National Monument perform this measurement every year to five years to gain insight into the morphology of this arroyo.

Arroyo 1, A is 58' 5" from the top of the mesa and profiles a main channel, the current pedestrian path, and a few high spots where four-wing salt bushes and sand sage bushes have stabilized the blow sand.

Arroyo 1, B is 115' 10" from the top of the mesa and profiles a main channel, the current pedestrian trail, and an additional arroyo channel that joins this main channel at a position 32 feet from the north side. This order 1 channel is from the southwest.

Arroyo 1, C is 230' 4" from the top of the mesa and profiles the arroyo as the morphology changes from an arroyo with a definite channel to an arroyo that is almost without a water pathway. This profile is across the current pedestrian trail.

The Arroyo 3 profile is observed at a nick point within this arroyo. The channel and slope narrows at this position. This arroyo is steep and has a main channel. The vegetation is bushes and grasses on this slope and within the channel.

Gully Inventory

There are four main arroyos and (Map 8) 46 mapped gullies in this field area. These gullies are mapped and their width at the mesa top is taped. The following table includes the collected data on these gullies. The distance from the gully to a dirt road, pedestrian path or game path was measured.

A dirt road, pedestrian, or game trail will become a preferred pathway for water runoff. This runoff may initiate gully development in this field site. Gellis (1996) notes gully development in the Monument with 30 of the 50 gullies (60%) connected by surface drainage to the mesa dirt roads. This suggested that the dirt roads were channeling surface runoff (Ibid.). The erosion in this field site may involve a relationship between gullying, dirt roads, low vegetation cover, and wind erosion. Vegetation was sampled in a four-foot radius with the erosion bridge or erosion pin as the center.

Dirt roads can channel surface flow from the roadbed and then increase the runoff over the basalt escarpment. Gellis (1996) compared aerial photographs from 1987 to 1981 and found that ten gullies may have formed in this time period. Six of these gullies were on roads or trails, indicating human activity (Ibid). The runoff from rainstorm in these ten years initiated gullies with recurrence intervals of not more than two years and the runoff events a recurrence interval of any more than five years.

Gellis (1996) concluded that gullying in the Petrogylph National Monument might not be the result of unusually high intensity rainfall or high runoff events.

Human activity may accelerate the natural gullying process. This recreation area is used extensively by the local community and city communities. This is a highly used dog exercise and running area. People still recreationally use the dirt roads on the top of the mesa. Native American and Hispanic *Penatente* religious activities still continue.

Arroyo Location	Width Tape	Strike	Dip	Distance to dirt			
Number	Measurements	· ·		road, pedestrian			
				or game trail			
. 1		N99E	8-25°	9'6"			
2	14'	SOE	25°	No			
3		N345E	17-21°	No			
4	32'9"	N147E		No			
5*	24'1"						
6*	64'8"	N85E		No			
7	49'10"	N45E	16°	No			
8	19'5'	N76E	16°	13'7" to ped path			
9	2'10"	N74E	14°	Below basalt			
10	12'9"	N54E	12°	Ped path			
11	40'5"	N358E	2° .	No			
12	12'8"	N05E	10°	6'2" ped path			
13	4'4"	N04E	12°	8' ped path			
14	5'9"	N358E	20°	No			
15	90'	N45E	10°	No			
16	32'1"	N48E	10°	No			
17	34'9"	N72E	2°	Game/ped			
18	. 3'0"	N75E	- 10°	No			
19	10'10"	N163E	16°	No			
20	<u>9</u> '7"	N60E	16°	Game trail			
21	10'10"	N163E	16°	Game/ped trail			
22	30'2"	N143E	10°	Pedestrian trail			
23	53'5"	N81E	10°	Pedestrian trail			
24	21'4"	N340E	14°	Game trail			

Table 8. List of described arroyos or gullies in this field location.

Arroyo Location	Width Tape	Strike	Dip	Distance to dirt
Number	Measurements		•	road, pedestrian
				or game trail
25	35'2"	N51E	20°	9'8" from trails
26	19'1"	N92E	7°	See map
27	21'6"	N123E	13°	5'11"ped trail, se
28	31'6"	N150E	14°	Pedestrian trail
29	43'6"	N170E		Pedestrian trail
30	14'2"	N137E		Pedestrian trail
31	17'4"	N207E	27°	Pedestrian trail
32	25'5"	N173E	- 7°	Pedestrian trail
33	20'1"	N212E		Pedestrian trail
34	24'1"	N206E		Pedestrian trail
35	91'5"	N134E	12°	Pedestrian trail
36	26'0"	N134E	12°	Pedestrian trail
37	3'11"	N147E		Pedestrian trail
38	46'4"	N175E	14°	Pedestrian trail
39	22'10"	N166E	13°	Pedestrian trail
40	31'6"	N207E	11° ′	Pedestrian trail
41	9'0"	N260E	15°	Pedestrian trail
42	14'0"	N235E	13°	Pedestrian trail
43	42'9"	N237E	13°	No
44	47'7"	N215E	9°	No
45	52'0"	N238E	6°	No
46	12'0"	N173E	9°	No

Physical Improvements

The physical improvements to this watershed are divided into the three sections. The upper section is currently undeveloped. This section has a high variety of grasses, brushes and juniper trees. There are also many species that indicate over grazing and high erosion such as locoweed and snakeweed. The only improvement for a watershed recommendation would be to eradicate the non-native species and seed with native varieties. It will be important for the Petrogylph National Monument to monitor its western neighbors to ensure that development, with associated bulldozing of native vegetation, does not cause flooding within Unit 23 and endanger the cultural properties.

The middle section or escarpment section has the same indicator species of overgrazing or erosion. This is combined with many slope areas in a mono-culture status. A mono-culture status indicates the area is out of balance from its previous high diversity condition. This is particularly seen in entire, usually north-facing slopes covered in sand sage, devoid of grasses and other shrubs. A recommendation is to seed this area with native species to increase the grasses. Grasses have a high root to canopy ratio and will hold the soil in place when wind or runoff occurs. Grasses can stabilize the soil erosion for this reason. Additionally, the pedestrian paths and dirt roads on top of the escarpment are creating preferred pathways for water and hence erosion. Reclaiming these roads and paths will require construction practices such as discing and/or tilling and then seeding. Planting Black or Coyote willows in the channel will aid in stabilizing the channel.

In the lower section, the developed section, the arroyo channels are gone and replaced with concrete-lined straightened channels. The concrete continues to the adjacent home's mason walls. No dirt is exposed. The flood control measures are in place for protection of the human population. Since the arroyo is now not in its natural state, I would recommend keeping the Piedras Marcadas Dam a dirt detention basin. A stand of cottonwoods, native and non-native vegetation has begun to flourish and receives water from the proximate neighborhood's street runoff.

Socioeconomic Realities

The economic realities of applying improvements make them unlikely to be embraced. Eradicating small plants over several miles of the Monument or undeveloped land will be time consuming and costly from a personnel standpoint. Seeding will also cost money and personnel time. The Monument is established for visitors to explore and learn of our southwestern cultural heritage. The pedestrian trails allow visitors to view the petroglyphs and explore this federal and city land. Reclaiming these trails would disallow visitors to fully view this site. As it often happens, this area is on its way to being loved to death.

Historical Human use

Recent Past Land Use: Air Photo Comparison

As of 1990 the watershed is 44 percentage undeveloped land, in sections two and three of the watershed (Map 10). The Petrogylph National Monument is 396 acres within the watershed and remains undeveloped by federal mandate. 44 percent of the watershed is low to high density suburban land use as seen in the north with the community of Paradise Hills and the Double Eagle Golf course and in the southeast with the Subdivisions of Taylor Ranch, Volcano Cliffs, and Alban Hills. There is still undeveloped land in the southeast and infill development is anticipated in the future. The 1999 figures are approximately 39 percent undeveloped land and 49 percent developed, with the Monument making up the remaining land percentage.

The following air photographs are used for a land use comparison and the development of dirt roads within the study area. The following flight years are used for

comparison: 1935, 1951, 1959, 1967, 1973, 1991, and 1996 (Appendix D). Tom R. Mann & Associates adjusted the scales to be 1 inch equals 2000 feet, the scale of a USGS 7.5 minute topographic map. The historical progression of the photos demonstrate an approximate 45 percent increase in development of the watershed, from dirt roads to suburban and light commercial development.

1935

The 1935 air photograph indicates few cultural developments within the watershed. A notable development is a barbed wire fence running east to west through the present day transportation corridor. This barbed wire fence is the northern Atrisco Land Grant boundary, a boundary that is still indicated on the 1990 USGS map. The second notable cultural feature in the then Lower Corrales Drain constructed in 1933 (Annabel Gallegos, MRGCD, pers. comm., 1999) and now called the Corrales Main Canal. The construction of this canal follows the pre-1800s acequias, or irrigation ditches. The north, middle, main, and south branches are visible in the air photo. A dirt road that runs from the agricultural land and to the northwest will in time become Paradise Boulevard. The arroyo drainage patterns are visible and show the natural Piedras Marcadas drainage to the cultivated lands proximate to the Rio Grande. There is a large, braided fan delta type drainage. The stands of cottonwoods indicate the historic flood plain. The ancient oxbow is the site of the Open Space Division Piedras Marcadas ruin. A prehistoric to historic Pueblo people lived at this location, until contact with the Spaniards (Dr. M. Schmader, Open Space Division, pers. comm., and M. Medrano, National Park Service, 1999). This settlement is hydrologically well located,

with the Rio Grande and additional runoff from the arroyos to supply required water for domestic use.

<u>1951</u>

The 1951 air photograph more clearly shows the north, middle, main and southern branches of the Piedras Marcadas watershed. The north branch appears to have headcut 500 feet and is in contact with the dirt road that will become Paradise Boulevard.

This photo shows more clearly the main stem in the proposed transportation corridor. The incision is apparent. A south branch portion appears to be more incised with the advent of a dirt road that runs east to the west, and in places the arroyo may become the road.

The observable cultural features are the dirt roads and the Corrales Main Canal.

<u>1959</u>

The 1959 air photograph again shows little urban development of the watershed. A ranch appears in the southeastern and north central portion of the photo. The north and Middle Branches have vegetation on the arroyo bottom. There are now section line dirt roads in the southern section of the air photo.

The Atrisco Land Grant fence line still appears on this air photo. There are no dirt roads in the study area.

The 1967 air photograph shows a marked increase in the urbanization of this watershed. The unincorporated town of Paradise Hills is present in the northern portion of the watershed. Paradise Hills was constructed in 1960 (Ed Boles, Albuquerque Historical Preservation, pers. comm., 1999). The development of the West Side of Albuquerque, starting with the Taylor Ranch subdivision began in 1967. Development in these two cities has been low to high-density housing, light commercial, parks, and a golf course.

A golf course, wastewater facility, and suburban houses are present. The north branch has headward gullying to the now paved Paradise Hills Boulevard and appears to drain the golf course. The water treatment facility appears to release water as evidenced by the new arroyo channel that leads from this facility to the north branch. There is also a new arroyo, or at least incised enough to show up on this photo, to the southeast of the water treatment facility. There are new dirt roads from Paradise Boulevard to the treatment facility. In this photograph the main stem and north branch appear to be more incised.

A dirt road loop is now present in the upper reaches of the middle branch of the arroyo. It also captures the increased road development to the southeast on the escarpment and within the southern portion of the watershed. There are more roads in the northwest sector, which corresponds to the middle branch of the watershed.

The main branch of the arroyo in the study area appears less incised. The appearance of the barbed wire fence marking the boundary of the Atrisco Land Grant is still present in this photograph.

44

A South Branch arroyo has increased by 400 feet due to a sand and gravel extraction operation south of the field site. This operation has increased the dirt roads in this area. There are more dirt roads in general in this southern area for four new housing or ranching complexes. Coors Boulevard is paved in this photo. There are approximately six residences present in this southern area of the photo.

<u>1973</u>

In general this photo shows again, increased urbanization to the north in Paradise Hills. The beginnings of the roads in the Taylor Ranch subdivision of the Albuquerque's West Side are present. The north branch appears to be stable, except for a new order gully. A northwestern trending arroyo in the north branch is approaching the curve in the middle branch, looking intent on stream capture. This may be due to the new dirt road in the Piedras Marcadas Canyon that is in alignment with this arroyo and may be the catalyst for its development. This arroyo is approximately 2000 feet in length. The dirt road is a catalyst for arroyo development.

The middle branch appears aggraded. There is less definition for the upper portion of this arroyo. The dirt road appears to become the arroyo by destroying the arroyo banks.

The main branch of the arroyo also appears aggraded. There is little definition of the arroyo. The Atrisco Land Grant Boundary fence line is still present. The fence line on top of the mesa is now a bulldozed dirt road, anticipating suburban development of top of the mesa. This is the Volcano Cliffs subdivision, which to this day (1999) has not

been built. The individual plots within the present Monument are being acquired from the private landowners.

The southern branch has natural arroyo disruption from the sand and gravel extraction operation. A small branch of the main stem appears enhanced in this photo, another example of dirt roads being a catalyst for arroyo development. There now appear to be eight residences in the southern portion of the photo.

<u>1991</u>

In general there is overwhelming development of this watershed. The north branch is dislocated from the main stem due to bulldozing. The area north and south of Paseo del Norte is bulldozed for residential and light commercial development. There is a dirt road transportation corridor established to the west of the Paseo del Norte and Golf course road intersection. This area is within the proposed Paseo del Norte extension into the Monument.

The middle branch still is in confluence with the main branch. The middle branch headland is now shifted to the east, directly below a mesa top dirt road. There are now numerous pedestrian trails within the middle branch of the Canyon.

The main branch of the arroyo has one clear arroyo channel, but the previous arroyo channel is not clearly seen in this photo. The previous confluence with the north branch is bulldozed. There are now more dirt roads on top of the mesa, and the first trails in the arroyo bottom are present. The mesa top roads now connect north to the Paradise Hills community. The Volcano Cliffs subdivision dirt roads are less distinct now and probably have not recently been bladed.

The south branch is not visible from this photograph. The development of Taylor Ranch Subdivision has placed this arroyo in a defined channel amid the residential development. This photo shows the first presence of Taylor Ranch subdivision.

The Piedras Marcadas Dam has appeared, but the associated drainage channels are not yet in place. The establishment of the dam changes the boundary of the watershed. The runoff will progress no farther than the dam unless it is deemed necessary to allow flow into the Corrales Main Channel.

<u>1996</u>

In general this photograph has infill development in those areas previously bulldozed. The residential and light commercial development has been rapid from the previous 1991 photo. The dirt roads within the study area have increased on top of the mesa but not in the bottom of the arroyo. These dirt roads will become preferred pathways for water and will begin to change the drainage pattern of the watershed.

The North Branch appears slightly east of the now completed Golf Course Road between Paradise Boulevard and Golf Course Road. Development has occurred on each side of this road. West of Golf Course, north of Paseo del Norte, the suburban development engulfs the lower reach of the middle branch. This branch has been regulated to a storm drain. The upper reach of this branch appears aggraded and with less definition in this photo.

The main branch has lost its confluence with the middle and north Branches. The main branch now has runoff flows into the AMFCA concrete-lined ditches. These ditches have straightened the arroyo path en route to the Piedras Marcadas Dam. The

previous dirt trail east from the intersection of Golf Course and Paseo del Norte is now widened and joins the construction of the Shenandoah Estates subdivision. The bulldozed land northwest of the same intersection is now a light commercial development of a fast food restaurant and video store. Most of the bulldozed areas have developments at present (1999).

The south branch of the arroyo is not visible in this photo. Development has replaced this arroyo with storm drains.

In summary, the air photographs, dated 1935 to the 1993, show the development of this watershed from two windmills to two well-established urban communities. This dramatic shift of land use has affected the arroyos by creating concrete-lined trapezoidal canals in portions of the south, middle, and north branches. The Piedras Marcadas dam site is 130 feet topographically higher than the Rio Grande. This topographic distance has taken the arroyo out of its previous balance to a new balance. The concrete-lined channels now carry runoff to the Piedras Marcadas Dam. The ephemeral runoff no longer reaches the Rio Grande except after a flood stage.

Recommendations

For Future Researchers

When comparing arroyo and slope erosion use both erosion pin and bridges at the same site. Place wind and rain gages at the sties in order to define which erosion process, wind or rain, is most prominent. Each cardinal direction should have a site to determine if direction plays a role in erosion or aggradation.

Additionally, the construction of straw bale dams may be a more exacting sediment loss tool. A straw bale dam is constructed by using multiple bales, usually two bales high across the entire stretch of a gully. The bales are secured with rebar, making sure that the bales dam the entire length of the gully. The location upslope of the bale is then surveyed and the topographic height is taken. This site is then resurveyed to determine if additional sediment has collected at the straw bale site. Straw bales were not constructed at this site due to distance required to carry the bales (there is no motorized travel in this Monument area) and due to the cessation of the monsoon rainstorms.

For the Petrogylph National Monument

This study is the first within the Petrogylph National Monument to collect soil loss and erosion potential data. This data becomes more useful with a long-term collection. It is recommended that a monthly collection of this data be continued in the study area. This information is important due to the City Council's and federal government's allowance of a road through the southern portion of this site. It is suggested that the

new erosion bridges or pins be equipped with rain and wind gages. The sites for the continued study should be placed on slopes near the proposed transportation corridor and display all cardinal directions in all soil types.

Arroyo profiles were drawn for four spots in the study area. I suggest additional profiles be preformed every one to five years to evaluate the development of the arroyos.

I suggest that the vegetation type and density continue to be monitored. My suggestion to the Monument is to choose a four-foot square site around all soils type plots and on each cardinal slope direction to conduct a yearly monitoring program. The sites need to be away from highly used pedestrian and game trails. I recommend having a control plot outside of the study site area and one in a denuded area that may be used for comparison.

I suggest that additional signs be placed in this area that suggesting visitors remain on the established trail. These signs will be education if the high erosion component of this area is discussed. I suggest that Native American and traditional Spanish religious practitioners be excluded from this suggestion. Local community use of Arroyo 1 and 2 has created denuded areas that hasten erosion downhill. Eroding the escarpment will hasten the headward cutting of the arroyo. The basalt cap will be undercut and eventually tumble, taking petroglyphs with the fall.

