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The Jemez River, lieswithin the Valles Caldera and Jemez Mountains, which is
located in North Central New Mexico. In the study area, numerous geothermal springs
discharge into the Jemez River. A base line water quality study was conducted to
determine salt and metal |oading effects of spring inputs. Ten sites along a 25-km reach
of the river through San Diego Canyon were sampled for major and sel ected trace
element concentrations to evaluate water quality. The Jemez River and geothermal
springs were sampled under summer and baseflow conditionsin 2006. Hydrothermal
water chemistry data collected in the study are consistent with earlier reports of Trainer,
1984, Goff, 1994; Goff and Shevenell, 1987. Hydrothermal inputs examined include
Soda Dam, Jemez Springs, and Indian Springs. Jemez River water displays a consistent
increase in total dissolved solids (TDS) and metals reflecting significant geothermal
inputs between San Antonio Creek and the confluence with the Guadalupe River, and
reflecting mixing of alow TDS calcium, magnesium-bicarbonate water with ahigh TDS
sodium chloride water. The Guadalupe River dilutes these contributions; however,
concentrations again increase along the Jemez River between the Guadal upe and San
Ysidro. Loading calculations for TDS and arsenic under a variety of flow regimes typical
of the Jemez River indicate that the allowable limits are exceeded for these parameters
between Soda Dam and the Guadal upe River beginning at discharges below 27.5 ft*/sec
as measured at the USGS gauging station near Jemez Springs. In 2006, flows were below
this threshold value for many days.



Note: Thisreport isthe Professional Project of James Dyer, submitted in partial
fulfillment of the requirements for the Master of Water Resources degree at the
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1. Introduction

The Jemez River, lieswithin the Valles Caldera and Jemez Mountainswhich is
located in North Central New Mexico. The Valles Calderalies at the intersection of two
major geologic features, the Rio Grande Rift and the Jemez lineament and isa
Quaternary silicic volcanic complex containing a well-studied liquid-dominated
geothermal resource (Goff, 2002). The study area consists of volcanic rocks of basaltic
to rhyolitic composition that overlie Tertiary to Paleozoic sediments on the western
margin of the Rio Grande rift (Shevenell et al, 1987). The Jemez River head-waters
originate near Redondo Peak, flow through Battle Ship Rock, Soda Dam, Jemez Springs,
and Jemez Pueblo eventually reaching the Rio Grande about 10 miles north of Bernalillo,
New Mexico.

In the study area, geothermal fluids percolate through the faults towards the
surface and form numerous springs. These springs are located throughout the Jemez
River watershed, and upon reaching the surface, the springs form travertine deposits.
Soda Dam is a calcium carbonate travertine deposit built by presently active hot springs
originating from the geothermal system outside the Valles Caldera (Goff and Shevenell,
1987). The Jemez Springs consist of approximately 10 springs flowing through fractures
associated with the Jemez Fault (Purtymun, 1974). Due to the salt and metal loading from
these springs, a base line water quality study was conducted to determine salt and metal
loadings along the Jemez River. The objectives of the study were to investigate the
hydrothermal impacts on water chemistry/quality and estimate the metal and salt load

input into the Jemez River.



2. Hydrologic Setting

The Jemez River watershed area is approximately 560 square miles. At
Battleship Rock, the Rio San Antonio and East Fork-Jemez meet to form the Jemez
River. Below Jemez Springs, the Rio Guadalupe flows into the Jemez River (figure 1)
and increases the discharge by about forty percent. In 2006 the average mean flow for the

Jemez River was 37.9 ft*/sec (USGS, 2006). Typically, the Jemez River has high peak

flows in the monsoon months (July-August) and low peak flows during the winter
months (USGS, 2006). Designated usages of the Jemez River are divided up into three
reaches. Above Soda Dam, Jemez River water is used to support domestic water supply,
high quality coldwater aquatic life, fish culture, irrigation, and live stock watering.
Between Jemez Pueblo and Soda Dam, river water is used to support coldwater aquatic
life, irrigation, livestock watering, and wildlife habitat. Below the Jemez Pueblo, Jemez

River water usage includesirrigation, livestock watering, and wildlife habitat.

3. Materialsand Methods

3.1 Field Methods

A total of ten sites were sampled (map 1), and GPS readings were recorded for
each site. Sites were chosen above and below Soda Dam and Jemez Springs to determine
salt and metal loading effects along the Jemez River. Water sampling and preservation
were performed according to standard USGS procedures (USGS, 2002). Field
measurements of temperature, turbidity, hydraulic conductivity, and pH were determined
using a multi-electrode meter (table 1). There were atotal of three sampling dates

8/15/06, 9/12/06, and 10/25/06. On each of these dates, two samples were collected at



each site, araw sample along with a second sample that was filtered through a .045 pm
filter and acidified with nitric acid. Both filtration and acidification were performed in the
field.
3.2 Laboratory Methods

Alkalinity was determined by acid titration (Standard Methods for the
Examination of Water and Wastewater, 1976). A .020N sulfuric acid (H,SO4) solution
was used to determine the alkalinity for river samples, and a 0.200N sulfuric acid

(H2S04) solution was used to determine alkalinity for spring samples. The alkalinity was

determined for each sampling date at each site (table 2).

lon chromatography (1C) was used to determine common anions (table 2) and
Inductive Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) was used to
determine cations and metals in samples (table 3). Due to expected high concentration of
analytesin spring samples, these samples were diluted by afactor of ten before analysis.
The ICP-AES was used to determine arsenic concentration for spring water samples
because they were within detection limits of the instrument. The hydride generation
system (FIAS-400) was used to determine arsenic concentrations for Jemez River water
samples because their concentration were below the detection limits of ICP-AES. These
samples were diluted one to six before anaysis.

Data were validated by implementing quality control (QC) measures to assure
accurate and precise results. A blank and three calibration standards were used to
calibrate each instrument. Initial Calibration Blank Verification (ICBV) and Initial
Calibration Verification (ICV) solutions were used to verify calibration accuracy.

Continuing Calibration Verification (CCV) solution at different concentration from ICV



and calibration standards were used to verify instrument stability and calibration drift.
Matrix spikes were used to verify matrix interferences during analysis. The above are
accuracy measurements where as sample(s) and matrix spike duplicates were used to
determine precision during analysis. Based on these QC measures the data were

determined to be verified and validated for reporting.

3.3 Data Interpolation

A Piper diagram was used to provide visual composition of major ion chemistry
(Drever, 1997). The piper diagram was constructed by plotting the equivalents of major
cations [Ca, Mg, (Nat+K)] on one triangular diagram, and plotting the equivalents of
major anions (alkalinity, chloride, and sulfate) on the other triangular diagram.

The geochemical, modeling program PHREEQE was run for each of the sampling
sites to determine any relationships between spring and river waters. The PHREEQE
program was used to determine the saturation index (Sl) for calcite, CO,, and quartz
(Parkhurst et a., 1980). If the Sl is equal to zero, then equilibrium isreached. If Sl isless
than zero, the solution is under-saturated, and if Sl is greater than zero, the solution is

saturated with respect to calcite, CO,, and quartz.
4. Results

4.1 Cations

Cation concentrations used were measured during the sampling session conducted
on 10/25/06. Anions and cations water balance was calculated for each sampling date to
ensure data accuracy and reliability (table 2). Data suggests a genera trend of lower

concentrations of cations above Soda Dam and higher concentrations downstream. This



was due to the spring water input of Soda Dam, Jemez Springs, and Indian Spring
(Figures 1, 2, 3, 4). Calcium, potassium, magnesium, and sodium all displayed similar
concentration trends in the Jemez River. There were reasonable low concentrations of
cations (<25 mg/L) in the Rio San Antonio and the East Fork (table 2). Due to the input
of spring water from Soda Dam, there was a noticeable increase in the cation
concentrations in the Jemez River (Figures 1,2,3,4, 15). From spring water inputs,
calcium and sodium concentrations in the Jemez River below Soda Dam increased
approximately 3 times, potassium 7 times, and magnesium 2 times (table 2). Due to
spring water inputs from Jemez Springs, there was a slight increase of cation
concentrations in the Jemez River (Figures 1, 2, 3, 4, 15). Just below the confluence of
the Jemez River and the Rio Guadal upe, the calcium and magnesium increased. On other
hand, potassium and sodium concentrations were lower below the confluence. As aresult
of these inputs from Indian Springs, the concentrations of calcium, potassium,

magnesium, and sodium in the Jemez River increased (Figures 1, 2, 3, 4).