A stream gage in arroyo 3 is recommended along with one at the dam. This gage will record runoff data and will be informative to the Monument staff in monitoring the runoff for this watershed. This gage may prove valuable if development of headwaters begins.

For the Open Space Division:

Establish signs educating the visiting public on the fragile nature of this area. Suggest keeping to the established trails and keeping dogs on a lease. Dogs chase rabbits and Kangaroo rats, making these animals use their energy in flight instead of food gathering. These animals may die as a result of a dog's action. This also increases the erosion as the dogs traverse the slopes.

References Cited

Antevs, E., 1952. Arroyo-cutting and filling, Journal of Geology, 60, 375-378.

Brooks, K. N., P. F. Folliott, H. M. Gregersen, and L. F. DeBano, 1997. *Hydrology and the Management of Watersheds*, second ed., Iowa State University Press, Ames, Iowa, 502 pp.

Chronic, H., 1987. *Roadside Geology of New Mexico*, Mountain Press Publishing, Missoula, Mont., 255 pp.

City of Albuquerque, Public Works Dept, 1993. Unser Middle Transportation Corridor, Record of Decision., 64 pp., Trans. Dev. Div. and Trans. Plan. Sec., Albuquerque, N. M.

Cooke, R. U. and R.W. Reeves, 1976, Arroyos and Environmental Change in the American Southwest, 194-202, in *Oxford Res. Studies in Geog.*, 12, Clarendon, Oxford, England.

Dunne, T. and L. B. Leopold, 1978. Drainage Basins, in *Water in Environmental Planning*, pp. 493-502, W. H. Freeman, San Francisco, Calif.

Easterling and Associates, Oct. 1988a. Piedras Marcadas Drainage Management Alternatives: HYMO Runs, contracted to Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA), Albuquerque, NM 87107

Easterling and Associates, Oct. 1988b. Preliminary Report: Piedras Marcadas Drainage Management Alternatives, prepared for City of Albuquerque Planning Department, Albuquerque, NM 87103.

Elliot, J. G., A. C. Gellis, and S. B. Aby, 1999. Evolution of Arroyos: Incised Channels of the Southwestern United States, in *Incised Rivers,* edited by S. Darby and A. Simon, pp. 153-185, John Wiley & Sons, New York.

Fairbridge, R.W., Ed., 1968. The Encyclopedia of Geomorphology,

Encyclopedia of Earth Science Series, v. III, 295 pp., Reinhold, New York.

Fleming, W. M., 1983. Phewa Tal catchment management plan: benefits and costs of forestry and soil conservation in Nepal, in *Forest and Watershed Development and Conservation in Asia and the Pacific*, edited by L. S. Hamilton, pp. 217-288, Westview Press, Boulder, Co.

Free, G. R., 1960. Erosion characteristics of rainfall, *Agriculture Engineering*, 41, 447-449.

Gamma Zeta Chapter, 1968. 3" x 4" pocket-size field guide to sphericity, roundness, grain size and shape, using actual grains; Sigma Gamma Epsilon, Kent State University, Kent, Ohio, USA.

Gary, M., R. McAfee Jr. and C. L. Wolf, 1972. *Glossary of Geology,* Am. Geol. Inst., Washington D.C., 858 pp.

Gellis, A., R. Hereford, S. A. Schumm, and B. R. Hayes, 1991. Channel evolution and hydrologic variations in the Colorado River Basin: Factors influencing sediment and salt loads, *Journal of Hydrology*, 124, 314-344.

Gellis, A. C., 1996. Gullying at the Petroglyph National Monument, New Mexico, Journal of Soil and Water Conservation, 51(2) 155-159.

Gellis, A. C., 1998. Characterization and Evaluation of Channel and Hillslope

Erosion on the Zuni Indian Reservation, New Mexico, 1992-95, *Water-Resources Investigations Report* 97-4281, pp. 51, U.S. Geological Survey (USGS), Albuquerque, NM.

- Geo-Test, Inc. 1993. Soil boring report to Molzen-Corbin & Associates, Albuquerque, NM.
- Heggen, R. J., 1992. Sediment Issues in the Piedras Marcadas Watershed, Technical report prepared for Molzen-Corbin & Associates in Piedras Marcadas Drainage Management Plan, Revision, 1993, Draft.
- Horton, R. E., 1945. Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach To Quantitative Morphology, in *Benchmark Papers in Geology*, 41, edited by S.A. Schumm, pp. 73-167, Dowden, Hutchinson & Ross, Stroudsburg, Pa.
- Kelly, V. C., 1977. Geology of Albuquerque Basin, New Mexico, New Mexico Bureau of Mines and Mineral Resources, Memoir 33, pp. 308-313, N. M. Bur. of Mines and Min. Res., Socorro, N. M.
- King, P. B. 1977. *The Evolution of North America*, 197 pp., Princeton Press, Princeton, NJ,.
- Leopold, L. B., 1962. The Vigil Network, *Bulletin of the International* Association of Scientific Hydrology, 7, pp. 5-9, Ceuterick, Louvain, Belgium.
- Leopold, L. B. and J. P. Miller, 1956. Ephemeral Streams Hydraulic Factors and Their Relation to the Drainage Net, 34 pp., *U.S. Geological Survey Prof. Paper 282-A*, U. S. Gov. Print. Off., Washington D. C.
- Love, D. W., 1979. Quaternary Fluvial Geomorphic adjustments to Chaco Canyon, New Mexico, in *Adjustment of the Fluvial system*, edited by D. D. Rhodes and G. P. Williams, pp. 277-280, Kendall-Hunt, Dubuque, Iowa.
- Molzen-Corbin & Associates and Marron Taschek Knight, Inc., 1993. Environmental Assessment (Draft), San Antonio Arroyo, Coors Road to the Rio Grande, Prepared for AMAFCA and the Bur. Of Reclam., Alb. Proj. Off., Albuquerque, N. M.

Mussetter, R. A., P. F. Lagasse, and M. D. Harvey, 1994. Sediment and erosion design guide, prepared for AMAFCA by Resource Consultants & Engineers, Inc., Fort Collins, Col. 80527.

- Patton, P.C. and S. A. Schumm, 1975. Gully Erosion, Northwestern Colorado: A Threshold Phenomenon, *Geology*, 88-90.
- Peña, A., 1997. Memories of Cibola, 219 pp., Univ. of N. M. Press, Albuquerque, NM.

Potter, C. S. 1990. Planning for sustainable watershed management: a workshop synopsis, Proc. U.S. Agency for Int. Dev. Interdisciplinary Workshop, Washington, D.C., 1-17.

- Roberts, B. C., 1995. Best Management Practices for Erosion and Sediment Control, Rep. *FHA-FLP-94-005*, 187 pp., Federal Highway Administration (FHA), Sterling, Va.
- Rollins, M.B., 1981. "T" factors on Rangelands, Panel Discussion of March 5, Rangeland Soil Erosion Workshop, Tucson, Arizona.

Ritter, D. F., 1978. *Process Geomorphology*, p. 603, Wm. C. Brown, Dubuque, Iowa.

Schumm, S. A., 1973. Geomorphic Thresholds and Complex Response of

Drainage Systems, in *Benchmark Papers in Geology*, 41, edited by S.A. Schumm, pp. 335-346, Dowden, Hutchinson & Ross, Stroudsburg, Penn.

Schumm, S. A., 1977. *The Fluvial System*, 338 pp. John Wiley & Sons, New York.

Schumm, S. A. and R. F. Hadley, 1957. Arroyos and The Semiarid Cycle of Erosion, *American Journal of Science*, 255, 161-171.

Shen, H. W., S.A. Schumm, J. D. Nelson, D. O. Doehring, and M. M. Skinner, 1981. Methods for Assessment of Stream-Related Hazards to Highways and Bridges, Rep. FHWA/RD-80/160, FHA, Sterling, Va.

Sheng, T. C., 1986. Watershed management planning: practical approaches, in *Watershed Conservation for Developing Countries*, pp. 78-84, Col. State Univ. Press.

Simons, Li & Associates, Inc., 1985. Aggradation/Degradation Analysis of the Piedras Marcadas Arroyo, *SLA Proj. No. NM-CSC-02*, Contracted to Community Sciences Corporation, Corrales, NM 87048.

Thornthwaite, C. W., C. F. S. Sharpe, and E. F. Dosch, 1942. Climate and accelerated erosion in the arid and semiarid southwest, with special reference to the Polacca Wash drainage basin, Arizona, 134 pp., *USDA. Technical Bulletin* 808,

Tolisano, J., 1990. Uncertain boundaries: institutional collaboration as a key to watershed planning. *Proc. US Agency for Int. Dev. Interdis. Workshop*, 43-55.

- U. S. 105th Congress, 9-30-1998. H. R. 3579, *Emergency Supplemental Appropriations* for the Department of Defense, Section 3005.
- U.S.D.A. Soil Conservation Service, 1977. Precipitation Map for New Mexico, *National Oceanic and Atmospheric Administration*, 2, 1, R factors for Universal Soil Loss equation, pp. M7.
- U.S.D.A., Soil Conservation Service and Forest Service, U.S. Department of Interior, Bureau of Indian Affairs and Bureau of Land Management, 1977. Soil Survey of Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico.
- U.S. Geological Survey, 1954. Topographic map of Los Griegos, New Mexico, scale 1: 24,000, USGS, Reston, Va.
- U.S. Geological Survey, 1990. Topographic map of Los Griegos, New Mexico, scale 1: 24,000, *DMA 4654 II NW Series V881*, USGS, Reston, Va.

U.S. National Oceanographic Atmospheric Administration, 1998. *Climatological Data, New Mexico, September, 1998*, Volume 102 Number 09, ISSN 0364-5622.

Williams, J. R., and H. D. Berndt, 1972. Sediment Yields Computed with Universal Equation, *Journal of Hydraulics*, ASCE, V. 102 no. HY9, pp. 1241-1253.

Wischmeier, W. H. and D. D. Smith, 1965. *Predicting rainfall-erosion losses* from cropland east of the Rocky Mountains. Agriculture Handbook, 282, Science and Education Administration, USDA, Washington D. C.

Wischmeier, W. H. and D. D. Smith, 1978. Predicting rainfall erosion losses, Agricultural Handbook, 537, 58 pp., Science and Education Administration, USDA, Washington D. C.

"I certify that this is an official publication of the National Oceanic and Atmospheric Administration (NOAA). It is compiled using information from weather observing sites supervised by NOAA/National Weather Service and received at the National Climatic Data Center (NCDC), Asheville, North Carolina 28801."

Thomas R Karl

DIRECTOR NATIONAL CLIMATIC DATA CENTER

noaa

National Oceanic and Atmospheric Administration National Environmental Satellite, Data and Information Service National Climatic Data Center Asheville, North Carolina EW MEXICO

EVAPORATION AND WIND

States and the second

いいたち へんかいで

Ĩ.

and the second second

		DAY OF MONTH														
STATION		1	2	3	4	5	•6	7	8	9	10	11	12	13	14	15
W MEXICO	[· · ·			·		<u> </u>		
NORTHWESTERN		1														
ARMINGTON AG SCIENCE	WIND	125	74	63	61	73	47	47	47	70	64	67	20		50	
	EVAP	28	23	30	35	26	32	37	26	43	39	. 29	35	11	38	29
· .	MAX	80	75	83	. 85	73	82	82	82	80	80	79	80	78	76	77
AVA TO DAM	MIN	54	54	55	55	55	52	55	55	53	53	54	54	53	52	51
AVISO DAM	EVAP	13	8	20	30	*			123	35 24	43	43		* .	80	31
	MAX	102	85	100	100	-	-	-	99	97	89			_	115	98
	MIN	40	54	41	53	-	-	-	54	53	51	· - ·	-	-	47	45
BIOUIU DAM	WIND	_	_	20	44	49		70	07	22	42				152	
	EVAP	35	13	20	28	33	34	32	20	46	20	22	25	8	24	48
· · · · · · · · · · · · · · · · · · ·	MAX	90	75	83	82	82	82	84	85	83	81	82	84	83	82	83
ACTINE DAY	MIN	56	57	55	55	65	55	55	53	56	57	60	55	56	55	56
OCHITI DAM	EVAP	25	40	33	59 40	43	65	40	53	60	65	55	61	69	72	55
· ·	MAX	87	81	90	91	87		84	91	86	87	86	90	30 88	89	91
	MIN	60	60	58	57	55	-	52	55	56	62	59	56	53	54	57
AGLE NEST	WIND	20	9	6	17	12	10	10	9	10	12	10	15	17	26	20
	MAX	74	64	77	76	21 79	22 81	23	24 70	17	14	15	17	24	28 77	19
	MIN	40	44	45	41	41	43	45	45	41	40	41	43	46	38	38
L VADO DAM	WIND	18	8	9	18	*	44	*	30	20	27	10	*	*	63	12
	EVAP	15	7	20	24	25	25	26	26	21	19	16	21	21	21	16
• .	MIN	/ _	_		-	=	-	-	_	-	-	-		~	-	-
NORTHEASTERN	-							•								_
PLAINS 03				50												
LOVIS 13 N	EVAP	32	73	20	35	_ <u> </u>	*	268	27	28	-58	97	*	*	25	*
	MAX	88	92	92	92	-	-	92	92	92	91	88	_	-	90	-
	MIN	62	61	61	62	-	-	61	59	59	60	57	-	-	56	-
UNCHAS DAM	WIND	37	40	25	17	28	37	40	21	37	52	32	33	26	38	50
	MAX	92	88	28 94	30 95	97	95	93	26	33 91	35	19	- 92	22	· 26 94	31
·	MIN	61	66	61	60	62	61	59	52	. 58	58	61	58	61	60	59
UCUMCARI 4 NE	WIND	40	39	33	32	28	44	54	24	39	58	44	30	32	28	64
	EVAP	43	34	28	38	36	34	38	36	40	30	40	28	30	23	43
•	MIN	57	56	59	59	59	60	58	59	60	85	8/ 54	54	89 56	90 56	57
CENTRAL VALLEY 05														50		
OS LUNAS 3 SSW	WIND	16	6	3	5	3	8	7	4	4	5	9	6	3	9	8
•	MAX	- 30 	- 20		- 29	-	31	29	30	25	27	27	27	26	29	28
	MIN	-	-	-	-	-		-	_	- <u>-</u>	_	-	-	-	_	· []
OCORRO	WIND	18	12	5	12	13	6	. 7	12	11	11	9	15	11	15	27
	EVAP MAX	45	90	23	23	52	16	31	30	43	31	27	22	-	14	.44
	MIN	60	59	57	65	64	61	57	56	59	92 62	93 57	93 56	90 57	59	64
CENTRAL HIGHLANDS 06																
STANCIA / NE	WIND	73	22	43	61	54	39	35	39	59	28	40	12	47	74	59
	MAX	75	73	80	80	71	40 68	76	35 79	40 78	28	28	28	38	12	11
·	MIN	50	50	47	45	45	46	46	46	46	48	44	45	46	45	48
SOUTHEASTERN PLAINS (07																
ITTER LAKES WL REFUGE	WIND	38	-34	40	46	46	59	37	31	30	40	20	20	20	25	en
	EVAP	39	32	36	39	38	37	23	37	41	30	30	27	38	26	39
	MAX	- .	-		-		-	-	-	-	-	-	-	-	-	-
RANTLEY DAM	WIND	_	-	_		-	· _	-	-	-	-	-	-	. – .	-	-
N	EVAP	41	35	39	34	46	45	4.4	33	41	35	34	45	- 28	36	36
	MAX	-	-		-	-	-	-	-	-		-	· •	-	-	-
UMNER LAKE	WIND	42	- 78	30	31	35	-	-	-	· -	-	÷ AC		-	-	-
· · ·	EVAP	32	41	35	34	36	.30	37	35	53 4 7	36	46 30	43	30 ∡1	37	83
	MAX	83	85	84	86	85	81	83	83	81	83	83	82	84	81	87
	MIN	53	56	57	55	55	58	56	54	55	52	55	54	53	54	54
•																
-										·						
										1						

Evaporation: Is measured in hundreths of inches Wind: Is measured in miles Max and Min: The maximum and minimum temperatures (Fahrenheit) of the water in the evaporation pan