4.2 Anions

The chloride and bromide concentration increased in the Jemez River downstream
from Battleship Rock. Chloride and bromide displayed similar concentration trends in the
Jemez River. The Rio San Antonio and East Fork had reasonably low concentrations (< 7
mg/L) of chloride and (< 0.03 mg/L) of bromide (table 2). Due to the input of Soda Dam
spring water, there was a noticeabl e increase of anions chloride and bromide in the Jemez
River (figure 6, 15 & 7, 16). Downstream from Soda Dam, chloride concentrations

increased by approximately 15 times and bromide by 10 times (table 2). The



concentrations of chloride and bromide decreased dlightly below Jemez Spring and
continued to decrease below the Rio Guadalupe and Jemez River confluence. On the
other hand, the concentration of chloride and bromide increased below Indian Springs
(table 2).

The concentration for fluoride in the Jemez River stayed reasonably constant
(Figure 8, 16). The concentration of fluoride in the Rio San Antonio was 1.3 mg/L and
.97 mg/L in the Jemez River at San Y sidro. Soda Dam and Jemez Springs waters had
amost 3 times the concentration of fluoride than the Jemez River (table 2). There was an
increase of fluoride concentration from the input at Indian Springs. The concentration of
fluoride at Indian Springs was nearly 6 times greater in the spring water than in the Jemez
River.

The concentration of sulfate in the Jemez River increased dlightly downstream
from Battleship Rock (graph 9, 15). The concentration of sulfate in the Rio San Antonio
was 16 ppm and 2 ppm in the East Fork. The concentration decreased by 5 ppm from
above Soda Dam to below the springs. Sulfate concentration in the Soda Dam Spring is
nearly 4 times greater than that within the Jemez River water sampled (table 2).
Compared to sulfate concentration above Soda Dam, the concentration increased slightly
to 12 ppm below Jemez Springs (table 2). The concentration also decreased at the
confluence of the Rio Guadalupe and Jemez River and then increased below Indian
Springs (graph 6). Nitrate concentrations in the Jemez River were not affected by spring
inputs (graph 10) (table 2).

4.3 Bicarbonate



Downstream from Battleship Rock, the concentration of bicarbonate (HCOz)

increased in the Jemez River (figure 12, 15). The concentration of bicarbonate in the Rio
San Antonio was 75 ppm and 59 ppm in the East Fork (table 2). The concentration
increased approximately by 100 ppm from above Soda Dam to below Soda Dam (table
2). The concentration of bicarbonate in the Soda Dam spring was nearly 6 times greater
than that within the Jemez River water (table 2). Compared to bicarbonate concentration
above Soda Dam, the bicarbonate concentration decreased slightly from 194 mg/L to 188
mg/L below Jemez Springs (table 2). Once below Jemez Springs the concentration of
bicarbonate began to increase downstream. Indian Spring’ s bicarbonate concentration of
1,269 mg/l increased the Jemez River’s bicarbonate concentration by 50 mg/L at San
Ysidro.
4.4 Arsenic

Arsenic (As) concentrations in the Jemez River increased downstream due to
spring input (Figure 13). Rio San Antonio and East Fork had arsenic concentrations of
4.6 ug/L and 4.1 pg/L respectively (table 6). Soda Dam spring water concentration of
arsenic was around 1300 pg/L, and this arsenic concentration input increased the Jemez
River arsenic concentration to 102 pug/L below Soda Dam (table 6). Even though the
arsenic concentration in Jemez Spring waters was 813 pug/L, the Jemez River arsenic
concentration decreased from below Soda Dam to below Jemez Springs. This decreasing

arsenic concentration trend continued downstream to San Y sidro.
5. Discussion

5.1 Metal and Salt L oad Calculations



The discharge of the Jemez River is monitored by a USGS gauging station below
the confluence of the Rio Guadalupe. Thereisno present gauging station for the Rio

Guadalupe or the Jemez River above Jemez Springs. This presents a problem when
determining the metal or salt load input upstream. The average discharge (ftslsec) for the

Jemez River and Rio Guadalupe was obtained by using the daily mean discharge data for
10/25/1993, 10/25/1994, and 10/25/1995 (USGS, 2006). These hydrographs were chosen
because after 1995, the gauging station on the Rio Guadal upe was shut down. From this
data, it was determined that the Rio Guadal upe results in about 39 percent of the flow
into the Jemez River at the above specified confluence. This percentage was used to
estimate the discharge of the Rio Guadalupe, the Jemez River upstream from the gauging

station, the Rio San Antonio, and the East Fork. Jemez River discharge values were

converted from ft*/sec to liter/sec (table 4).

Spring discharge values collected by Trainer from 1973-1974 were used for Soda
Dam and Jemez Springs (Trainer, 1984). Spring discharge values from January 1999 for
Indian Springs and test well were also used (Witcher, 2004). These spring and river
discharge values were used in the equation to determine salt and metal loading
concentrations at each site (table 4 and 5).

[(discharge liter/sec * Conc. mg/liter) = Total load in mg/sec]

A mass balance was performed to determineif all inputs from springsto the
Jemez River were accounted for. Results from the mass balance suggest that there are
other inputs besides Soda Dam, Jemez Springs, and Indian Springs. These other inputs
would influence the estimated discharge values to where the cation, anion, arsenic, and

bicarbonate loading in the Jemez River would be over or underestimated (table 4 & 5).



5.1 Estimated Cation L oading

Dueto all spring inputs, the cation loading (mg/sec) downstream in the Jemez
River increased (table 5). Calcium, potassium, magnesium, and sodium displayed similar
loading trends in the Jemez River (graph 5). The calcium load input at Soda Dam was
5,923 mg/sec and 2,615 mg/sec at Jemez Springs (table 5). Calcium concentrations at
Soda Dam were approximately 7 times higher than the Jemez River concentration (table
4). Above Soda Dam, calcium loading concentrations of 5,759 mg/sec were estimated.
This estimated calcium load increased to 19,323 mg/sec below Soda Dam. There was an
11 percent increase in the estimated loading of calcium between Soda Dam and below
Jemez Springs. Due to spring water input at Indian Springs, the calcium loading
concentration continued to increase by 53 percent at San Y sidro.

The potassium loading in the Jemez River increased from 1,220 mg/sec above
Soda Dam to 8,087 mg/sec below Soda Dam. Estimated potassium loading at Soda Dam
spring water was 4,785 mg/sec and 1,719 mg/sec at Jemez Springs (table 5). In the Jemez
River the estimated potassium loading increased by 33 percent from below Jemez Springs
to San Ysidro (table 5).

The concentration of magnesium at Soda Dam was nearly five times greater than
Jemez River samples (table 5). The magnesium load input at Soda Dam was 533.3
mg/sec and 98.9 mg/sec at Jemez Springs (table 5). The Jemez River magnesium load
increased from 1,284 mg/sec above Soda Dam to 2,310 mg/sec below Soda Dam. There
was an additional magnesium loading increase from 2,310 mg/sec below Soda Dam to
2,406 mg/sec below Jemez Springs. The loading concentration of magnesium continued

to increase by 58 percent from below Jemez Springsto San Ysidro (table 5).



The sodium load input at Soda Dam was 1143 mg/sec and 735 mg/sec at Jemez
Springs (table 5). The sodium loading in the river increased from 11,511 mg/sec above
Soda Dam to 49,657 below Soda Dam. From below Soda Dam to below Jemez Springs,
the sodium loading increased by approximately 5,048 mg/sec (table 5). From below
Jemez Springsto San Y sidro, sodium loading increased by 50 percent (table 5).