W MEXICO TEMBER 1998

EVAPORATION AND WIND

	DAY OF MONTH										TOTAL						
STATION	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	OR AVERAGE
I MEXICO IRTHWESTERN ATEAU 01 UNINGTON AG SCIENCE IAJO DAM	85 34 79 50 43 19 96	68 31 80 50 40 24 95	50 29 80 50 29 28 95	50 35 80 50 *	55 36 80 49 * *	45 32 80 48 112 96 94	69 43 72 45 40 20 88	49 18 72 45 29 29 85	50 16 71 45 39 13 98	54 43 77 46 39 25 92	64 37 76 46 * -	62 28 75 47 * *	64 46 74 46 125 53 91	47 21 75 45 35 23 84	127 25 75 45 62 25 80		1859 9.35 77.9 50.4 1133 6.96 M
NRTHERN MOUNTAINS 02 Quiu dam Chiti dam He Nest	40 24 82 54 58 30 88 57 7	48 33 24 82 53 59 31 86 56 7	*7 30 33 83 52 48 30 86 55 5	- 32 26 82 51 50 30 86 53 53	- 59 34 81 50 58 30 84 51 28	45 64 32 80 52 46 30 86 51 28	42 65 21 83 48 52 35 83 51 27	41 43 28 82 45 67 41 83 54 12	46 73 24 72 50 47 30 82 55 23	45 34 77 49 57 33 85 55 22	97 38 76 46 77 44 85 52 37	- 35 75 45 65 40 82 51 22	39 34 27 77 45 59 46 82 45 10	39 36 23 79 45 51 21 83 49 11	47 115 15 70 52 86 39 85 59 22		M 1580B 8.20 80.7 52.8 1854 11.24 86.0 54.8 469
VADO DAM DRTHEASTERN LAINS 03	13 66 38 * 19 - -	12 67 38 33 20 -	10 67 39 15 13 - -	20 71 39 * 25 -	20 73 35 * 24 -	4 70 35 76 25 - -	27 70 36 38 30 -	10 68 35 19 12 -	31 72 41 25 21 -	11 72 40 21 25 -	20 72 38 * 23 - -	34 72 35 * 22 -	24 72 35 69 23 -	10 73 34 15 16 -	- 62 40 10 29 -		5.66B 72.1 39.6 580 6.30 M M
DVIS 13 N RCHAS DAM DUMCARI 4 NE	89 40 90 57 26 24 92 60 40 23 84 55	204 33 93 60 26 25 92 60 24 22 86 55	104 19 91 60 17 23 88 60 28 38 88 57	* - 46 42 91 60 68 30 86 57	* - 28 34 91 57 54 43 86 54	* - 93 62 29 32 90 58 43 40 86 54	89 12 91 60 44 31 91 58 97 34 83 51	49 15 87 51 42 23 84 55 50 20 77 49	174 - 92 64 71 23 84 56 141 39 81 51	149 21 92 61 89 35 90 60 152 50 85 59	* - 143 40 87 63 153 49 85 59	* - 31 35 89 55 61 39 84 55	198 27 93 60 25 24 92 55 49 36 85 56	59 22 91 60 27 23 91 60 36 23 88 59	176 48 88 59 32 20 89 62 64 23 86 59		1971 7.06B 91.0 59.6 1189 8.82B 91.1 59.2 1649 10.30 86.2 56.3
INTRAL VALLEY 05 3 LUNAS 3 SSW	13 25 - - 11 20	6 21 - 8 17	3 22 - - 10 20	4 25 - - 5 27	14 22 - - 14 35	14 26 14	15 30 - - 22 31	6 25 - 36	26 28 - 26 38	12 27 - 28 21	40 39 - - *	10 27 - 33	3 21 - - 13 26	4 22 - - 9	7 13 - 16		273 7.82 M M 429
ENTRAL HIGHLANDS 06 FANCIA 7 NE OUTHEASTERN	90 .61 49 36 78 46	90 61 33 28 73 46	91 59 35 28 67 46	91 63 59 35 63 44	87 60 93 38 64 45	87 57 55 38 76 43	86 55 78 28 68 44	91 37 75 48	88 57 88 38 63 48	88 59 112 40 74 42	- - 51 40 63 38	40 90 49 30 29 61 38	30 91 52 46 28 59 40	89 56 55 0 69 48	- 89 56 102 39 65 50		90.2 58.5 1662 9.54 70.6 45.4
LAINS 07 TTER LAKES WL REFUGE ANTLEY DAM	59 33 - - 37 - -	18 23 - - 16 -	22 28 - - 36 -	* - - 36 -	147 - - 41 -	22 25 - - 44 -	40 34 - - 69 -	53 27 - - 37 -	78 24 - - 41 -	95 37 - 53 -	120 27 - - 47 -	78 69 - - 30 -	* - - 43 -	* - - 33 -	92 50 - - 40 -		1443 9.53B M M M 11.75 M M
	31 87 54	35 81 55	30 82 55	39 82 53	35 80 52	42 88 53	50 79 53	63 28 78 49	99 32 88 51	42 82 56	34 80 57	53 38 81 53	34 29 82 53	46 25 84 56	67 45 79 56		1/08 10.50 82.8 54.2

Evaporation: Is measured in hundreths of inches Wind: Is measured in miles Max and Min: The maximum and minimum temperatures (Fahrenheit) of the water in the evaporation pan

NEW MEXICO SEPTEMBER 1998

STATION INDEX

· · · · · · · · · · · · · · · · · · ·	NO.	NC		DE	DE	NO (F	, O	DBSE TIM TA	RVAI E AN BLE	TON ID S	
STATION	X	2 2	COUNTY		2	E H		CAL	<u>STD</u>	TIME	ODSEDVED
Sindion	Ē	2	COONTI	E E	Ū,	N H		4		L SI	OBSERVER
	<i>≦</i>			Ľ	ð		₽ I	D	3	₹5	·
							Ē	RE	>	ШŽ	
	· ·							₽	ш	SP E	
			·					1		S	
FARMINGTON AG SCIENCE	3142	01	SAN JUAN	36 42	108 15W	5625	07	07	07	CGH	FARMINGTON AG SCI CENTER
FENCE LAKE	3157	08	GRANT VALENCIA	32 38	107 52W	5191	18	18		H	REGIS MCSHERRY
FORT BAYARD	3265	04	GRANT	32 48	108 40W	6142	18	18		СН	FORT BAYARD ROSPITAL
FORT SUMNER	3294	07	DEBACA	34 28	104 15W	4025	08	08		GH	BETTY DUNLAP
FORT SUMNER 5 S	3296	07	DEBACA	34 22	104 15W	4050		18		H	C NEAL VAUGHN
FRUITLAND 3 E	3340	01	SAN JUAN	36 44	108 21W	5220	17	17		н	JOE DIDDE
GALLIIP FAA AP	3422	01	MCKINLEY	32 13	108 1W	4410	17	17		H	SHELBY C PHILLIPS III
GASCON	3488	02	MORA	35 54	105 27W	8250	17	17		а. я	EDITHA BARTLEY
GHOST RANCH	3511	02	RIO ARRIBA	36 20	106 28W	6460	- '	18		H	PRESBYTERIAN CHURCH
GILA HOT SPRINGS	3530	04	GRANT	33 12	108 13W	5600	18	18		н	DAWSON A CAMPBELL
GLENWOOD	3577	08	CATRON	33 19	108 53W	4752	17	17		H	BOBBIE D JOHNSTON
GOLDEN	3592	06	SANTA FE	35 35	105 46W	6700		16		н	ALICE LOBATO
GRAN QUIVIRA NATL MON	3649	06	SOCORRO	34 16	106 6W	6600	17	17		E E	NATIONAL PARK SERVICE
GRANTS AIRPORT	3682	04	CIBOLA	35 10	107 54W	6520	18	18		H	GRANTS MILAN AIRPORT
GRENVILLE	3706	03	UNION	36 36	103 37W	6002	17	17		н	KATHEREN SINK
HACHITA HANGE E NE	3775	08	GRANT	31 56	108 19W	4507	18	18		H	VIRGINIA BEEN
HILLSBORD	4009	08	STERRA	32 43	107 13W	4040 5270	09	09	i I	H	INACTIVE 07/29/97
HOBBS	4026	07	LEA	32 42	107 S4W	3615	17	17		Сп	ROLF SCHOENRADT ROBBS GAS COMPANY
HOBBS 13 W	4030	07	LEA	32 43	103 21W	3805	19	19		СН	SOUTHWESTERN PUB SVC PL
HOUSE	4175	03	QUAY	34 38	103 54W	4850		07		н	LLOYD MORROW
JAL	4346	07	LEA	32 7	103 11W	3060	18	06		н	JAL POLICE DEPARTMENT
JOHNSON BANCH	4309	02	SANDOVAL SANDOVAL	35 46	106 41W	6263	17	17		H	JEMEZ STATE MONUMENT
JORNADA EXP RANGE	4426	08	DONA ANA	32 37	106 44W	4266	08	08		сн	AGRICULTURAL RESECT SPUC
KELLY RANCH	4461	04	SOCORRO	34 2	107 8W	6699		18	•	н	TOM E KELLY
LAGUNA	4719	05	CIBOLA	35 2	107 22W	5818	. 0,8	.0,8		СН	BIA LAGUNA FORESTRY DIV
LAKE MALOYA	4742	02	COLFAX	36 59	104 22W	7400	07	07		н	NEW MEXICO STATE PARKS
LAS VEGAS FAR AIRFORT	4862	02	SAN MIGUEL	35 39	105 9W	6349	11	11		E C T	MET TECH INCORPORATED
LINDRITH 1 WSW	4960	02	RIO ARRIBA	36 18	107 3W	7220	07	07		Е	BETTY POST
LORDSBURG 4 SE	5079	08	HIDALGO	32 18	108 39W	4250	17	17		н	ROBERT LOWERY
LOS ALAMOS R	5084	02	LOS ALAMOS	35 52	106 19W	7.424	MID	MID		н	UNIVERSITY OF CALIFORNIA
LUS LUNAS 3 SSW	5273	04	CATRON	34 46	106 45W	4840	07	07	07	GH	NEW MEXICO ST UNIVERSITY
LYBROOK	5290	01	RIO ARRIBA	36 14	108 37W	7150	MTD		į ,	H	U S FUREST SERVICE SUNTERRA GAS PRC COMPANY
MALJAMAR 4 SE	5370	07	LEA	32 49	103 42W	4000	18	18		СН	LEO R SUTTON
MAXWELL 3 NW	5490	03	COLFAX	36 34	104 34W	6019	08	08		H	MAXWELL NATL WLDLF REF
MC CARTY RANCH	5516	03	QUAY	35 36	103 22W	4411	08	08		H	JACK MCCARTY
MELROSE	5617	03	CURRY	33 20	108 27W	4598	17	. 17		н	CDADY & BRIGHT
MIMBRES RANGER STN	5754	04	GRANT	32 56	108 1W	6238	17	17		ся	US FOREST SERVICE
MORIARTY 1 NE	5908	06	TORRANCE	35 1	106 3W	6220	07	07		H	GLENN G OVERLANDER
MOSQUERO 1 NE	5937	03	HARDING	35 48	103 56W	5465	17	17		H	RICHARD D HAMMER
MOUNTAINAIR	5965	06	TORRANCE	32 57	105 49W	6780	17	17		, <u>н</u>	JAMES K CADWALLADER
NAVAJO DAM	6061	01	SAN JUAN	36 49	107 37W	5770	07	07	07	н	US BUREAU OF RECLAMATION
NEWKIRK	6115	03	GUADALUPE	35 4	104 15W	4563	17	17		н	DWAYNE WILKERSON
OCATE 2 NW	6275	02	MORA	36 12	105 4W	7655	17	17		СН	LOUIS MARES
OROGRANDE	6435	08	OTERO	32 11	103 26W	3460	07	07	•	н	DEBBIE CERVANTES
OTIS	6465	01	SAN JUAN	36 19	107 52W	6880	17	17	•	н	BRETHERN IN CHRIST MISSI
PASAMONTE	6619	03	UNION	36 18	103 44W	5650	07	07		H	SAM BRITT
PECOS NATIONAL MONUMEN	6676	02	SAN MIGUEL	35 33	105 41W	6878	16	16	•	R	US NATIONAL PARK SERVICE
PEDERNAL 4 E	6687	02	TORRANCE	35 26	105 34W	6800		07		H	ART MONTANA
PETROGLYPH NATL MON	6754	05	BERNALILLO	35 8	105 34W	5121	17	17		H	NATIONAL PARK SERVICE
PICACHO 2 WSW	6804	07	LINCOLN	33 20	105 10W	5042	17	17		н	LOIS CLEMENTS
PIETOWN 19 NE	6812	04	CATRON	34 30	107 54W	7961	18	18		СН	NANCY COON
PLACITAS 4 W	0911	05	SANDOVAL BOOSEVEL	35 18	106 30W	5515		18		H.	MARLEN EASLEY
PROGRESSO	7094	06	TORRANCE	34 10	105 21W	4010	17	17		C H	TELEVISION STATION KENW
QUEMADO	7180	04	CATRON	34 20	108 31W	6860	17	17		Е	JACOUE MCGUIRE
QUEMADO LAKE ESTATES	7195	04	CATRON	34 9	108 31W	7790	16	16		СН	INACTIVE 04/30/96
RAGLAND J SSW	7226	03	QUAY	34 47	103 45W	5060	18	18		H	DIANA RUSH
RATON FILTER PLANT	7279	02	COLFAX	34 9	104 260	5327	22			СН	RONALD L MERRITT
RATON KRIN RADIO	7280	02	COLFAX	36 53	104 27W	6640	16	16		СВ	RADIO STATION KRTN
RED HILL 12 NW	7297	04	CATRON	34 19	109 2W	6840	18	18		H	INACTIVE 01/01/96

35 ·

.

W MEXICO

DAILY PRECIPITATION (INCHES)

		•.						DAY	OF M	ONTH	Ŧ,					
STATION	TOTAL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
WKIRK	.88								· · · ·							
SAMONTE RTALES	.92			.25						.78	. 12				· ;	
GLAND 3 SSW	70															
JON JON	.67				•										.10	.10
RINGER	M 2.19		47	т									-		.07	
OUTHWESTERN	.01															
OUNTAINS 04	1.53	. 30									20					
AVERHEAD R S	M		-	· -	-	-	-	_	-	-	-	-	-	· _	_	- 23
BERO NT BAYARD	.35 M	_	_	_	_	_	_		_		_	•	_	_		
LA HOT SPRINGS	м	.	-	-	-		-	-`	_	-	-	-	-	-	-	-
CANTS AIRPORT LLY RANCH	M .40 .82				-											17
INA R S	.65	·.	.03	.04	.36	.03					.02					.13
ETOWN 19 NE	.48	.01	-	-	- 15	-	-	-	-	-	T	-	-	-	- T	15
SERVE RANGER STN	.58		T	.09	07					T		0.2	T	.11		
IOREAU 12 SE	1.45	.46	.03	·	.03				.03	.07	.03	.03	.18			.14
INSTON	M .36			T	.12					.04					-	-
BUQUERQUE FOOTHILLS	.45	.07														.05
BUQUERQUE VALLEY	.24			ļ	· · ·					£ .		•	1		T	T
EMAN RANCH	м	-	-	-		-	- '	-	-	· _	-	-	-		-	-
INGHAM 2 NE	.16 .45															
SQUE DEL APACHE	.31															
RRIZOZO I SW	M .21 .36															
EPHANT BUTTE DAM	. м м 10	-	-	-	-	- 1	-		-	-	-	-	-	-	-	-
S LUNAS 3 SSW	.28	.05														
TROGLYPH NATL MON	M .03		<i>n</i>											- 1		
ENHARDT RANCH	.44					· · ·				.24						.07
ENTRAL HIGHLANDS 06	M .26				•											
PITAN	M	-	-	- 1	-	-	-	-			.16					т
OUDCROFT	M	_ `	-	-	-	-	<u> </u>	-	-	_	-	-	-	_	02	-
RONA 10 SW	1.86 M		_	_												. 1
STANCIA 7 NE	1.16			- ·	-	· -	-	-	-	-	-	-	-	-	.10	.03
LDEN LAN QUIVIRA NATL MON	.96 2.19										.22	•				.10
RIARTY 1 NE	.79															.29
JUNTAIN PARK JUNTAINAIR	M 1.32	-	-	-	-		-	-	-	60	-	-	-	-	- т	
EDERNAL 4 E	1.99		ι,									ž				.41
JIDOSO	1.00										.09	.01				.17
CANLEY 1 NNE	M .94 1.36	.54			-	-						Ţ				.06
OUTHEASTERN												-				
RTESIA 6 S	.44		.02		. •						.42					T
ITTER LAKES WL REFUGE	.52		. 31								.21	.04				.27
ANTON	1.27						<u>.</u>			т	.44					
ARLSBAD ARLSBAD FAA AIRPORT	.1.00	.07								.05					.23	06
ARLSBAD CAVERNS	T .00		т									•			.03	.00
ILIA	1.97	-	-	-	-	-	-	-	-	-	. –	-	-	-	-	-
GK 2 E DRT SIMNER	M - 1 47		-	-	-	-	-	-	-	-	-	-	-	-	-	-
ORT SUMNER 5 S	1.00				ł					.15	.35					
DBBS DBBS 13 W	.98									T	.30					.22
AL	M	-	-	-	- '	-	-	-	-	- T	- 65 -	-	-	-	-	-
ALJAMAR 4 SE CHOA	1.36									.10	.38					.80
ICACHO 2 WSW	.90								1		Т				.04	.50
MC D NUM	1 1.10	ı İ	1 I	I	1			1 ji	I İ				Ι.	1	.05	.64

NEW MEXICO SEPTEMBER 1998

DAILY PRECIPITATION (INCHES)

		_				DA	Y OF	MON	TH							
STATION	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
NEWKIRK		.15											Ť,		.73	
PORTALES		.50									.77	,			-04	
RAGLAND 3 SSW		T									•				.70	
SAN JON								.50						. 38	20	
SPRINGER								Ŧ							1.65	
SOUTHWESTERN														.02	.59	
MOUNTAINS 04											-			· .		
BEAVERHEAD R S	.20	.14	_	-	_	_	_	· _	_		_	_		.16	.30	
CUBERO	.10	.05				_	_				_		-	.20		
FORT BAYARD GILA HOT SPRINGS	-		-	-	-	-	-	-	· -	-	-	-	-	-		
GRANTS AIRPORT						_					-		-	.40	-	
KELLY RANCH LUNA R S		.03			.07									01	.58	
MIMBRES RANGER STN	-	-	-	-	-	-	-	-	-	-	-	-	_ ·	-	-	
PIETOWN 19 NE	T												.10	.07		
RESERVE RANGER STN	.09													.04		
THOREAU 12 SE	.24	_											.14	.24	т	
CENTRAL VALLEY 05		•												.20	•	
ALBUQUERQUE FOOTHILLS	.12						_		_				·		.21	
ALBUQUERQUE WSFO AIRPO//R		T			T		T	·	T			,		.20	.04	
ALEMAN RANCH		-	-		-	- `	-	-	-	-	-	-	-	-	-	
BINGHAM 2 NE	.05	.11												.23	.11	
BOSQUE DEL APACHE	.01					· .11		.03							.16	
CARRIZOZO I SW CORRALES														36	.21	
ELEPHANT BUTTE DAM	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	
LAGUNA LOS LUNAS 3 SSW	.10													-	- 14	
PETROGLYPH NATL MON											. •				.03	-
PLACITAS 4 W Rienhardt Ranch													т	.27		
SOCORRO		.03									-			.18	.05	
CENTRAL HIGHLANDS 06 CAPITAN	.54								•					60	57	
CLINES CORNERS 7 SE	-	1.03	-	-	-			-	-	-		-	_	-	-	
CLOUDCROFT CORONA 10 SW	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
EDGEWOOD CEDAR GROVE	-	-	-	_	-	_	-	-	-	_ ·	- !	_	-	-	.01	
ESTANCIA 7 NE COLDEN	.15						.09							.14	.65	
GRAN QUIVIRA NATL MON	.05	.28	.02			.03						· • .		.15	.49	
MORIARTY 1 NE		.03	T					.02							.45	
MOUNTAINAIR	-	34	-	-	-	-	-	-	- '	-	-	-	-	-	- 34	
PEDERNAL 4 E	.01													.26	1.31	
RUIDOSO	.12	.21	.01	.01				.01		.01		•	.01	.73	.08	
SANDIA PARK	.48		-		-	-									.40	
STANLEY I NNE SOUTHEASTERN		.40							T						.42	
PLAINS 07												•				
BITTER LAKES WL REFUGE					i)								Т			
BRANTLEY DAM		ŕ														
CARLSBAD					.60	.*				T	•				.83	
CARLSBAD FAA AIRPORT				T.		T					T					
CROSSROADS 2	_	_	_	-	_	_		- ·		_		_		_	_	ĺ
DILIA	Т	Т						т	т		_		T	T	1.97	
ELK Z E FORT SUMNER	-	-	-	-	-	-	· -	-	-	-	-	-	-	-	-	
FORT SUMNER 5 S		.08												.20	.57	
HOBBS 13 W										1 20 1			.46			
JAL	-	-	-	-	-	-	-	-	-	_	-		02	-		
MALJAMAR 4 SE OCEOA												.08				
PICACHO 2 WSW	.08	.			.			.16	{	.02			.29	.16	.27	ļ
RAMON 8 SW		.09										İ.	l I	.38		

NEW MEXICO SEPTEMBER 1998

MONTHLY STATION AND DIVISION SUMMARY

	PRECIPITATION (IN)												
			- <u>-</u>		SLEET	r, snov	w	NO.	OF E	AYS			
STATION	TOTAL	DEPARTURE FROM NORMAL	GREATEST DAY	DATE	TOTAL	MAX. DEPTH ON GROUND	DATE	.10 OR MORE	50 OR MORE	1.00 OR MORE			
MOSQUERO 1 NE NEWKIRK PASAMONTE PORTALES RAGLAND 3 SSW ROY SAN JON SPRINGER TUCUMCARI 4 NE DIVISIONAL DATA> SOUTHWESTERN	.09 .88 1.56 .92 .70 .70 .67 M 2.19 .61 .75	-1.99 71 32 -1.22 -1.66 -1.20 -1.40 -1.14 -1.24	.07 .73 .77 .78 .70 .50 .38 1.65 .59	30 30 26 9 30 23 29 30 30 30	.0 .0 .0 .0 .0 .0 .0 .0 .0	0 0 0 0 0 0 0		0 2 3 2 1 3 2 2 1	0 1 2 1 1 1 0 1	0 0 0 0 0 0 0 1 0			
AUGUSTAINS 04 AUGUSTINE 2 E BEAVERNEAD R S CUBERO FORT BAYARD CILA DOT STREAMS	1.53 .35	21 -1.19	.30	30+ 29	.0 M .0 M	0 M 0 M		7 2	0 0	0 0			
GRANTS AIRPORT LUNA R S MIMBRES RANGER STN PIETOWN 19 NE OUEMADO	M .40 .65 .48	-1.52	.40 .36 .15	29 4 15+	M .0 .0 M .0	M 0 M 0		1 2 3	0	0 0			
RESERVE RANGER STN THOREAU 12 SE WINSTON DIVISIONAL DATA> CENTRAL VALLEY 05	.45 1.45 M .36 .78	-1.76	.38 .09 .46 .20	16 16+ 1 29	.0 .0 .0 .0	0 0 0		2 0 6 2	0 0 0	0 0 0			
ALBUQUERQUE FOOTHILLS ALBUQUERQUE VALLEY ALBUQUERQUE WSFO AIRFO//R ALEMAN RANCH BERNARDO	.45 .24 .15	85	.21 .20 .12	30- 29 29	.0 .0 .0 M	0 0 0 M		2 1 1	0 0 0	0 Ó 0			
BINGHAM 2 NE BOSQUE DEL APACHE CARRIZOZO 1 SW CORRALES ELEPRANT BUTTE DAM	.45 .31 M .21 .36	-1.11 -1.19 -1.20	.11 .23 .16 .21 .36	29 30 30 29	.0 .0 .0 .0	0 0 0 0		1 2 1 1	0000	0 0 0 0			
LAGUNA LOS LUNAS 3 SSW PETROGLYPH NATL MON SOCORRO -DIVISIONAL DATA> CENTRAL HIGHLANDS 06	M .10 .28 M .03 M .26 .30	-1.02 -1.15	.10 .14 .03 .18	16 30 30 29	.0 .0 .0 .0 .0	0 0 0 0	. !	1 1 0 1	0 0 0	0 0 0 0			
CAPITAN CLINES CORNERS 7 SE CLOUDCROFT CORONA 10 SW	1.86		.69 1.03	29 17 16	м •0 м	0 0 M	·	5 1 2	3 1 2	0			
EDGEWOOD CEDAR GROVE ESTANCIA 7 NE GRAN QUIVIRA NATL MON MORIARTY 1 NE MOUNTAIN PARK	1.16 2.19 .79	50 .24	.65 1.60 .45	30 30 30	M .0 .0 .0	м 0 0 0		4 3 2	1 1 0	0 1 0			
MOUNTAINAIR PEDERNAL 4 E RUIDOSO SANDIA PARK STANLEY 1 NNE DIVISIONAL DATA> SOUTHEASTERN	1.32 1.99 1.00 M .94 1.36 1.46	68 .74 23 74	.60 1.31 .45 .48 .54	9 30 15 16 1	.0 .0 .0 .0 .0	0 0 0 0		3 3 2 3	1 1 0 1	0 1 0 0			
PLAINS 07 ARTESIA 6 S BITTER LAKES WL REFUGE BRANTLEY DAM CARLSBAD CARLSBAD FAA AIRPORT CARLSBAD CAVERNS	.44 .52 .31 1.00 .14 T	-1.95 -1.44 -1.67 -2.61 -3.65	.42 .27 .31 .60 .06 .00	10 15 2 20 15 30+	.0 .0 .0 .0 .0	0 0 0 0 0		1 2 1 3 0	0 0 1 0	0 0 0 0 0			
CRUSSROADS 2 DILIA ELK 2 E FORT SUMMER	1.97 1.47	.07	1.97	30	M .0 M	M 0 M		1	1	1			

MEXICO EMBER 1998

MONTHLY STATION AND DIVISION SUMMARY

	TEMPERATURE (°F)													
											NO OF DAVS			
	_			ш			·		S	XS	MAV		MIN	
STATION	IUM	UM GE	GE	MM	ST	ш. —	ST	ш	DV C	DN PG		<u>~</u>	M	
Difficity	ER A		ERA	AR' RO	GHE	T A	IWC	TAC	ATT E	EE OL	VE	MO	MO	M
	∧ v v	AV MIN	N N	NO I	H		Ľ		GRE	02 8	ABC	BEL	BEL	BEL
•			·					x	DE		ő	OR	OR I	т В
- <u></u>											8	32	32	0
UERO 1 NE	86.2 90.5	54.4 56.3	70.3	6.6	92 95	19 27	46	23 23	2	169	3	0	0	0
MONTE	84.3	51.3	67.8	5.3	89	5	44	27+	10	102	0	. 0	Ö	o
LAND 3 SSW	87.4	55.6	74.3	4.9 / 5.3	93 93	26+	51 48	23+	0	286 201	17	0	0	0
JON	80.5	52.9 60.3	66.7 75.4	3.7	88 96	27 27	46 50	23	6	60	0	0	0	0
INGER	85.0	48.3	66.7	4.4	92	24	39	27	7	62	3	ŏ	ő	o
IVISIONAL DATA>	91.3	5/./	74.5	5.4	97	25+	47	23	. 4	296	22	0	0	0
UTHWESTERN UNTAINS 04														
USTINE 2 E	80.9	47.1	64.0	6,.0	85	28+	36	27	39	19	0	0	0	0
VERHEAD R S ERO	м 84.7	M 50.4	м. 67.6	4.8	89	24	35	26	11	95	0	•		
T BAYARD	<u>н</u> -	M	м					20				Ŭ	Ť	
NTS AIRPORT	86.2	46.6	66.4 ·	4.8	90	27+	34	26 ·	11	59	2	. 0	0	0
A R S BRES RANGER STN	79.7 M	39.9 M	59.8 M	3.0	84	28+	30	27+	150	0	0	0	4	0
TOWN 19 NE	77.0	48.4	62.7		84	23	35	26	70	9	0	0	0	0
MADO ERVE RANGER STN	79.2	39.0	59.1 66.6	8 4.5	81 92	22+ 29+	30 34	27+	168 · 24	0 79	0	0	4	0
REAU 12 SE	77.9	44.5	61.2		82	28+	32	26	110	3	0	Ŏ	ĩ	Ö
IVISIONAL DATA>	03.3	40.0	63.7	2.7	89	13	42	26+	20	. 59	0	0	0	0
NTRAL VALLEY 05 UQUERQUE FOOTHILLS	83.8	58.1	71.0				53	274		100				
UQUERQUE VALLEY	88.2	56.5	72.4		93	3	47	27+	0	224	11	0	0	0
MAN RANCH	86.8 M	61.9 M	74.4 M	5.8	90	25+	52	26	.0	288	3	0	0	0
NARDO	95.9	55.3	75.6	8.8	101	3	42	27	0	326	30	0	0	0
QUE DEL APACHE	96.4	53.2	74.8	6.1	100	17	48	26 28+	· 0 0	177 301	3 30	0	0	0
RIZOZO 1 SW RALES	89.9	56.6	73.3	6.1	94 91	28+	46	27	0	254	18	0	0	0
PHANT BUTTE DAM	м	M	м		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	201	41	214	Ū	134	2	U	0.	, i
LUNAS 3 SSW	86.0 91.4	50.6	68.3 72.2	2.9	91 97	25 1	42 44	28 27	3	108 224	4 23	0	0	0
ROGLYPH NATL MON	91.1	58.6	74.9		94	3	51	27+	0	304	24	0	Ő	o
)IVISIONAL DATA>	,	5515	72.5	4.6	30	207	43	21		242	28	U	0	0
ENTRAL HIGHLANDS 06 SITAN	м	м	м		86	24+	43	12				0		
INES CORNERS 7 SE	м	M. '	M		84	13	46	21+			Ŏ.	ŏ	ŏ	o
RONA 10 SW	78.6	52.4	65.5		85	28	46	12	14	37	0	0	0	0
JEWOOD CEDAR GROVE	M 84.6	M 44.2	м 64.4	2.2	88	28+	33	26	32	21	0	•		
AN QUIVIRA NATL MON	85.1	51.2	68.2	4.2	89	28	46	24+	0	103	Ō	ŏ	ŏ	ŏ
UNTAIN PARK	м	40.J	M		88	29	37	27	15	33	0	0	0	0
UNTAINAIR DERNAL 4 E	86.8 84.1	48.8	67.8 67.0	5.7	89 89	28+ 26+	40	21	3	93 77	0	0	0	0
IDOSO	78.9	45.5	62.2		88	24	40	27+	82	6	o	·Ο	ŏ	ŏ
ANLEY 1 NNE	83.3	47.2	65.3	4.4	84 88	28+ 29	40 37	27	47	12 37	0.	0	0	0
DIVISIONAL DATA>			65.5	5.2										-
LAINS 07														
TTER LAKES WL REFUGE	91.6	59.3	75.5	5.2 6.7	96 99	28+ 28+	56	11+	0	323	20	0	0	0
ANTLEY DAM	93.7	63.1	78.4 78 0		99	14	59	11	0	407	26	Ō	Ő	õ
RLSBAD FAA AIRPORT	94.9	65.1	80.0	6.4	101	14 20+	60 59	11+	0	423 459	26 28	0	0	0
COSSROADS 2	89.9 M	63.2 M	76.6 M	6.2	96	22	56	23	0	353	15	0	0	0
LIA X 2 E	86.8	51.3	69.1	2.9	92	25	45	26	1	131	6	0	0	0
RT SUMNER	88.6	57.3	73.0	5.0	93	.27	52	26	o	244	13	0	0	0

4

22.22
S	ATION (CIIN	atological) GLYP	H NK	TION		er Station.	il dillerent) 2 UMENT	MONTH PUGUST	19.98	(1	S FO 2-93)	RM B-9	91	•					U.S. DEPARTMEN NATIONAL OCEANIC AND ATMOSPHERIC NATIONAL W	T OF COMMERCE ADMINISTRATION EATHER SERVICE
TI	NE (local) O	ME) F OBSERVAT	ION RIVER		BEA TEMP.	RNA		STANDARD TIME	IN USE				RE	COF	RD O)F F	RIVER	ANE	CLIMATOLOGICAL OBSERVATIONS	3
T	PE OF RIVI	RGAGE		ELEVATIO	N OF RIVER	Fi	FLOOD STAGE	NORMAL POOL S	D / TAGE	-										· · · ·
F	TE	MPERATUR	RE F.			71.	PRECIPITATIO	PRECIPITATION		- P V	VEATH	ER (Ca	endar l	Day)	Π	R	IVER STA	GE		
			<u> </u>	24-HR A	MOUNTS	At Ob.	Draw a straight line (s precipitation was who hours precipitation	Ma	rk 'X' lo	or all type	s occuri	ing	1					•
	24 HR	. ENDING	ľ .	ed (Ins. edths)	pellets, enths)	pellets.	probably occurred unol	NOON	P.M.	-					Servati om abo	N	GAGE READING	7		
πe	OBSE		AT	un, melt aw. etc. d hundn	ow, ice j s. and h	iow, ice il, ice on bund (in		1			e Pellets	9Z6	ail	amaging	me of at Herent fr	DITIONC		ENDENC	REMARKS	
à	MAX.	MIN.	OBSN.	62555	. N.E.	ភ្លៃខ្លីទី				<u> </u>	ŭ	Ö		/å≩	Ë ₩ 	ŏ	A.M.	٣	(Special observations, etc)	,
2	87	63	82	1-101						<u> </u>		-	<u> </u>				· · ·		· · · · · · · · · · · · · · · · · · ·	
3	04	ra	91							<u>'</u>				+					·····	
Ļ	197	-7-6-1								<u> </u>										
	al	57	80	. 12						<u> </u>							<u>_</u>			
6	<u> </u>			<u> - aa</u>	· · · · ·	1				1				+						·····
7	97	56	94	1						1				1			· · · ·			
8	98	60	97	1						1			-	1						
9	99	63	94		· ·					I										
10	95	66	85						11111111	I				·					······································	1 • .
11	92	60	85							1										
12	90	64	86				1 2 3 4 3 6 7 8	9 10 11: 1 2	3 4 3 4 7 8 9444	•										
13	92	59	90	.03			+++++++++++++++++++++++++++++++++++++++			I										
14	93	59	90	,06			1141111111		1111111+++	4										
15	93	61	92					111111												
16	95	63	93																	
17		·							11111111					<u> . </u>						
18	96	63	91	T								<u>,</u>							· · · · · · · · · · · · · · · · · · ·	
19	95	66	89						1111111	1									· · · · · · · · · · · · · · · · · · ·	
20	93	64	88	.05						<u> </u>						_				
<u>11</u>	91	68	- 79	T						ļ				·						
22	95	68	94							 	 									
23	97	64	95			·				 			·							
24	99_	66	94	\mathcal{T}									/							
25	94_	66	96	62						f—		_2	<u> </u>				·			•
26	9/	60	89	15			-Vinippini				 		·							
2/	98	6.5	96																	
28	92	69	90			· · ·					<u> </u>			$\left - \right $					-	
29	93	63	4/		;						┼─┤									•
30	45	62	43	-							$\left - \right $			┼╌┤		-		·		
<u>, 1</u>	73_	00		11-		\leq	CHECK BAR /F	or wire-weight	IORMÁL CK. BAR	[$\left - \right $	2 3		- 8	$ \leftarrow $	┢		$ \forall$		
<u>३</u> २०	NDITION O	F RIVER AT	GAGE	.45	<u> </u>	\sim	READING	DATE		<u> </u>	8 -		Hail	Vin	\geq	\square	\bigtriangleup	Δ		· · · ·
1.2										OBSI	EAVER									

STATION (Climatologic	YPH)	ATTON	AL MI	WUM	I dillerent) EVT	SEPT		19	B	WS	FOR	IM B	91				,		U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
STATE AL ME	XILD		COUNTY	IN II		RIVER				<u>ויי</u> ן	00,								NATIONAL WEATHER SERVICE
TIME (local) OF OBSE	RVATION RIVER	1	TEMP.	VT CIC	PRECIPITATION	STANDARD	TIME IN U	SE .		-			R	ECO	RD	OF I	RIVER	ANI	CLIMATOLOGICAL OBSERVATIONS
TYPE OF PIVER GAG	F	ELEVATI			ELOOD STAGE					-			• •			••••			
THE OF RIVER GAG	· ·	GAGE ZE	RO	Fl.	FI.	:		-	Fl.	-									
TEMPER	ATURE F.				PRECIPITATI	он				w	EATH	ER (C	alenda	r Day)		R	IVER STA	GE	
1. T		24-HR	AMOUNTS	At Ob.	Draw a straight line (h hours pre) through h	cipitation w ours precipi	as itation	Mark	'X' lor day.	ail typ	es occi	ırring	e it				
24 HRS. ENDIN	1G	L L L	ellets.	ellets.	probably occurred un	observed.						T			- Sati		GAGE		•
OBSERVATIO	N	atc. (d ter	ice Se o Se o Se o	A.M.		N	P.M. 1		-	llets		5	Duit	t obs	1TION	AT	ENCY	
	AT OBSN	han.	now.	now. ail. ic	1 2 1 4 1 4 7			5 A 7 X	• 10 11	8	ce Pe	Slaze	Pund	Jan	Vinds Time		A.M		REMARKS
197 6	5 80			0 E G					titit	-		-				+		+	
2 90 G	4 88						ti i i i i	ililili						+		+		•	
3 94 G	3 92							市市	市市					1-		1			
1. 93 G	5 87							山山	市市						-	1		-	
1 93 6	1 91					11111													
· 93 6	2 92			· .		1111	111	1111											
193 5	8 90				1111111	11111													
· 92 6	1 90				111111111	11111			11111										
· 91 6	5. 90					11111						_						<u> </u>	
10 90 6	3 87			ļ		1 1 1 1 1						_		_		<u> </u>		L	
" 92 6	89						<u> </u>			<u> </u>							· · ·	_	
12 91 60	> 89			┦───┤			 			╞╼┥					_				
				 															
442 61	67																	<u> </u>	
* 89 6C	181							$\left\{ \left\{							+		┼──		
17 50 5	5 87					$\frac{1}{1}$			$\left \frac{1}{1} \right $						-	+			
	1 40						╏		┼┼┼	┼──┤		-+						+	
19 93 6	0 97								tilili	┝━─┼	-+			+-	- <u> </u>			\vdash	· · · · · · · · · · · · · · · · · · ·
20 97 5	1 49											-+							
2 90 52	5 87	· ·	1			1111		而市		<u>† † </u> †			+						
2 88 53	5 86					9 10 11			9 10 11										
23 89 6	1 89					11111	1111		111										
24 92 54	E 90					1111	1111	1111	111						· ·			•	
25 92 60	> 88					1 1 1 1 1													
* 97 51	63			· 1						.					_				Temps for 9.26 taken 0810 9.27
"92 51	90		ļ							 				_ _	-		·		· /
28 93 53	9/		 					11111		┝╌┤	·		-	_					
29 4Z	180	07	 					TH					4						
1 84 58	$\square M$	1.00	 	├ ── ┼						┝╾╌┠	 -	-	X _			$\left - \right $			
	E HU		·		CHECK BAD	For wire-we				┝─┼		-	╤┼╴		+	╘		$ \downarrow $	
CONDITION OF BIVE	R AT GAGE	+	<u> </u>	\vdash	READING	D	ATE			2 L	8 e	<u>a</u>	Ì I	Dam Dam		\leq	\bigtriangleup	K	
1		L	1 <u>.</u>	I	+					OBSE	AVER	ΡŦ	77/	ne.	シン	101	4 21.1	477	CALLER MONTIMENTT

N.