5.2 Estimated Anion Loading

Chloride, bromide, fluoride, and sulfate exhibited similar anion loading rates into
the Jemez River (graph 11). There was a higher load of chloride, bromide, fluoride, and
sulfate in the Rio San Antonio compared to the E. Fork (graph 11). Soda Dam anion
loading into the Jemez River was 52,608 mg/sec for chloride, 226 mg/sec for bromide, 83
mg/sec for fluoride, and 989 mg/sec for sulfate. Thisload rate increased the over all load
in the Jemez River. Chloride loading increased from 2,851 mg/sec above Soda Dam to
84,177 mg/sec below Soda Dam (table 4). Bromide loading increased from 5.7 mg/sec
above Soda Dam to 217 mg/sec below Soda Dam (table 4). Fluoride loading increased
from 472 mg/sec above Soda Dam to 542 mg/sec below Soda Dam (table 4). Sulfate
loading increased from 5,113 mg/sec above Soda Dam to 6,509 mg/sec below Soda Dam
Spring (tale 4). The loading from Jemez Springs was estimated at 22,221 mg/sec for
chloride, 67 mg/sec for bromide, and 813 mg/sec for sulfate. The Jemez Springs and
Indian Springs load contribution of chloride, bromide, fluoride, and sulfate into the Jemez

River increased the loading of all four anions below Jemez Springs to San Y sidro.
The Jemez River nitrate (NO3) loading values at the Rio San Antonio and E. Fork

were greater than Soda Dam Spring and Jemez Springs. Soda Dam input was nearly 40

times greater than Jemez Springs loading. The nitrate load increased from 66 mg/sec

10



above Soda Dam to 206 mg/sec below Soda Dam. Thisload increase is slightly
misleading because the increase is mostly due to the large discharge value below Soda
Dam. Due to Jemez Springs minor input of nitrate, the loading decreased by 180 mg/sec
below Jemez Springs. The Jemez River load of nitrate increased from 20 mg/sec below
Jemez Springs to 183 mg/sec in San Y sidro.
5.3 Estimated Bicarbonate L oading

Downstream from Battleship Rock, there was a general increasing trend of the
bicarbonate loading in the Jemez River (graph 11). The bicarbonate load increased from
36,341 mg/sec above Soda Dam to 109,845 mg/sec below Soda Dam. The estimated
loading from Soda Dam was 29,593 mg/sec and 16,139 from Jemez Springs. The over al
load of bicarbonate in the Jemez River increased by 894 mg/sec due to Jemez Springs.
The Indian Spring contributed 21,055 mg/sec to increase the bicarbonate |oading by 20
percent above Indian Spring to San Y sidro.
5.4 Estimated Arsenic Loading

Arsenic loading was minimal in the Rio San Antonio and East Fork (table 6)
(graph 14). Input from Soda Dam spring water increased the arsenic loading rate in the
Jemez River by 44.6 m/sec (table 6). The loading below Soda Dam was 57.9 mg/sec and
57.4 mg/sec below Jemez Springs. Just below the confluence of the Rio Guadalupe and
Jemez River, the loading of arsenic was highest at 71 mg/sec. Even with aresnic loading
input from Indian Spring, the loading in the Jemez River decreased to 58.3 mg/sec at San
Ysidro.

5.5 Piper Diagram and Modeling

11



The spring waters were primarily sodium type and chloride type (piper diagram 1)
(Drever, 1997). The Jemez River waters above Soda Dam had no dominant type for the
cations but were primarily bicarbonate type for anions (piper diagram 1). The Jemez
River downstream from Soda Dam was mostly sodium type for cations and bicarbonate
type for anions (piper diagram 1). Due to the springs input, the Jemez River waters
downstream became |ess bicarbonate dominate and more chloride driven.

Results from PHREEQE were run for the third round of sampling only. Soda Dam
and Jemez Springs were saturated with respect to calcite (table 2). The Jemez River was
only saturated with respect to calcite at site JR SpQ and JR B Guad (table 2). All Jemez
River water samples were saturated with respect to quartz. Soda Dam and Jemez Springs
were under-saturated with respect to quartz. Samples collected above Soda Dam had
similar pCO, of that of the atmosphere 10e-3.35. Sampling sites below Soda Dam and
Jemez Springs had higher pCO, values (table 2). The higher value of dissolved CO, in
the Jemez River was the result from the inputs from Soda Dam and Jemez Springs.

Data obtained from water sample analysisimplied that cation, anion, and trace
elements concentrations in the Jemez River were elevated due to the inputs from Soda
Dam, Jemez Springs, and Indian Springs. The lower the flow in the Jemez River the
greater the water chemistry would be influenced by the springs. During drought
conditions, the flow in the Jemez River can go as low as 5.4 ft¥/sec (USGS, 2006). At this
discharge, Soda Dam and Jemez Springs play a major role in determining the over all
water chemistry of the Jemez River.

For a 5.4 ft*/sec discharge in the Jemez River at the USGS gauging station, a

concentration of 777 mg/l of chloride in the Jemez River below Soda Dam was estimated.

12



Impacts of Soda Dam on the Jemez River water quality were greater than Jemez Springs
because Soda Dam is nearly twice as mineralized as Jemez Springs (Trainer, 1984). This
concentration would exceed the recommended EPA secondary drinking water regulations
of 250 mg/l. Below Jemez Springs, a concentration of 828 mg/l of chloride was
estimated, which would also exceed the standard. Any discharge below 17 ft¥/sec in the
Jemez River would induce a concentration of chloride that would exceed the drinking
water standard. In the past 25 years, the discharge of the Jemez River has reached this
discharge 566 times. So, based on these calculations, the Jemez River during these low
discharge values would not meet the recommended chloride EPA secondary drinking
water standard.

Even though sulfate concentrations do not exceed the secondary drinking
standards; sulfate is a contributor to the overall total dissolved solids concentration.
During drought conditions (5.4 ft¥/sec) in the Jemez River, there would be a 12.4 mg/L
sulfate concentration below Soda Dam and a 14.2 mg/l below Jemez Springs. The
estimated sodium concentration during low flow would be 433 mg/L below Soda Dam
and 511 mg/L below Jemez Springs. By combining the chloride, sulfate, and sodium
concentration, the TDS can be estimated. The TDS estimated below Soda Dam during
drought conditions was estimated at 1230 mg/L and 1363 mg/L below Jemez Springs.
This TDS estimated exceeds the recommended EPA drinking water standard of 500
mg/L. In the Jemez River system, chloride contributes the most and sulfates the least to
the TDS.

Continuing with alow flow of 5.4ft¥/sec, an arsenic concentration of 250 pg/L

was estimated below Soda Dam. This concentration would exceed the new EPA standard

13



of 10 pug/L. Below Jemez Springs, the concentration of arsenic estimated at this discharge
would be 0.154 mg/L or 154 pg/L which aso exceeds the EPA drinking water standard.
A discharge of 360 ft*/sec in the Jemez River would have an estimated concentration just
below the .01 mg/L EPA drinking water standard. Even though thisis estimated number,
water with arsenic levels such asthese, if used for drinking water, could cause skin
damage and problems with the circulatory systems. Most of the arsenic contributed into
the Jemez River isfrom geothermal processes and erosion from natural deposits. One
plausible explanation for arsenic in solution decreasing downstream from the springsis
from absorption to iron-oxides. More detailed information can be found in Ferguson and
Gavis sreview on the arsenic cycle in natural waters (Ferguson and Gavis, 1972).

5. Conclusions

The Jemez River is an important resource for residents, fishermen, and the people
of the Jemez Pueblo. The effects of spring water inputs on water quality of the Jemez
River are an important issue to be explored. All data collected and analysis performed
suggest that geothermal springs do in fact affect the water chemistry of the Jemez River.
Further monitoring of Soda Dam and Jemez Springs inputs could lead to determining the
effects of the seasonal changes, on the Jemez River. More data needs to be collected
during high flow months to compare to aready existing data for implications of a

seasonal correlation.
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6. Maps and Tables
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Table 4 Loading Concentrations for Anions