STATIONERPORT	NATIONA	WICNUMENT	MONT	19 478	WS FO	RM B	91						U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
STATEAN MEXILI) COMITY	VALILLO	RIVER		. (12-93)								NATIONAL WEATHER SERVICE
TIME (local) OF OBSERVATION RIVER	TEMP.	PRECIPITATION	STANDARD TIME IN US	3E	1		RE	COR	D OI	F RI	VER A	NE	CLIMATOLOGICAL OBSERVATIONS
TYPE OF RIVER GAGE	ELEVATION OF RIVER GAGE ZERO	FLOOD STAGE	NORMAL POOL STAGE										
TEMPERATURE F.		FI. FI. FI. PRECIPITATIO	N	FI	WEAT	HER (C	lendar D	Day)	-	RIV	ER STAG	E	
	24-HR AMOUNTS	I Ob. Draw a straight line (-		cipitation was	Mark 'X' I	or all typ	es occurri	ing	- 4 H				
24 HRS. ENDING	ins. Ins. Juns) allets. Allets.	probably occurred uno	bserved.		Uncir bay		- <u>T</u>		arvation m abo	- F	GAGE		
OBSERVATION	mettec atc. (, undrec ice p	8 5 A.M.		P.M.	eilets		in in iteration in the second	buibi s	of obs ant fro		AT	DENCY	
MAX. MIN. OBSN.	Rain, snow, and h and h and h and h and h		9 IN 11 1 2 3 4	5 6 7 8 9 10 11	S S	Giaze	H H	Vind	differ	CON .	A.M.	TENC	HEMARKS (Special observations, etc)
181 58 73	.04			Inner			XX				_		
2 81 43 79	T	4444444444444444444444444444				<u> </u>							·
3 83 41 81													Which HAT PERCOPUTED
40	-,					- i		+				_	WIN. NUT WELLED
00 40 62						┼╍┼	_{_		+				<u> </u>
77 42 74	····					┼─┼							······································
1 79 36 77													
· 83 40 82												_	
10 85 43 83								÷					· · · · · · · · · · · · · · · · · · ·
" 85 28 80													· · · · · · · · · · · · · · · · · · ·
12 83 50 82		2 3 4 5 6 7 8		3 6 7 8 9 10 11		↓							
13 82 52 86											-		
" 87 40 95 " 87 40 95						- -					-		Walls
10 87 48 68						┼╌┼		┼╍┼					WINC
17 70 31 57					·	┼─╍┼╸				-			
18 71 362 70							÷						
10 71 43 67													
20 69 49 59	,67			144444			X						
21 59 49 51	.][multin	1111111			LI.		·					
2 59 49 57		× + + + + + + + + + + + + + + + + + + +	• in il i 2 i 4									_	
69 53 67				1 there is			_						
1 4 4 68	.01												
17 40 1U 18 71 50 57	67			-			-	$\left - \right $				\neg	
27 59 44 49	<u>11</u> a			uning			2-1				·····		
28 64 34, 60	<i>b</i>					-r	` −			- -		\neg	
» 67 34 65													
30 65 45 55	.03			++++++++++				·					
31 56 45 49	.21	44444444										Ţ	
SUM SUM	.58 >		For wire-weight) NORM	AAL CK. BAR	8 8 8	Giaze	Haii	Vinds	\succ	$\langle \rangle$	\times	$\langle $	
CONDITION OF RIVER AT GAGE					OBSERVE	<u>م ا</u>	2.1	1.			11.	L	Then & iman annat

ian ann ann ann ann ann a

ST	ATION (Clim	atological)	<u> </u>	<u> </u>	(Riv	er Station,	if different)	MONTH	0.0	ws	FOR	RM B	-01								OMMERCE
Ľ	ETRO	Glyp	M NA	TI m	ON I COUNTY		·	NOJ	1998	(12-	-93)									NATIONAL OCEANIC AND ATMOSPHERIC ADMIN NATIONAL WEATHE	ISTRATION
"	NEU	mE	XICO		BERA	VAL.	40	niven			:										
Til	AE (local) Of	OBSERVAT	ION RIVER		TEMP.		PRECIPITATION	STANDARD TIME IN US	E		·		F	REC	OR	D OF	F RIV	ER A	NC	CLIMATOLOGICAL OBSERVATIONS	
TY	PE OF RIVE	RGAGE		ELEVATIO	N OF RIVER		FLOOD STAGE	NORMAL POOL STAGE													•
┡				GAGE ZEP		F1.	Fl.	L	Fl.	<u> </u>						•••• • -					
	TE		E F.			1	PRECIPITATI	ON		- wi	EATH	ER (C	alenda	ar Day	<u></u>			STAG	E		-
		¢		24-HR A		A1 06.	Draw a straight line (observed, and a wave		ipitation was urs precipitation	Mark	('X' fo day.	r all typ	es occ	curring	, ucit						
	24 HRS	ENDING		A State	all all all all all all all all all all	etter	probably occurring unit		PM									DING	۲	· · · · ·	
	OBSEF	IVATION		Telt.	io i	202					ellets		æ	-		eut te		^'	DENC	DEMARKA .	
DATE	MAX.	MIN.	AT OBSN.	Rain.	Snow [Ins.	Preil.	1234567	8 9 10 11 1 2 3 4	5 6 7 8 9 10 11	ŝ	lce P	Glaz	P L	Hail			8	_ А.М.	TENI	(Special observations, etc.,)	
F	61	43	56	T		<u> </u>									-	-				, _,	•
2	61	37	.56			1									-				•		
3	63	32	60				1 1 1 1 1 1 1 1 1														
4	61	35	58						1111111							-					
5	58	34	51																		
	63	32	58												-						
1	61	32	57			ļ							_								
Ŀ	64	.39	59	ļ									_				_			· · · · · · · · · · · · · · · · · · ·	
<u> </u>	66	37	44	14	ļ	· ·											_ <u> -</u> _				
10	46	25	44							· -											
11	47_	27	45																	·	
12	57	40	48	.07	ļ	-				-			\rightarrow				_		_		
	60	32	57	1.17	ļ		+10+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1								-+	<u> </u>			_		
14	68_	37	64																	NO DECORDING	
16		7.0											\rightarrow		-+-				_	NO REWRING	
17	1.69	32	66	· · · ·							_							<u> </u>			
116	66	2/	64														_				
19	67	- 26	4.4	- <u>-</u>														-+		······································	
20	56	30	51															. 			
21	61	19	58									-		\neg	1			\neg			
22	1.5	23	62					9 10 11 1 2 3 4 3	6 7 8 9 IV II						-	-		-+			
23	67	28	66			·					\neg										
24	69	31	61											·							
26	68	32	66				1111111														
26											· `									No ECOLDING	
27	69	28	65																		
28	66	36	60						++++++++++												
29	61	43	.51	_/3			+11+1+1+1	+1111111111												· · · · · · · · · · · · · · · · · · ·	
30	58	32	53	7-															$ \downarrow$		
31												_	_		_		+	\rightarrow	_		
GUN			SUM	15		\geq	CHECK BAR	(For wire-weight) NORM	AL CK. BAR	ŝ	8 2	Slar	June 1	Hail Dam.	Ninds	\times	$\langle \rangle$	$\langle \rangle$	X		
co	NDITION O	RIVER AT	GAGE			L	I I I I I I I I I I I I I I I I I I I			OBSE	AVER		1		. 1	1	•	17			

- . .

STATION (Climalological)	(River Station, I	il dillerent)	MONTH DEC.	19 98-	WS F(ORM E	3-91						U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
STATE	COUNTY	11.4	RIVER	, 1 ,	(12-85	'							NATIONAL WEATHER SERVICE
TIME (local) OF OBSERVATION RIVER	TEMP.	PRECIPITATION	STANDARD TIME IN L	JSE			D	FCO		רב ב		N N I	
Astron	·		ms7	-			- 11					-	Cemia Cedulare Obcentranono
TYPE OF RIVER GAGE	GAGE ZERO	FLOOD STAGE	NORMAL POOL STAG	Ft.									· · · · · · · · · · · · · · · · · · ·
TEMPERATURE F.		PRECIPITATIO	DN		WEAT	HER (C	Calenda	r Day)		R	VER STAG	E	
	24-HR AMOUNTS ALOB.	Draw a straight line (-		ecipitation was	Mark 'X'	for all ty	pes occi	urring	n i				
24 HRS. ENDING		probably occurred uno	bserved.			<u>,</u>	<u> </u>		n abo		GAGE		
OBSERVATION	tins.	A.M.	NOON	P.M.	te .		2	Ē	t froc	TION	AT	NCY	
Щ АТ	ain, r d huu how, i rs. an how, i iii, ice ound				S a	aze	DUDL	ail amag	me of Herer	i no		ENDE	REMARKS
A MAX. MIN. OBSN.	ਛੱਡੇ ਲੱਟ ਲੱਟ ਨੇ				<u> щ</u> т т	0	F	r 63	6 4	Ŭ.	A.M.	7	(Special observations, etc.,)
62 33 37													
12 57 40 63	<u> </u>						┝						· · · · · · · · · · · · · · · · · · ·
61 92 60							-						
62 31 37											<u> </u>		
<u> 61 31 57 </u>							┝━╾┼╸	·				·	NOT VIEW NO
7 57 24 25		Jama A Madada						_	┼╌╌┤				NUT RECERCES
1 10 12 24	┝╍╍╍┥╸┚╍╸┥┚┈╴{					╺┠╌╌┤						·!	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	} <u>}</u>												
10 110 110 110 1							┝──┼╸		+				
11 4/1 15 112											·····		
12 51 11 115		┤┤┤┤╎╷							<u> </u>				
13 51 20 50			╎╎╎╎╎	╅╅╗			-+-		┼╌┨		{		
14 55 10 20						+							
15 60 29 52						1							· · · · · · · · · · · · · · · ·
16 54 27 52												-	
17 27 27 53										-+			
18 61 22 58										-†			
10 59 30 50										-			
104 33 59												-	
21 60 28 36													
22 37 14 34			9 10 11 1 2 3 4	3 6 7 8 9 10 11									· · · · · · · · · · · · · · · · · · ·
23													NOT REICHOP
24 47 14 44													
25													NOT RECERDED
28 55 19 50													
27 58 24 52													
28 61 24 56						ĿĪ							
29 64 31 61	·····												·
» 66 28 63			11111111111111111			<u> ·</u>		_					
31 64 32 52									<u>L</u>	\rightarrow		_	•
gy ^{gyr} Sum	\rightarrow	CHECK BAR (For wire-weight) NOR	MAL CK. BAR	5 3 B	Glaze	Part 1	Vinds	\mid	<	\times	XI	,
CONDITION OF RIVER AT GAGE	l	INDADING	DATE		OBSERVE	R	1,,7		1	.1	1114		· 1 ,11,

· · -

Appendix B

Erosion Pin Data

Equation Descriptions

Equation 1 A= RK(LS)(UM)

A is R is soil loss, tons per acre per year rainfall erosion index soil erodibility Factor slope factor, steepness, and length vegetation factor. K 15 LS 15 1/M 15

2nd Equation : $T_s = \mathcal{A} (V_{q_p})^{\mathcal{B}} KLSCP$

Ys = scaiment yield for the storm in tons K = soil crodibility factor LS = is the topographic factor representing, The combination of Slope length and slope gradient cover and management factor C = crosion control factor P =runoff volume for the storm in acre-fect V =peak discharge of the storm incfs 285 from an experimental watershed £=

B= .56

The Vand go values for the 100 years form are from wilson; Assoc 7, 1983, figure 11.

Givens and estimations used: $acreage: 6 miles^2 \times \frac{640 acres}{1 mile^2} = 3,840 acres.$ runoff: Say 50% inflitration 10% Interception by plants AHYMO runs: Vac-ft } taken from previous Cfs Work of Easterling hAssoc, 1988a, 1988b Molzen-Corbin, 1993 ·estimated Vac-flcfs when no Specific storm years were pro-vided.

		0				<u> </u>							
			Cover that contacts the surface (% ground cover)										
Type and height of raised canopy ^a	Canopy cover ^b (%)	Турес	0	20	40	60	80	95-100					
No appreciable canopy	•	G	0.45	0.20	0.10	0.042	0.013	0.003					
,		W	0.45	0.24	0.15	0.090	0.043	0.011					
Canopy of tall weeds	25	G	0.36	0.17	0.09	0.038	0.012	0.003					
or short brush (0.5 m	• •	W	0.36	0.20	0.13	0.082	0.041	0.011					
fall height)	50	G	0.26	0.13	0.07	0.035	0.012	0.003					
		W	0.26	0.16	0.11 :-	0.075	0.039	110.0					
	75	G	0.17	0.10	0.06	0.031	0.011	0.003					
		W	0.17	0.12	0.09	0.067	0.038	0.011					
Appreciable brush or													
bushes (2 m fall height)	25	G	0.40	0.18	0.09	0.040	0.013	0.003					
		w	0.40	0.22	0.14	0.085	0.042	0.011					
	50	G	0.34	0.16	0.085	0.038	0.012	0.003					
		w	0.34	0.19	0.13	0.081	0.041	0.011					
	75	G	0.28	0.14	0.08	0.036	0.012	0.003					
1		W	0.28	0.17	0.12	0.077	0.040	0.011					
Trees but no appreciable	1945 19												
low brush (4 m fall heigh	it) 25	G	0.42	0.19	0.10	0.041	0.013	0.003					
	· · ·	W	0.42	0.23	0.14	0.087	0.042	0.011					
	50	G	0.39	0.18	0.09	0.040	0.013	0.003					
•		W	0.39	0.21	0.14	0.085	0.042	0.011					
•	75 ·	G ·	0.36	0.17	0.09	0.039	0.012	0.003					
·		w	0.36	0.20	0.13	0.083	0.041	0.011					

TABLE 7.5.C or VM factors for permanent pasture, rangeland,idle land, and grazed woodland

Source: USDA Soil Conservation Service 1977.

Note: All values assume (1) random distribution of mulch or vegetation and (2) mulch of appreciable depth where it exists. Idle land refers to land with undisturbed profiles for at least a period of 3 consecutive years. Also to be used for burned forest land and forest land that has been harvested less than 3 yr ago.

*Average fall height of water drops from canopy to soil surface.

^bPortion of total area surface that would be hidden from vièw by canopy in a vertical projection (a bird's-eye view). ^cG = cover at surface is grass, grasslike plants, decaying compacted duff, or litter at least 2 in. deep;W = cover at surface is mostly broadleaf herbaceous plants (as weeds with little lateral-root network near the surface) and/or undecayed residue.

effective root zone significantly, diminishing the potential of the soil to produce biomass over an extended period of time. The following criteria are used to assign T_e values to a soil series:

1. An adequate rooting depth must be maintained in the soil for plant growth. For shallow soils overlying rock or other restrictive layers, it is important to retain the remaining soil; little soil loss is tolerated. The T_e should be less on shallow soils or those with impervious layers than for soils with good soil depth or for soils with underlying soil materials that can be improved by management practices.

California Contra

A TOTAL

EP-1 Station

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Date	Galvanized	Steel	Steel, Adjusted
9-12-1998	placed	placed	No
10-06-1998	-1 mm erosion	-1mm erosion	
10-08-1998	-2mm	5mm	•
10-13-1998	-1mm	-1mm	
10-22-1998	-1mm	5mm	
11-03-1998	-1.5mm	-1mm	
11-10-1998	-1.5mm	5mm	
11-17-1998	-1.5mm	-2mm	

This station has a strike of N55E and 14° dip. This location is 51 cm to a pedestrian and game trail. It is 270cm to the center of a small natural arroyo that connects from the south into Arroyo 1. A large mature juniper tree is located upstream of this location, which is often the case. Junipers are placed at the headwaters of the arroyos and show a propensity for this location. Junipers have become indicator species for erosion processes in this field area. The vegetation ground cover is 15% and there is 0% rock cover*. The vegetation is black gamma grass, four-wing saltbush, snakeweed, Sand sage, locoweed, and side oats grass. In general the area has a good grass cover and medium sized boulders within the arroyo. The nails are placed directly downslope and sheltered by a clump of grass. Nails are located 6.4 cm apart.

from

*The rock and vegetation cover is assumed for a four-foot square area that contains the nails in the center.