Actual Discharge

Sampling Sites _|ft3/sec |l/sec Cl mg/l |ClI mg/sec |Br mg/l |[Br mg/sec [NO3 mg/l [NO3 mg/sec |SO4 mg/l |SO4 mg/sec |HCO3 mg/l [HCO3 mg/sec |F mg/l [F mg/sec
JR SA 9.5 270 7.1] 1904 0.021 5.7 0.2 52.8) 16.2 4375 75.7] 20390 1.3 350
JR EF 9.5 270 3.5 947 0.1 14.0 2.7 740 59.2] 15952 0.455 123
1SDa 09| 250 1382] 34557 56 139 0.1 3.6 55.5] 1388] 1452] 36305 2.79 69.8
1SDb 09| 250] 2104] 52609 9.1 226 1.6 39.3) 39.6) 989 1184 29503 3.34 83.5
JR BSD 19.9 564] 149 84178] 0.4 217 0.4 207 115 6510 195 109845| 0.961 542
135S 0.8] 230 96| 22221 29 67.0 0.1 1.4 35.4 814 702 16139] 5.07 117
JRBJS 20.7] 587| 128] 74923 03 186 0.0 20.0) 12.0) 7056 189) 110739] 0.986 579
JR SpQ 20.7] 587] 137] 80350 0.3 183 0.1 53.4) 11.8 6923 204 119702 1.06 621
JR B Guad 34.0) 063|106 102272 0.2 230 0.1 101] 10.2 9846 202 194473 0.889 856
I Indian 0.3 95| 1141] 10840] 47 44.4 213 2024 1269) 12056 6.9 65.6
IR SY 34.3 o72|  124] 120624 03 279 0.2 184 17.6] 17120) 253 246226] 0.978 951
Low Discharge
Sampling Sites _[ft3/sec _|l/sec Cl mg/l [Cl mg/sec [Br mg/l [Br mg/sec [NO3 mg/l INO3 mg/sec |SO4 mg/l [SO4 mg/sec |HCO3 mg/l [HCO3 mg/sec |F mg/l [F mg/sec
JR SA 15[ 425 7.1 300] 0.021 6.30 0.2 8.33 16.2 690 75.7 3214 1.3 55.2
JR EF 15| 425 35 149 0.1 2.21 2.7 117 59.2 2514 0.455 193
1SDa 0.9 25| 1382 34557] 56| 192726 0.1 3.58 55.5 1388 1452 36305 2.79 69.8
1SDb 0.9 25| 2104] 52609] 9.1 476215 1.6 39.3 39.6 989 1184 29503| 3.34 83.5
JRBSD 2.4 68.0] 149 10138] 04 3903 0.4 24.9 115 784 195 13229| 0.961 65.3
135 0.812 23] 966] 22221 29 64775 0.1 1.357 35.4 814 702 16139] 5.07 117
JR BJS 32| 906] 128 11560 03 3653 0.0 3.08 12.0 1089 189 17086| 0.986 89.4
JR SpQ 32 906] 137 12397 03 3856 0.1 8.25 11.8 1068 204 18469] 1.06 95.8
JR B Guad 5.4 153]  106] 16243 0.2 3882 0.1 16.1 10.2 1564 202 30887| 0.889 136
I Indian 0.3 95| 1141] 10840[ 4.7 50620 0 213 2024 1269 12056] 6.9 65.6
JR SY 57] 161.4] 1241 20025 03 5747 0.2 30.5 17.6 2842 253 40876] 0.978 158
Table 5 Loading Concentrations for Cations
Actual Discharge

Sampling Sites [ft3/sec I/sec Ca mg/l |Ca mg/sec |K mg/l |K mg/sec [Mg mg/l |[Mg mg/sec |[Na mg/l |Na mg/sec