Erosion Pin #1

Sediment yield calculations

MUSLE equation 1 is A is equal to the values R * K * LS* VM

RKLSVMA250.231.40.21.6

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm 100 50 25 10	Alpha 285 285 285 285 285	V ac-ft 113.5 80 60 26	q in cfs 256 224 179.2 480	K 0.23 0.23 0.23 0.23	LS 1:4 1.4 1.4 1.4	C 0.2 0.2 0.2 0.2	P 1 1 1	Ys 5795.48 4421.81 3321.73 3610.86	Acreage 3840 3840 3840 3840	tons/acre 1.509 0.851 0.865 0.940	c:storm 0.015 0.015 0.04 0.08
10 5	285 285	26 12	480 220	0.23 0.23	1.4 1.4	0.2 0.2	.1 1	3610.86 1512.97	3840 3840	0.940 0.394	0.08
2	285	3.24	125	0.23	1.4	0.2	1	529.55	3840	0.138	0.4

Calculations for the annual storm event load:

EP-2 Station

Date	Galvanized	Steel	Steel, Adjusted
9-12-1998	Placed	Placed	No
9-29-1998	Disturbed & replaced	Disturbed & Not replaced	Yes, placed & adjusted +2cm
10-06-1998	-1mm erosion		-2mm erosion
10-08-1998	5mm		-2mm
10-13-1998	Omm		1.9cm
10-22-1998	-1mm		1.65cm
11-03-1998	5mm		1.8cm
11-10-1998	Omm		1.75cm*
11-17-1998	Omm		1.9cm (-1mm)

Description: Strike N75°E, dip 5° degree. The arroyo width is 14'0" feet. Site has low basalt cap rock exposed, with tumbled boulders to the slope base. The vegetation is rabbitbush, spectacle plant, black grama grass, mesquite, \$ and \hbar sage, and four-wing \$ altbush. The nails are placed in an area where they are hidden, due to the close proximity to the main pedestrian trail. Downslope to the pin site is \$ \$ and sage, threeawn grass, and a snakeweed plant. The nails are \$.3cm apart. Vegetation cover is 45% and rock cover is 30%.

Note: these readings record the erosion at each pin at the point in time. This information is not additive or to be summed. The final number is the amount of erosion for that nail for this site. Showing the data through time is presented to show the reader the progress of the erosion or aggradation.

*washer is covered with sand/soil

Erosion Pin # 2

Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K	LS	VM	A ²
25	0.3	4.2	0.012	0.378

MUSLE equation is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	a in cfs	K	LS	С	Ρ	Ys	Acreage	tons/acre	c:storm	
100	285	113.475	256	0.3	4.2	0.012	1	1360.68	3840	0.354	0.015	
50	285	80	224	0.3	4.2	0.012	1	1038.16	3840	0.270	0.015	
25	285	60	179.2	0.3	4.2	0.012	1	779.89	3840	0.203	0.04	
10	285	26	480	.0.3	4.2	0.012	1	847.77	3840	0.221	0.08	
5	285	12	220	0.3	4.2	0.012	1	355.22	3840	0.093	0.2	
2	285	3.24	125	0.3	4.2	0.012	1	124.33	3840	0.032	0.4	

Calculations for the annual storm event load:

0.06129

Piedras Marcadas Watershed

EP-3 Station

Date	Galvanized	Steel	Steel, Adjusted
9-12-1998	Placed	Placed	No
9-17-1998	-1.15cm	-1.15cm	
9-29-1998	-5mm	-6mm	
10-08-1998	-7mm erosion Head exposed, no washer	-6mm Washer not exposed	
10-13-1998	Flush with head +1mm	-1.5mm	Ţ
10-22-1998	Surface flush w/ Bottom of head	Surface flush w/ Bottom of head	
11-03-1998	-2.0mm*	-1mm*	
11-10-1998	-2mm	-2.5mm	
11-17-1998	+1mm*	+2mm*	

Description: Strike N345°E, dip 19°, length 68'. The vegetation at this site is Side-oats grama, Indian ricegrass, white puffy grass, snakeweed, and four wing saltbush. The overall vegetative cover is 50%. The rock cover is 15% and is basalt. The nails are 6.6cm apart.

*washer is buried

Erosion Pin # 3

Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K	LS	VM	 А
25	0.23	0.4	0.038	0.0874

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	q in cfs		ĸ	LS	С	P	Ys	Acreage	tons/acre	c:storm
100	285	113.475	256		0.23	0.4	0.038	1	314.61	3840	0.082	0.015
50	285	80	224	· · ·	0.23	0.4	0.038	1	240.04	3840	0.063	0.015
25	285	60	179.2		0.23	0.4	0.038	1	180.32	3840	0,047	0.04
10	285	26	480		0.23	0.4	0.038	- 1	196.02	3840	0.051	0.08
5	285	12	220		0.23	0.4	0.038	.1	82.13	3840	0.021	0.2
2	285	3.24	125		0.23	0.4	0.038	1	28.75	3840	0.007	0.4

Calculations for the annual storm event load:

0.015401

Piedras Marcadas Watershed

EP-4 Station

Date	Galvanized	Steel	Steel, Adjusted
9-12-1998	Placed	Placed	No
9-29-1998	-2mm		
10-08-1998	-3mm erosion	-1mm erosion	
10-13-1998	-5mm	-2mm	
10-22-1998	-4mm	-1mm	
11-03-1998	-4mm	-2mm	
11-10-1998	-3mm	-1.5mm	
11-17-1998	-4mm	-2mm	

Description: Strike N147°E with a 9° dip. The vegetation cover is good with 20% coverage. The following vegetation is found in this location: mesquite, snakeweed, Four-wing saltbush, & and sage, Side-oats grama. In general this area is located in a broad arroyo with a juniper at the base. There are basalt boulders on each side of the arroyo, anchoring this position. There are also small to medium boulders strewn down the slope; the basalt rocks make up 15% of the ground coverage. No dirt roads, pedestrian trails or strong game trails are associated with this location on the mesa top. However, from the bottom of the escarpment, there is a pedestrian trail that comes within 21'4" feet of this nail site. The nails are place 6 cm apart.

Erosion Pin # 4 Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	К	LS	VM	A
25	0.34	4.2	0.09	3.213

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

							·						,
S	orm	Alpha	V ac-ft	a in cfs		K	LS	С	P	Ys	Acreage	tons/acre	c:storm
-	100	285	113,475	256	• *	0.34	4.2	0.09	1	11565.76	3840	3.012	0.015
	50	285	80	224		0.34	4.2	0.09	1	8824.39	3840	2.298	0.015
	25	285	60	179.2	1.4	0.34	4.2	0.09	1	6629.02	3840	1.726	0.04
	10	285	26	480	, in the second s	0.34	4.2	0.09	1	7206.02	3840	1.877	0.08
	5	285	12	220		0.34	4.2	0.09	1	3019.35	3840	0.786	0.2
	2	285	3.24	125		0.34	4.2	0.09	1	1056.79	3840	0.275	0,4

Calculations for the annual storm event load:

0.566168

EP-5 Station

Date	Galvanized	Steel	Steel, Adjusted Raised 2 cm up
9-12-1998	Placed	Placed	Yes
9-29-1998	+5mm buried		-4mm (1.6cm)
10-08-1998	-3.5mm Head only		-4.5mm
	exposed		
10-13-1998	+2mm above		-4mm
	nead	· · · · · · · · · · · · · · · · · · ·	
10-22-1998	+5mm buried		-3mm
	head		
11-03-1998	+2.5mm		-3mm*
·	Buried head		
11-10-1998	+4mm head		+6mm head buried
	buried		
11-17-1998	+4mm buried		Head exposed only. 3mm
	head		to buried washer

* Denotes washer buried

Description: Strike N111°E, dip 20°, length 64'8". The unconsolidated sand is well-sorted and light tan in color. This site is located proximate to large boulders, with a steep sand slope vegetated with snakeweed, Sand sage, and Indian Ricegrass directly upslope of the nails. Vegetative cover downslope is Sand sage. The dirt road at the toe of the slope is 442 feet away. A game trail exists downslope of the nail site at 90cm to the east. Vegetative cover is 20% and rock cover is 30%. There appears to be creatures that live within the boulder areas. The nails are 5cm apart,

Erosion Pin # 5

Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K K	LS	VM	A
25	0.35	. 1.4	0.09	1.1025

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

			• •			•					
Alpha	V ac-ft	q in cfs		K	LS	С	Р	Ys	Acreage	tons/acre	c:storm
285	113 475	256		0.35	1.4	0.09	1	3968.64	3840	1.034	0.015
285	80	224		0.35	1.4	0.09	. 1	3027.98	3840	0.789	0.015
285	60	179.2		0.35	1.4	0.09	1	2274.66	3840	0.592	0.04
285	26	480		0.35	1.4	0.09	1	2472.66	3840	0.644	0.08
200	10	220		0.00	1 4	0.09	1	1036.05	3840	0.270	0.2
200	12	405		0.00	1.7	0.00	1	362.63	3840	0.094	0.4
200	3.24	125		0.35	1.4	0.00	'	002.00	0010		
	Alpha 285 285 285 285 285 285 285	AlphaV ac-ft285113.475285802856028526285122853.24	AlphaV ac-ftq in cfs285113.4752562858022428560179.228526480285122202853.24125	AlphaV ac-ftq in cfs285113.4752562858022428560179.228526480285122202853.24125	AlphaV ac-ftq in cfsK285113.4752560.35285802240.3528560179.20.35285264800.35285122200.352853.241250.35	AlphaV ac-ftq in cfsKLS285113.4752560.351.4285802240.351.428560179.20.351.4285264800.351.4285122200.351.42853.241250.351.4	AlphaV ac-ftq in cfsKLSC285113.4752560.351.40.09285802240.351.40.0928560179.20.351.40.09285264800.351.40.09285122200.351.40.092853.241250.351.40.09	AlphaV ac-ftq in cfsKLSCP285113.4752560.351.40.091285802240.351.40.09128560179.20.351.40.091285264800.351.40.091285122200.351.40.0912853.241250.351.40.091	AlphaV ac-ftq in cfsKLSCPYs285113.4752560.351.40.0913968.64285802240.351.40.0913027.9828560179.20.351.40.0912274.66285264800.351.40.0912472.66285122200.351.40.0911036.052853.241250.351.40.091362.63	AlphaV ac-ftq in cfsKLSCPYsAcreage285113.4752560.351.40.0913968.643840285802240.351.40.0913027.98384028560179.20.351.40.0912274.663840285264800.351.40.0912472.663840285122200.351.40.0911036.0538402853.241250.351.40.091362.633840	AlphaV ac-ftq in cfsKLSCPYsAcreagetons/acre285113.4752560.351.40.0913968.6438401.034285802240.351.40.0913027.9838400.78928560179.20.351.40.0912274.6638400.592285264800.351.40.0912472.6638400.644285122200.351.40.0911036.0538400.2702853.241250.351.40.091362.6338400.094

Calculations for the annual storm event load:

EP-6 Station

Date	Galvanized	Steel	Steel, Adjusted
9-12-1998	Placed	Placed	Yes (2.0cm)
9-29-1998	5mm		+5mm (2.5cm)
10-08-1998	+1mm Head buried		+2.55cm
10-13-1998	+1mm above head		2.55cm
10-22-1998	-1mm		2.90cm
11-03-1998	: -1mm		2.90cm
11-10-1998	-1mm*		2.90cm
11-17-1998	+1mm		3.0cm

Description: Strike N140°E, dip 8°, length 49'10"". This site is within a broad, very sandy, arroyo with a U shape. The unconsolidated sand is well-sorted and light tan in color. There is a lack of a basalt cap in this area. There is less vegetative cover than the surrounding area, with 20%. The vegetation consists of: locoweed, Sand Sage, Broom dalea, mustard green, and snakeweed. The vegetation provides a strong anchor in this arroyo. Most bushes are tall (3.5'to 4.5') and are of similar height, hence also a probably the same age. There are no dirt roads at the mesa top, but game trails do exist. There is however, a pedestrian path at the slope terminus. This site is at a break in the slope, at a level spot, and downslope within a natural arroyo.

*indicates that washer is buried

Erosion Pin #6

Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K	LS	VM	· A
25	0.49	0.9	0.13	1.43

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	q in cfs	K	LS	С	Ρ	Ys	Acreage	tons/acre	c:storm
100	285	113,475	256	0.49	0.9	0.13	1	5159.23	3840	1.344	0.015
50	285	80	224	0.49	0.9	0.13	1	3936.37	3840	1.025	0.015
25	285	60	179.2	0.49	0.9	0.13	1	2957.06	3840	0.770	0.04
10	285	26	480	0.49	0.9	0.13	1	3214.45	3840	0.837	0.08
5	285	12	220	0.49	0.9	0.13	1	1346.87	3840	0.351	0.2
2	285	3.24	125	0.49	0.9	0.13	1	471.41	3840	0.123	0.4

Calculations for the annual storm event load:

0.252555

Piedras Marcadas Watershed

EP-7 Station

Date	Galvanized	Steel	Steel, Adjusted
9-29-1998	Placed	Placed	Yes, +2cm
10-08-1998	Omm	· · · · · · · · · · · · · · · · · · ·	+2.2cm
10-13-1998	-2mm		1.95cm
10-22-98	5mm		1.90cm
11-03-1998	-1mm		1.90cm
11-10-1998	-1mm		1.80cm
11-17-1998	-1mm		1.90cm*

Description: Strike N350°E, 15°, 12'8" length. This arroyo is v-shaped with ledges below the nail location that contain concentrations of petroglyphs. The nail site is 6'2" to a game/pedestrian trail. The rock cover is 0%. The vegetation is 30%. The vegetation is snakeweed and rice grass. In general this area is rocky with basalt cap rock in ledges. The nails are 6.4cm apart.

*implies washer is buried

Erosion Pin # 7

Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	к	LS	VM.	Α
25	0.38	1.4	0.1	_1.3

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	q in cfs	K	LS	Ċ	P	Ys	Acreage	tons/acre	c:storm
100	285	113.475	256	0.38	1.4	0.1	- 1	4787.57	3840	1.247	0.015
50	285	80	224	0.38	1.4	0.1	1	3652.80	3840	0.951	0.015
25	285	60	179.2	0.38	1.4	0.1	1	2744.04	3840	0.715	0.04
10	285	26	480	0.38	1.4	0.1	1	2982.89	3840	0.777	0.08
. 5	285	12	220	0.38	1.4	0.1	1	1249.84	3840	0.325	0.2
2	285	3.24	125	0.38	1.4	0.1	1	437.45	3840	0.114	0.4

Calculations for the annual storm event load:

0.234361

Piedras Marcadas Watershed

EP-8 Station

Date	Galvanized	Steel	Steel, Adjusted
9-12-1998	Placed	Placed	Νο
9-24-1998	-1.0mm	-4.5mm	
9-29-1998	-1.0mm	-0.5mm	
10-08-1998	-1.5mm	-4.0mm	
10-13-1998	-2.5mm	-4.0mm	L s
10-13-1998	-2.5mm	-4.0mm	
10-22-1998	-1.5mm	-3.0mm	
11-03-1998	-1.0mm	-2.0mm	
11-10-1998	2.5mm	-2.0mm	
11-17-1998	-2.0mm	-2.0mm	

Description: Strike N135°E, dip 3°, arroyo length across is 36'1". This site is in a protected area within a decided water pathway. This arroyo has V-shaped morphology. The basaltic cap rock is at ground level, and the ground cover of rock is 60%. The vegetation cover is 15% and consists of Sand sage, snakeweed, and puffy grass. This site is 2'9" to a pedestrian trail. It is also 100'22" feet to a fence with an associated pedestrian trail and one of the few dirt roads of this area. The site in general is at the headwaters of the southern arroyo joining arroyo 2. The nails are 11.4cm apart.

Erosion Pin # 8 Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	К	LS .	· VM	A
25	0.46	0.7	0.013	0.105

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	a in cfs	к	LS	C	P	Ys	Acreage	tons/acre	c:storm
100	285	113.475	256	0.46	0.7	0.013	1	376.71	3840	0.098	0.015
50	285	80	224	0.46	0.7	0.013	1	287.42	3840	0.075	0.015
25	285	60	179.2	0.46	0.7	0.013	1	215.91	3840	0.056	0.04
10	285	26	480	0.46	0.7	0.013	` 1	234.71	3840	0.061	0.08
5	285	12	220	0.46	0.7	0.013	1	98.34	3840	0.026	0.2
2	285	3.24	125	0.46	0.7	0.013	1	34.42	.3840	0.009	0.4

Calculations for the annual storm event load:

EP-9 Station

Date	Galvanized	Steel	Steel, Adjusted
9-12-1998	Placed	Placed	No
9-24-1998	Adjusted up 2cm	-4.0mm	
9-29-1998	2.1cm	-6.5mm	
10-08-1998	1.9cm	-5.0mm	
10-13-1998	1.95cm	-6.0mm	
10-22-1998	-1.7cm	-6.3mm	
11-03-1998	Buried head 1mm	-1.5mm	
11-10-1998	Head buried 4mm	Omm	
11-17-1998	Buried +5mm	-1.0mm	

Description: Strike N137°E, dip 9.5°, length 14'2". This location is 50'10" to the edge of the basalt cap rock; the nails are 12' down from the measured length of the arroyo. This nail site is within a game trail. There is the question that the game trail could be effecting the erosion or aggradation at this site. The nails are 4.6cm apart. This site is on a flat spot in the arroyo and debris is probably aggrading at this spot. This site is within the thalweg, somewhat v-shaped below and u-shaped above the nail site, which was chosen for its nickpoint location. The vegetation consists of Sand sage, mesquite, abundant Indian Ricegrass, and snakeweed. This area is generally grassy with very small (1-11/2 foot) Sand sage. The vegetation cover is 40%. The basalt rock cover is also 40%.

Erosion Pin # 9 Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K	LS	VM	Α.
25	0.32	1.4	0.013	0.146

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

St	orm	Alpha	V ac-ft	a in cfs	ĸ	LS	C	P	Ys	Acreage	tons/acre	c:storm
÷.	100	285	113,475	256	0.32	1.4	0.013	1	524.11	3840	0.136	0.015
	50	285	80	224	0.32	1.4	0.013	1	399.89	3840	0.104	0.015
	25	285	60	179.2	0.32	1.4	0.013	1	300.40	3840	0.078	0.04
	10	285	26	480	0.32	1.4	0.013	1	326.55	3840	0.085	0.08
	5	205	12	220	0.32	1.4	0.013	1	136.82	3840	0.036	0.2
	2	285	3 24	125	0.32	1.4	0.013	1	47.89	3840	0.012	0.4
	~	200	₩ . A . T									

Calculations for the annual storm event load:

EP-10 Station

Date	Galvanized	Steel	Steel, Adjusted
9-12-1998	Placed	Placed	No
9-29-1998	Re-placed		Placed
10-08-1998	-1mm		2.2cm
10-13-1998	N/A		N/A
10-22-1998	-2mm		2.2cm
11-03-1998	-1.5mm		2.0cm
11-10-1998	-2.5mm		2.0cm*
11-17-1998	-2mm		1.95cm

This site has a strike of N189E and 3° dip. These nails are placed upslope from a small four-wing saltbush, grasses, snakeweed, Side-oat grama. In general this area is a broad U-shaped arroyo with vegetation cover of 30%. The basalt is small cobble size to small boulders of basalt debris. This rock coverage is 15%. This site is downslope from the basalt foundation. The nails are 7.2 cm apart. This site is 97'5" from a pedestrian trail and 59'6" to a paleo (?) or historic constructed basalt wall.

Erosion Pin # 10 Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R·	. K	LS	VM	A
25	0.38	0.4	0.1	0.38

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	a in cfs	к	LS	С	Ρ	Ys	Acreage	tons/acre	c:storm
100	285	113,475	256	0.38	0.4	0.1	1.	1367.88	3840	0.356	0.015
50	285	80	224	0.38	0.4	0.1	. 1	1043.66	3840	0.272	0.015
25	285	60	179.2	0.38	0.4	0.1	1	784.01	3840	0.204	0.04
10	285	26	480	0.38	0.4	0.1	1	852.25	3840	0.222	0.08
5	285	12	220	0.38	0.4	0.1	1	357.10	3840	0.093	0.2
2	285	3.24	125	0.38	0.4	0.1	1	124.99	3840	0.033	0.4

Calculations for the annual storm event load:

0.06696

Piedras Marcadas Watershed

EP-11 Station

Date	Galvanized	Steel, Adjusted	
9-12-1998	Placed	Placed	Νο
9-29-1998	+3.5mm (+2.5 above head)	-2.5mm	
10-08-1998	+1.5mm above head	Buried 3mm above head	
10-13-1998	N/A	N/A	
10-22-1998	-6.0mm	-4.5mm	
11-03-1998	-8.0mm	-3.0mm	
11-10-1998	-7.0mm	3.5mm	
11-17-1998	-6.0mm	-4.0mm	

This site has a strike of N191 E and a dip of 12. This site is in general barren with 10% vegetation cover. The vegetation consists of spring mustard, Indian rice grass, locoweed, Sand sage, snakeweed, and Side-oats grama. This arroyo is has a broad shape with basalt ledges to the west and east. This site lies along the ridge that separates this arroyo system with the Piedras Marcadas arroyo system to the north. The nails are 9.5cm apart. It is 26'10" to the north for a popular pedestrian and game trail.

Erosion Pin # 11 Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K	LS	VM	Α
25	0.38	0.3	0.325	0.926

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	g in cfs		` К	LS	C .	Ρ	Ys	Acreage	tons/acre	c:storm
100	285	113.475	256	•	0.38	0.3	0.325	1	3334.20	384Ô	0.868	0.015
50	285	80	224		0.38	0.3	0.325	. 1 ·	2543.91	3840	0.662	0.015
25	285	60	179.2		0.38	0.3	0.325	1	1911.03	3840	0.498	0.04
10	285	26	480		0.38	0.3	0.325	1	2077.37	3840	0.541	0.08
5	285	12	220		0.38	0.3	0.325	1	870.42	3840	0,227	0.2
2	285	3.24	125		0.38	0.3	0.325	1	304.65	3840	0.079	0.4

Calculations for the annual storm event load:

0.16322

Piedras Marcadas Watershed

Appendix C

Erosion Bridge Data, measured in millimeters

Givens and estimations used: vacreage: 6 miles² x <u>640 acres</u> = 3,840 acres. runoff: Say 50% inflitration by plants AHYMO runs: Vac-ft & taken from previous Cfs Work of Easterling SASSOC 1988a, 1988b Molzen-Corbin, 1993 estimated V ac-f 1 cfs when no Specific storm years were pro-vided.

Table B.1. Soil Erodibility Factor K Based on USDA Texture.							
Estimated K Factor ¹							
USDA Texture	Normal ²	Gravelly ²	Very Gravelly ²	Extremely Gravelly ²			
Coarse Sand	0.10	0.05	0.02	0.02			
Sand	0.10	0.05	0.02	0.02			
Fine Sand	0.17	0.10	0.05	0.02			
Very Coarse Sand	0.10	0.05	0.02	0.02			
Loamy Coarse Sand	0.15	0.10	0.05	0.02			
Loamy Sand	0.17	0.10	0.05	0.02			
Loamy Fine Sand	0.20	0.10	0.05	0.02			
Loamy Very Fine Sand	0.49	0.28	0.15	0.05			
Coarse Sandy Loam	0.20	0.10	0.05	0.02			
Sandy Loam	0.24	0.15	0.10	0.05			
Fine Sandy Loam	0.28	0.15	0.10	0.05			
Very Fine Sandy Loam	0.55	0.28	0.17	0.10			
Loam	0.37	0.20	0.10	0.05			
Silt Loam	0.43	0.24	0.15	0.05			
Silt	0.64	0.37	0.20	0.10			
Sandy Clay Loam	0.32	0.15	0.10	0.05			
Clay Loam	0.32	0.15	0.10	0.05			
Silty Clay Loam	0.37	0.20	0.10	0.05			
Sandy Clay	0.32	0.15	0.10	0.05			
Silty Clay	0.24	0.15	0.10	0.05			
Clay	0.20	0.10	0.05	0.02			

AMAFCA preference K factors.

¹Where a Soils Survey Interpretation Sheet, SOILS-5, is available for a soil, the K Factor listed will be more accurate than the factor provided by this table.

²Total rock fragments are included in these figures, not just gravel. Normal = 0-15 percent, gravely = 15-35 percent, very gravely = 35-60 percent, and extremely gravely = over 60 percent.

EROSION BRIDGE STATION No. 1 N56°E, 13°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 11.50 11.10 10.60 10.70 10.50 11.20 11.30 11.00 10.80 10.50 10.40 10.50 10.20 10.70 10.90 10.20 9.80 10.60 10.60 11.60 214.70 10.735 10/22/98 12.10 11.60 11.05 10.90 10.80 11.20 11.20 11.00 10.65 10.30 10.20 10.50 10.20 10.50 10.95 10.35 10.00 10.60 10.90 11.00 216.00 10.8 11/3/98 11.40 11.20 10.90 10.80 10.50 11.00 10.90 10.80 10.40 10.20 10.20 10.10 9.90 10.40 10.80 10.00 9.70 10.40 10.50 10.90 211.00 10.55 11/10/98 11.10 11.00 10.60 10.50 10.30 10.70 10.80 10.50 10.20 10.00 9.80 9.90 9.80 10.20 10.20 10.00 9.70 10.30 10.40 11.00 207.00 10.35 11/22/98 11.20 11.30 10.90 10.70 10.50 11.00 10.90 10.70 10.50 10.20 10.00 10.20 10.00 10.40 10.80 10.50 9.90 10.50 10.60 10.90 211.70 10.585 0.30 -0.20 -0.30 0.00 0.00 0.20 0.40 0.30 0.30 0.30 0.40 0.30 0.20 0.30 0.10 -0.30 -0.10 0.10 0.00 0.70 3.00 Δ 0.15 AVG 11.46 11.24 10.81 10.72 10.52 11.02 11.02 10.80 10.51 10.24 10.12 10.24 10.02 10.44 10.73 10.21 9.82 10.48 10.60 11.08 0.272 0.168 0.168 0.104 0.112 0.144 0.184 0.16 0.172 0.128 0.176 0.208 0.144 0.128 0.212 0.172 0.104 0.104 0.12 0.208 AVG DEV
Sediment yield calculations

MUSLE equation 1 is A is equal to the values R * K * LS* VM

VM R κ LS А 4.1 0.17 0.24 4 25

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	g in cfs	К	LS	С	P.	Ys	Acreage	tons/acre	c:storm
100	285	113.5	256	0.17	.4	0.17	1	10403.06	3840	2.709	0.015
50	285	80	224	0.17 [.]	4	0.17	1	7937.29	3840	0.851	0.015
25	285	60	179.2	0.17	.4	0.17	1.	5962.61	3840	1.553	0.04
10	285	26	480	0.17	4	0.17	1	6481.61	3840	1.688	0.08
. 5	285	12	220	0.17	4	0.17	1	2715.82	3840	0.707	0.2
2	285	3.24	125	0.17	4	0.17	1	950.56	3840	0.248	0.4

Calculations for the annual storm event load:

0.49101

EROSION BRIDGE STATION No. 2 *N149°E, 17°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 32.00 31.30 30.90 30.90 30.90 30.20 30.60 32.40 33.30 34.10 34.90 36.40 37.00 37.10 37.00 36.90 38.10 38.70 38.80 38.60 39.40 698.60 34,93 10/22/98 32.00 31.80 31.70 31.60 31.10 32.00 33.00 33.70 34.30 35.70 36.30 37.10 36.80 37.20 37.50 38.50 38.70 38.30 38.60 39.20 705.10 35.255 11/3/98 31.80 31.90 31.10 32.30 31.20 32.30 33.10 33.70 34.10 35.70 36.80 37.50 37.70 38.30 38.70 38.40 39.00 39.60 39.10 40.00 712.30 35.615 11/10/98 31.20 31.40 31.40 32.40 33.10 33.80 34.30 35.70 37.00 37.30 37.80 38.00 37.80 38.80 39.10 39.00 39.40 708.40 35,42 11/17/98 31.60 31.90 31.70 32.30 31.10 32.70 33.50 38.80 34.60 35.90 36.90 37.40 37.90 38.30 38.50 38.40 39.10 39.30 39.20 39.70 718.60 35.93 Δ 0.40 -0.60 -0.80 -1.20 -0.90 -2.10 -1.10 -5.50 -0.50 -1.00 -0.50 -0.40 -0.80 -1.30 -1.60 -0.30 -0.40 -0.50 -0.60 -0.30 -20.00 -1 AVG 31.72 31.58 31.36 31.80 30.90 32.00 33.02 34.66 34.28 35.58 36.68 37.26 37.46 37.76 37.88 38.34 38.86 39.02 38.90 39.54 708.60 AVG DEV 0.256 0.344 0.288 0.44 0.28 0.56 0.256 1.656 0.144 0.272 0.264 0.168 0.408 0.528 0.576 0.112 0.152 0.376 0.24 0.248 - 7.57

Highlighted areas correspond to dog or coyote paw imprints

Sediment yield calculations

MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K	LS	: VM	• . A
25	0.15	6.8	0.2	. 5.1

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	q in cfs		к	LS	С	P	Ys	Acreage	tons/acre	c:storm
100	285	113.475	256		0.17	6.8	0.2	1	20806.12	3840	5.418	0.015
50	285	80	224	·	.0.17	6.8	0.2	· 1	15874.57	3840	4.134	0.015
25	285	60	179.2	*	0.17	6.8	0.2	1	11925.23	3840	3.106	0.04
10	285	26	480	÷.,	0.17	6.8	0.2	1	12963.22	3840	3.376	0.08
5	285	12	220		0.17	6.8	0.2	1	5431.64	3840	1.414	0.2
2	285	3.24	125		0.17	6.8	0.2	1	1901.11	3840	0.495	0.4

Calculations for the annual storm event load:

0.93723

EROSION BRIDGE STATION No. 3 N109°E, 16°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 24,50 23,40 23,90 24,00 22,40 20.80 18.20 18.30 16.40 17.30 17.70 17.70 17.00 16.60 16.40 :16.00 16.60 7.90 0.395 22.60 22.60 21.60 10/22/98 24.10 24.20 24.30 21.20 19.20 18.30 19.00 18.80 18.40 17.50 16.80 16.50 15.90 16.10 16,30 7.80 0.39 23.40 23.60 23.40 22.80 22.00 11/3/98 19.10 17.90 17.40 17.80 7.90 0.395 24.10 24.00 24.30 22.90 22.70 22.30 21.90 21.60 18.20 17.90 17.40 16.80 16.40 16.00 16.00 16.20 11/10/98 24.40 24.50 24.50 23.40 23.40 22.80 22.40 22.20 20.40 19.10 17.40 17.90 18.30 18.30 17.50 16.70 15.90 16.20 16.30 8.10 0.405 16.90 11/17/98 24.40 24.20 24.40 23.50 23.30 22.70 22.30 22.30 20.50 19.20 17.60 18.10 18.60 18.40 17.50 17.10 16.70 16.20 16.60 16.40 8.00 0.4 Δ 0.30 -1.00 0.70 0.20 -0.10 -0.01 0.10 -0.80 -0.50 0.50 -0.90 -0.10 0.30 -0.70 -1.70 -1.30 -0.70 0.20 -0.10 -0.10 0.20 -0.60 AVG 7.94 24.30 24.06 20.40 18,72 17.80 17.84 17.52 16,92 16.58 16.36 24,28 23.44 23.08 22.76 22.40 21.94 18.24 18.14 16.08 16.18 AVG DEV 0.16 0.288 0.152 0.248 0.424 0.272 0.24 0.272 0.52 0.536 0.4 0.592 0.392 0.272 0.072 0.104 0.104 0.176 0.176 0.112 0.05

highlighted areas indicates dead Indian Rice grass mound

Sediment yield calculations

MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K	LS	VM	A
25	0.45	1.9	0.13	2.77875

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	q in cfs		К	LS	С	P	Ys	Acreage	tons/acre	c:storm
100	285	113.475	256		0.17	1.9	0.13	1	3778.76	3840	0.984	0.015
50	285	80	224		0.17	1.9	0.13	.1 .	2883.10	3840	0.751	0.015
25	285	60	179.2		0.17	1.9	0.13	1	2165.83	3840	0.564	0.04
10	285	26	480	•	0.17	1.9	0.13	1	2354.35	3840	0.613	0.08
5	285	12	220		0.17	1.9	0.13	1	986.48	3840	0.257	0.2
2	285	3.24	125		0.17	1.9	0.13	1	345.28	3840	0.090	0.4

Calculations for the annual storm event load:

0.184978

EROSION BRIDGE STATION No. 4 N340°E, 14°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 26.20 25.60 23.90 22.50 21.60 21.10 19.90 18.40 17.70 17.90 18.20 18.00 17.50 17.20 16.50 14.90 13.70 13.10 9.60 9.00 362,50 0.45 10/22/98 25.80 24.50 23.55 22.00 21.40 20.15 18.00 17.90 17.65 17.60 17.35 17.20 16.85 16.35 15.00 14.20 12.70 9,90 8,20 7.60 343.90 0.38 11/3/98 24.70 24.00 22.70 22.00 21.10 19.50 18.10 17.80 17.60 18.10 17.30 16.90 16.30 16.20 15.10 13.90 12.40 9.80 8.10 7.70 339.30 0.385 11/10/98 25.00 23.30 22.00 21.60 20.30 19.10 17.40 17.10 17.10 16.70 16.80 16.40 15.70 15.30 14.60 13.50 12.20 9.70 8.80 7.60 330,20 0.38 11/17/98 25.50 23.60 22.40 22.00 21.10 20.30 18.20 17.70 17.70 17.80 17.50 17.00 16.50 15.90 15.40 14.00 12.50 10.00 8.20 7.80 341.10 0.39 Δ 0.70 2.00 1,00 1,30 1.10 0.90 1.50 0.50 0.50 0.80 1.70 0.70 0.00 0.10 0.70 1.00 1.20 3.10 1.40 1.20 21.40 0.06 AVG 25.44 24.20 22.91 22.02 21.10 20.03 18.32 17.78 17.55 17.62 17.43 17.10 16.57 16.19 15.32 14.10 12.70 10.50 8.58 7.94 343.40 AVG DEV 0.472 0.68 0.652 0.192 0.32 0.584 0.632 0.304 0.18 0.376 0.336 0.4 0.484 0.472 0.504 0.36 0.4 1.04 0.496 0.424 9.31

Erosion Pin # 4

Sediment yield calculations

MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	ĸ	LS	VM	Α
25	0.12	0.9	0.1	0.27

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	q in cfs	•	ĸ	LS	C	Ρ	Ys	Acreage	tons/acre	c:storm
100	285	113.475	256		0.17	0.9	0.1	1	1376.88	3840	0.359	0.015
50	285	. 80	224		0.17	0.9	0.1	1	1050,52	3840	0.274	0.015
25	285	60	179.2		0.17	0.9	0.1	<u>1</u>	789.17	3840	0.206	0.04
10	285	[·] 26	480		0.17	0.9	·· 0.1	1	857.86	3840	0.223	0.08
.5	285	12	220		0.17	0.9	0.1	1	359.45	3840	0.094	0.2
2	285	3.24	125		0.17	0.9	0.1	1	125.81	3840	0.033	0.4

Calculations for the annual storm event load:

0.067401

REBAR BRIDGE STATION No. 5 N14°E, 19°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 13.00 13.10 12.90 12.80 13.20 12.60 12.40 11.70 11.75 11.90 11.90 11.90 12.20 12.10 11.90 11.30 11.00 10.30 10.10 9.70 237.75 11.888 10/22/98 12.60 13.00 13.00 13.00 13.20 12.60 11.90 11.80 11.90 11.80 11.90 12.20 12.20 12.20 11.90 10.50 9.80 9.50 237.20 11.86 11/3/98 13.10 13.60 13.20 13.50 13.40 12.70 12.80 11.70 11.70 11.60 11.90 12.30 12.10 11.80 11.40 11.80 10.60 9.50 240.50 12.025 9,90 11/10/98 12.80 12.70 12.90 12.90 13.10 12.40 11.50 11.50 11.60 11.20 11.60 11.70 12.10 12.10 11.80 11.30 10.60 9.90 9.40 9.40 232.50 11.625 11/17/98 12.90 12.80 12.70 12.80 13.00 12.30 11.50 11.60 11.70 11.40 11.70 11.80 12.10 11.90 11.80 11.20 10.70 10.20 9,80 9.40 233.30 11.665 Δ 4.45 0.2225 0.10 0.30 0.20 0.00 0.20 0.30 0.90 0.10 0.05 0.50 0.20 0.10 0.10 0.20 0.10 0.10 0.30 0.10 0.30 0.30 AVG 12.88 13.04 12.94 13.00 13.18 12.52 12.02 11.66 11.73 11.60 11.78 11.84 12.18 12.08 11.84 11.36 11.00 10.30 9.50 236.25 9.80 AVG DEV 0.144 0.248 0.128 0.2 0.104 0.136 0.464 0.088 0.076 0.24 0.104 0.072 0.064 0.072 0.048 0.112 0.32 0.2 0.16 0.08 3.06