JR SA 9.51 270 13.2 3563 25 685 25 682 24.5 6603
JR EF 9.51 270 8.1 2196 2.0 536 2.2 605 18.2 4908
ISDa 0.88 25.0 266 6653 153.5 3838 23.3 581 954 23838
ISD b 0.88 25.0 237 5923 1914 4785 21.3 533 1143 28575
JR BSD 19.9 564 34.2 19323 14.3 8087 4.1 2310 88.0 49657
1 JS 0.81 23.0 114 2615 74.8 1719 4.2 96.9 735 16894
JR BJS 20.7 587 37.0 21714 14.1 8252 4.1 2407 93.1 54706
JR SpQ 20.7 587 41.1 24164 14.9 8757 4.7 2760 102 59616
JR B Guad 34.0 963 42.6 41038 11.8 11323 5.0 4786 82.8 79726
| Indian 0.34 9.5 63.3 601.4 64.5 613 10.7 102 1140 10830
JR SY 34.3 972 46.9 45644 12.7 12330 5.9 5737 111 107642

Low Discharge

Sampling Sites |ft3/sec I/sec Camg/l [Camg/sec |Kmg/l |K mg/sec Mg mg/l |[Mg mg/sec |Na mg/l |Na mg/sec

JR SA 15 42.5 13.2 562 25 108 25 107 24.5 1041
JR EF 15 42.5 8.1 346 2.0 84 2.2 95.4 18.2 774
ISDa 0.9 25 266 6782 154 3912 23.3 593 954 24303
ISD b 0.9 25 237 6038 191 4878 21.3 543 1143 29133
JR BSD 24 68.0 34.2 2327 14.3 974 4.1 278 88.0 5981
1 JS 0.813 23.0 114 2618 74.8 1721 4.2 97 735 16911
JR BJS 3.2 90.6 37.0 3350 14.1 1273 4.1 371 93.1 8441
JR SpQ 3.2 90.6 41.1 3728 14.9 1351 4.7 426 102 9198
JR B Guad 5.4 153 42.6 6518 11.8 1798 5.0 760 82.8 12662
| Indian 0.3 8.50 63.3 538 64.5 548 10.7 90.9 1140 9685
JR SY 5.7 161 46.9 7577 12.7 2047 5.9 952 111 17870
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Table 6 Arsenic Loading

Site As ppb| mg/l ft3/sec l/sec mg/sec
JR SA 4.6 0.005 9.5 270 1.25
JR EF 4.1 0.004 9.5 270 1.12
| SD a 1782 1.78 0.9 25.0 44.6
| SD b 950 0.95 0.9 25.0 23.8
JR BSD 103 0.103 19.9 564 57.9
| JS 813 0.813 0.8 23.0 18.7
JR BJS 97.8 | 0.098 20.7 587 57.4
JR SpQ 101 0.100 20.7 587 58.7
JR B Guad 73.8 0.074 34.0 963 71.1
| Indian 312 0.312 0.34 9.5 2.96
JR SY 60.0 | 0.060 34 972 58.3
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Hydrograph of the Jemez River

= USGS

USGS 08324000 JEMEZ RIVER NEAR JEMEZ, NM
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7. Piper Diagram and Graphs

EXPLANATION

* JR Above Soda Dam

¢ JR Below Soda Dam

4 Soda Dam Inside Cave
Spring Inputs

Indian Springs Well

- *

C::h

cr
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Ca (ppm)

K (ppm)

Figure 1
[Ca] Downstream from Battleship Rock
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Figure 2
[K] Downstream from Battleship Rock
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Mg (ppm)

Na (ppm)

Figure 3
[Mg] Downstream from Battleship Rock
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Figure 4
[Na] Downstream from Battleship Rock
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Figure 5
Cation Loading Along Jemez River
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Figure 6
[CI] Downstream from Battleship Rock
10000
Soda Dam Springs
° ) )
8 = Jemez Springs Indian \SAF;;"TQS and
1000 | . °
e JRCI (1)
= —=—|Cl (1)
5 * X X a2
3 100 - x X JRCI(2)
2 A ————— 1Cl 2
© . . . . X JRCI (3)
. e ICI(3)
Guadlaupe River
Confluence
10 *
x/
X
1
s & o S° B © ) et K &
Ny Ny ) @ ij N Q? 2 o S
D D D 4
<

Sampling Sites

25




Br (ppm)

Figure 7
[Br] Downstream from Battleship Rock
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Figure 9
[SO4] Downstream from Battleship Rock
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