Sediment yield calculations

MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K	LS	VM	Α ·
25	0.45	7.2	0.17	13.77

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	a in cfs	•	к	LS	C	P	Ys	Acreage	tons/acre	c:storm
100	285	113 475	256		0.17	7.2	0.17	1	18725.51	3840	4.876	0.015
50	285	80	224		0.17	7.2	0.17	~ 1	14287.11	3840	3.721	0.015
25	285	60	179.2		0.17	7.2	0.17	1	10732.70	3840	2.795	0.04
10	285	26	480		0.17	7.2	0.17	· 1	11666.90	3840	3.038	0.08
5	285	12	220		0.17	7.2	0.17	1	4888.47	3840	1.273	0.2
2	285	3 24	125		0.17	7.2	0.17	1	1711.00	3840	0.446	0.4

Calculations for the annual storm event load:

0.916652

REBAR BRIDGE STATION No. 6 N182°E, 8°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 11.60 12.70 13.70 14.00 15.10 15.10 14.65 15.40 435 16.70 17.20 17.30 18.20 19.80 21.00 20.90 21.05 19.55 21.50 22.90 342.5 17.125 10/22/98 11.50 12.80 14.00 14.60 15.20 15.10 15.30 15.40 16.50 16.90 17.00 17.70 18.40 19.70 20.70 20.40 20.80 19.60 21.10 21.40 344.1 17.205 11/3/98 11.50 11.60 13.80 13.90 15.10 15.10 14.80 15.30 13.90 16.90 16.80 17.70 18.40 20.70 20.80 20.50 20.90 19.50 21.00 21.90 340.1 17.005 11/10/98 11.80 11.90 13.90 14.00 15.00 15.20 15.20 15.40 14.60 16.70 16.90 17.30 18.00 19.70 20.50 20.90 20.80 19.40 21.00 21.30 16.975 339.5 11/17/98 11.50 12.40 13.80 14.10 15.00 15.00 14.60 15.20 14.60 16.70 16.90 17.30 17.80 19.60 20.80 20.80 20.80 19.50 20.80 22.00 339.2 16.96 Δ 0.10 0.30 -0.10 -0.10 0.10 0.10 0.05 0.20 -0.45 0.00 0.30 0.00 0.40 0.20 0.20 0.10 0.25 0.05 0.70 0.90 0.165 3.3 AVG 11.58 12.28 13.84 14.12 15.08 15.10 14.91 15.34 14.75 16.78 16.96 17.46 18.16 19.90 20.76 20.70 20.87 19.51 21.08 21.90 341.1 AVG DEV 0.096 0.424 0.088 0.192 0.064 0.04 0.272 0.072 0.7 0.096 0.112 0.192 0.208 0.32 0.128 0.2 0.084 0.052 0.176 0.44 4.0

Highlighted area denotes readings on boulder or rocks.

Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K	LS	VM	·A
25	0.3	6.4	0.042	2.02

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alnha	V ac-ft	a in cfs	к	LS	с·	Р	Ys	Acreage	tons/acre	c:storm	
100	285	113 475	256	0.17	6.4	0.042	1	4112.27	3840	1.071	0.015	
50	285	80	224	0.17	6.4	0.042	1	3137.56	3840	0.817	0.015	
25	285	60	179.2	0.17	6.4	0.042	1	2356.99	3840	0.614	0.04	
10:	285	26	480	0.17	6.4	0.042	1	2562.14	3840	0.667	0.08	
5	285	12	220	0.17	6.4	0.042	1	1073.55	3840	0.280	0.2	
2	285	3.24	125	0.17	6.4	0.042	1	375.75	3840	0.098	0.4	

Calculations for the annual storm event load:

0.201304

REBAR BRIDGE STATION No. 7 N338°E, 15°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 22.90 23.20 24.00 24.30 25.40 25.90 26.05 25.10 24.95 24.40 23.60 22.80 20.65 18.40 15.70 10.60 10.40 10.60 11.55 12.00 402.50 20.125 10/22/98 25.10 22.30 24.40 23.60 25.50 25.60 25.60 24.40 24.20 23.00 22.90 21.30 20.20 18.00 15.20 10.30 9.20 9.40 10.80 11.35 392.85 19.6425 11/3/98 21.60 24.30 24.20 23.80 25.50 25.80 25.70 24.80 24.10 23.30 23.10 21.40 19.80 17.90 15.50 11.00 9.30 9,50 10.80 11.60 393.00 19.65 11/10/98 21.50 24:20 24:50 24:50 25:00 25:40 25:50 24:30 24:00 24:00 23:30 21:60 20:30 16:90 15:20 10:80 9:10 9.20 10.50 11.40 391.60 19.58 11/17/98 21.30 24.30 24.50 23.40 25.50 25.50 25.40 24.70 24.00 23.40 22.80 21.40 20.00 17.40 15.30 10.80 9.30 9.40 10.50 11.40 390.20 19.51 Δ 1.60 -1.10 -0.50 0.90 0.00 0.40 0.65 0.40 0.95 1.00 0.80 1.40 0.65 1.00 0.40 -0.20 1.10 1.20 1.05 0.60 12.30 0.615 AVG 22.48 23.76 24.32 24.00 25.36 25.64 25.65 24.66 24.25 23.62 23.14 21.70 20.19 17.72 15.38 10.70 9.46 9.62 10.83 11.55 394.03 AVG DEV 1.216 0.608 0.176 0.48 0.144 0.168 0.18 0.248 0.28 0.464 0.248 0.44 0.232 0.456 0.176 0.2 0.376 0.392 0.288 0.2 6.97

Highlighted areas denote Indian Rice grass roots

Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

RKLSVMA250.446.40.0030.2

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	q in cfs	K	LS	C	P 1	Ys 293 73	Acreage	tons/acre	c:storm 0.015	
100	285	113.4/5	200	0.17	0.4 6.4	0.003	1	233.75	3840	0.078	0.015	
.50	285	80	170.2	0.17	6.4	0.003	1	168.36	3840	0.044	0.04	
25	285	26	179.2	0.17	64	0.003	1	183.01	3840	0.048	0.08	
10	200 285	12	220	0.17	64	0.003	1	76.68	3840	0.020	0.2	
2	285	3.24	125	0.17	6.4	0.003	1	26.84	3840	0.007	0.4	

Calculations for the annual storm event load:

0.014379

REBAR BRIDGE STATION No. 8

N190°, 10°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 21.30 20.80 20.70 20.80 21.10 21.30 20.55 20.40 20.00 19.60 19.40 19.50 19.55 19.40 19.20 18.90 18.90 19.50 19.70 19.55 400.15 20.01 10/22/98 23.70 21.40 20.95 20.80 21.00 21.20 21.80 21.50 20.10 19.50 19.30 19.40 19.40 19.40 19.40 19.10 18.90 19.00 19.30 19.40 19.00 404.15 20.21 11/3/98 19.77 21.20 20.50 20.30 20.60 20.90 21.40 20.50 20.20 19.80 19.40 19.10 19.10 19.00 19.10 19.00 18.90 19.00 19.20 19.40 18.80 395.40 11/10/98 21.40 20.80 20.70 20.80 21.00 21.50 28.70 20.40 20.10 19.40 19.30 19.10 19.10 19.20 19.00 19.00 19.00 19.10 19.30 18.90 398.10 19.91 11/17/98 21.40 20.60 20.80 21.00 21.00 21.00 21.30 20.50 20.40 19.60 19.40 19.10 19.00 19.10 19.20 19.10 18.90 19.10 19.30 19.30 18.90 19.85 397.00 Δ -0.10 0.20 -0.10 -0.20 0.10 0.00 0.05 0.00 0.40 0.20 0.30 0.50 0.45 0.20 0.10 0.00 -0.20 0.20 0.40 0.65 3.15 0:16 AVG 21.80 20.82 20.69 20.80 21.00 21.34 20.81 20.58 19.92 19.46 19.24 19.22 19.23 19.26 19.08 18.92 19.02 19.32 19.42 19.03 398.96 AVG DEV 3.52 0.76 0.23 0.16 0.37 0.18 0.07 0.11 0.18 0.20 0.11 0.06 0.03 0.06 0.07 0.11 0.21 0.08 0.04 0.09 0:40

Highlighted areas denote rocks.

Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	K	LS	VM	Α
25	0.3	6.4	0.17	8.16

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

· .	•			· · · ·								
Storm	Alpha	V ac-ft	q in cfs		K	LS	С	Р	Ys	Acreage	tons/acre	c:storm
1.00	285	113.475	256	. (J.17	6.4	0.17	1	16644.90	3840	4.335	0.015
50	285	80	224	(J.17	6.4	0.17	- 1	12699.66	3840	3.307	0.015
25	285	60	179.2	(0.17	6.4	0.17	1	9540.18	3840	2.484	0.04
10	285	26	480		0.17	6.4	0.17	1	10370.58	3840	2.701	0.08
5	285	12	220	. (0.17	6.4	0.17	1	4345.31	3840	1.132	0.2
2	285	3.24	125	(0.17	6.4	0.17	1	1520.89	3840	0.396	0.4
4	200	.0.27	120			411		-				

Calculations for the annual storm event load:

0.814802

REBAR BRIDGE STATION No. 9 N82°E, 12°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 20.95 21.40 21.60 22.60 22.80 24.40 26.20 26.10 25.60 26.20 25.40 24.70 24.70 24.70 25.40 25.30 25.10 24.50 23.80 24.40 485.85 24.2925 10/22/98 21.60 20.80 21.70 21.50 22.80 22.70 24.10 26.00 25.70 25.10 24.70 24.60 24.50 24.60 25.30 24.80 24.50 24.50 24.30 23.60 24.00 476.90 23.845 11/3/98 24,205 20.90 21.60 21.90 23.00 23.00 24.30 26.00 26.10 25.50 25.70 25.10 24.50 24.50 24.70 25.60 25.00 24.50 24.40 23.60 24.20 484.10 11/10/98 20.70 21.10 21.40 22.30 22.70 23.90 25.40 25.90 25.50 25.50 24.90 24.50 24.40 24.60 24.40 24.20 24.40 23.50 24.10 477.90` 23,895 11/17/98 20.60 21.10 21.30 21.80 21.70 23.30 25.50 25.50 25.50 25.70 24.80 24.40 24.30 24.20 24.10 24.30 23.90 23.90 23.90 23.40 23.90 473.20 23.66 Δ 0.35 0.30 0.30 0.80 1.10 1.10 0.70 0.60 0.10 0.50 0.60 0.30 0.40 0.50 1.30 1.00 1.20 0.60 0.40 0.50 12.65 0.6325 20.95 21.20 21.58 22.24 22.60 23.72 25.44 25.92 25.56 25.64 24.98 24.54 24.50 24.52 25.00 24.76 24.44 24.30 23.58 24.12 AVG 479.59 AVG DEV 0.26 0.24 0.18 0.47 0.36 0.58 0.55 0.18 0.07 0.27 0.22 0.09 0.08 0.18 0.52 0.33 0.31 0.16 0.10 0.14 5.29

Sediment yield calculations

MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	ĸ	LS	·VM	Α
25	0.18	5	0.17	3.825

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	q in cfs	•	K	LS	C	P	Ys 12003 83	Acreage	tons/acre	c:storm
100	285	113.475	256		0.17	5	0.17	1	13003.03	2040	2.584	0.015
<u>,</u> 50	285	80	224		0.17	5	0.17	1	9921.01	3040	4.044	0.013
25	285	60	179.2	۰.	0.17	5	0.17	1	(453.27	3840	1.941	0.04
10	285	26	480	. V	0.17	5	0.17	1	8102.01	3840	2.110	0.00
5	285	12	220		0.17	. 5	0.17	, 1	3394.77	3840	0.884	0.2
2	285	3.24	125		0.17	5	0.17	1	1188.19	3840	0.309	0.4

Calculations for the annual storm event load:

0.636564

REBAR BRIDGE STATION No. 10 N248°E, 21°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 38.20 37.80 37.80 37.40 37.35 37.40 36.50 36.80 36.20 36.10 35.70 35.50 34.90 33.50 33.40 33.10 32.80 32.30 31.60 31.70 706.05 1.585 10/22/98 37.50 37.30 37.10 36.40 35.80 35.60 35.40 35.90 35.80 35.50 35.30 34.30 34.50 33.30 33.30 32.30 31.80 30.60 29.90 29.50 687.10 1.475 11/3/98 37.00 36.70 36.40 35.80 35.90 35.80 35.80 35.80 36.00 35.70 34.70 34.00 34.10 33.20 32.90 32.20 31.80 31.10 30.40 30.80 686.10 1.54 11/10/98 37.00 36.60 36.80 35.40 35.70 35.70 35.80 35.70 35.40 35.10 35.00 34.60 34.00 33.30 33.00 32.40 31.70 31.30 31.60 30.50 686.60 1.525 11/17/98 37.50 37.50 37.30 36.80 36.20 35.60 35.90 36.00 36.00 35.90 35.10 34.70 35.10 34.00 32.90 32.50 31.70 31.20 30.40 30.80 693.10 1.54 Δ 0.70 0.30 0.50 0.60 1.15 1.80 0.60 0.80 0.20 0.20 0,60 0.80 -0.20 -0.50 0.50 0.60 1.10 1.10 1.20 0.90 12.95 0.045 AVG 37.44 37.18 37.08 36.36 36.19 36.02 35.88 36.04 35.88 35.66 35.16 34.62 34.52 33.46 33.10 32.50 31.96 31.30 30.78 30.66 691.79 AVG DEV 0.35 0.42 0.38 0.61 0.47 0.55 0.26 0.30 0.22 0.29 0.27 0.38 0.38 0.23 0.20 0.24 0.34 0.40 0.66 0.53 7.49

Sediment yield calculations MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	ĸ	LS	VM	A
25	0.39	5	0.36	17.55

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	q in cfs		K	LS	С	P.	Ys	Acreage	tons/acre	c:storm
100	285	113,475	256	·	0.17	5	0.36	1	27537.52	3840	7.171	0.015
50	285	80	224		0.17	5	0.36	1	21010.46	3840	5.471	0.015
25	285	60	179.2		0.17	5	0.36	· 1 ·	15783.39	3840	4.110	0.04
10	285	26	480		0.17	5	0.36	1	17157.20	3840	4.468	0.08
5	285	12	220	· , .	0.17	5	0.36	1	7188.93	3840	1.872	0.2
2	285	3.24	125		0.17	5	0.36	1	2516.18	3840	0.655	0.4

Calculations for the annual storm event load:

1.34802

REBAR BRIDGE STATION No. 11 N173°E, 18°

Date 0-5cm 10cm 15cm 20cm 25cm 30cm 35cm 40cm 45cm 50cm 55cm 60cm 65cm 70cm 75cm 80cm 85cm 90cm 95cm 100cm SUM AVG 10/6/98 26.60 26.70 25.80 25.60 25.40 25.50 25.50 25.50 24.80 24.80 24.50 24.20 23.80 23.30 23.60 22.40 22.10 23.00 22.90 23.90 489.80 24.49 10/22/98 25.60 25.60 25.20 24.80 24.30 24.70 24.65 24.65 23.90 23.60 23.60 23.40 22.90 22.70 22.50 21.7 21.6 21.05 22.90 22.70 428.75 21.4375 11/3/98 25.80 25.60 25.40 25.00 24.60 24.50 24.90 24.60 23.80 23.60 23.80 23.10 23.10 22.80 22.40 21.70 21.60 22.20 22.40 23.00 23,695 473.90 11/10/98 25.50 25.40 25.10 24.80 24.10 24.20 24.50 24.30 23.80 23.30 23.20 23.00 22.90 22.60 22.20 21.60 21.50 21.50 22.30 23.10 468.90 23,445 11/17/98 25.70 25.40 25.20 24.10 24.50 24.70 24.70 24.90 24.60 24.30 24.20 24.00 23.10 22.70 21.6* 21.8* 22.20 22.50 23.00 432.50 21,625 Δ 1.50 0.90 0.80 0.80 0.50 0.20 0.50 0.30 0.20 0.70 0.60 0.90 0.80 0.30 13.90 0.90 1.30 0.60 0.80 0.40 0.90 0.695 AVG 25.84 25.74 25.34 24.86 24.58 24.72 24.85 24.77 24.18 23.92 23.86 23.54 23.16 22.82 22.68 21.90 21.73 21.99 22.60 23.14 476.22 AVG DEV 0.304 0.384 0.208 0.352 0.336 0.312 0.28 0.304 0.416 0.504 0.392 0.448 0.256 0.192 0.376 0.333 0.244 0.572 0.24 0.304 6.76

Sediment yield calculations

MUSLE equation 1 is A is equal to the values R * K * LS* VM

R	К	LS	VM	Α
25	0.16	5	0.2	4

MUSLE equation 2 is Ys=alpha(Vqp)raised to Beta multiplied by K*LS*C*P

Storm	Alpha	V ac-ft	a in cfs		K	LS	С	P	Ys	Acreage	tons/acre	c:storm
100	285	113.475	256		0.1	5	0.2	1	8999.19	3840	2.344 🕚	0.015
50	285	80	224	e	0.1	5	0.2	: 1	6866.16	3840	1.788	0.015
25	285	60	179.2	•	0.1	5	0.2	1	5157.97	3840	1.343	0.04
10	285	26	480	•	0.1	5	0.2	1	5606.93	3840	1.460	0.08
5	285	12	220		0.1	. 5	0.2	1	2349.32	3840	0.612	0.2
2	285	3.24	125	· •	0.1	5	0.2	1	822.28	3840	0.214	0.4

Calculations for the annual storm event load:

0.44053

Outline of watershed

Ephemeral streams

1972 USGS Los Griegos 1:24,000 quad.

N

Map 6. Approximate location of Piedras Marcadas Watershed on the New Mexico Highway Geologic Map, 1:1,000,000 (New Mexico Geological Society, 1996).

Estand

Villard

Lindrith

Boarnalil

rrales

Nal

ima

Belen

Bosky

+

25.

querque

Regin

T1s

10540

T3a

Appendix A

Climate Data

1996 Scale 1:24,000 Piedras Marcadas Watershed

1935 Scale 1:24,000 Piedras Marcadas Watershed

.

÷

.

1

Appendix D

Aerial Photographs, 1:24,000 scale from years: