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Abstract 

Long-term drought and changing demands on the Lower Colorado River Basin are 

driving the development of agricultural water markets.  Initiating new markets, for improved 

efficiency and water resource management flexibility, may require the identification of good 

information sources, and building of relationships. The objective of the research was to focus on 

these initial aspects of creating functioning water markets through the use of decision-support 

tools for attaining basic location, agricultural production and price information for immediate 

use. Alternative water transfer markets for Colorado River surface water are emerging from a 

policy proposal called “wheeling.”  In this Arizona case study, potential applications of the 

wheeling policy could include the transfer of agricultural surface water from places like Yuma 

and La Paz Counties in Arizona to municipal and industrial uses in Arizona’s urban areas. 

Geospatial tools such as the U.S. Department of Agriculture’s CropScape and the Water 

Governance Relationship Geodatabase provided the necessary geographic information to target 

agricultural users, like irrigation districts and tribal lands, for wheeling. Consumptive irrigation 

requirement (CIR) (feet/year) and the water use value ($/acre foot) characteristics for specific 

crops allowed identification of a set of target crops within individual agricultural areas for 

possible transfers. Areas with the highest percentage of target crops were considered the 

preferred target for making social capital investments in relationship building for possible 

wheeling policy applications. 

 

Keywords: geospatial, water transfer markets, wheeling, Arizona, CAP 
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Abbreviations and Acronyms 

 

ADWR Arizona Department of Water Resources 

AMA Active Management Area 

AOI Area of Interest 

ATM Alternative (Water) Transfer Market 

CAGRD Central Arizona Groundwater Replenishment District 

CADWR California Department of Water Resources 

CAWCD Central Arizona Water Conservation District 

CAP Central Arizona Project 

CDL Cropland Data Layer 

CIR Consumptive Irrigation Requirement 

CRIT Colorado River Indian Tribes 

CWSD California Water Supply and Demand Model 

FRIS Farm and Ranch Irrigation Survey 

LCRB Lower Colorado River Basin 

MSA Municipal Service Area 

MWD Metropolitan Water District of Southern California 

NASS National Agricultural Statistical Service 

PVID Palo Verde Irrigation District 

PWSWG Poudre Water Sharing Working Group 

USDA United States Department of Agriculture 

WGRG Water Governance Relational Geodatabase 

WMIDD Wellton-Mohawk Irrigation and Drainage District 

YMIDD Yuma Mesa Irrigation and Drainage District 



WHERE’S THE WATER? USING GEOSPATIAL TOOLS  
 

7 

 

 

 

 

 

Where’s the Water? 

Using Geospatial Tools to Facilitate  

Water Wheeling for the Central Arizona Project  

 
 

Introduction 

 

Over the last sixteen years, the U.S. Southwest has experienced one of the worst droughts in 

over a century (CAP, 2014). The drought has diminished stored water in the Colorado River 

reservoir system, setting the stage for deficit-induced management practices. In addition to 

drought, water resource development for growing metropolitan centers has steadily changed the 

region’s water-use profile from traditional agricultural use to modern municipal needs 

(Luckingham, 1983). It has been suggested by Culp, Glennon and Libecap (2014), that to 

continue providing water to the communities and farmlands of the region and to abate future 

water shortages, the Colorado River Basin states need to better enable transfers of water from 

one user type to another by revising legal policies and establishing market institutions (p. 2-7). 

However, what kind of legal policy revisions can achieve this right now? How exactly can 

water market institutions help communities cope with shortage in the immediate future? 

According to the Western Governors Association (2012), “[water] markets function best when 

there is transparent, publicly available information on transactions, including the location and 
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price,” (p. 60).  But, such transparency in high functioning markets doesn’t just appear out of 

thin air. At the start, finding solutions may require the identification of good information sources 

and relationship building. The objective of the research was to focus on these initial aspects of 

creating better functioning water markets with the immediate use of decision-support tools for 

attaining basic location, agricultural production and price information. The specific context for 

the research was framed by an alternative water transfer policy proposal called “wheeling” and 

the social capital investment opportunity this policy could provide. Wheeling, a resource 

management policy traditionally used in the energy industry, would move Colorado River 

surface water across the Arizona landscape on existing infrastructure, allowing for the delivery 

of water to different regions of the state (CAP, 2014).  

Wheeling involves using a federal water delivery system called the Central Arizona Project 

(CAP) to transport and deliver “Non-Project” water over 300 miles from the main stem Colorado 

River to the cities of central Arizona (Fig.1). Non-Project water includes any other water besides 

CAP deliveries, including additional Colorado River water or imported groundwater (McCann & 

Seasholes, 2012). This policy was recently proposed by the Central Arizona Groundwater 

Replenishment District (CAGRD) in a 2015 water plan as a way to address shortage while 

providing water market options to agricultural and urban communities alike (CAP, 2014; 

McCann & Seasholes, 2012).  

Wheeling water resources can be loosely compared to the 1989 Office of Technology 

Assessment’s description for wheeling electricity: “the use of the transmission facilities of one 

system to transmit power produced by other entities,” (1989, U.S. Congress).  This definition, 

when considered in terms of water transfers, roughly explains the CAP’s ability to transfer water 

from one entity or source to another utilizing existing infrastructure. In terms of social capital 
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investment, finding the right tools to identify locations for potential wheeling water transfers for 

an entity such as CAP is an important first step in the process. 

To identify where to invest social capital for building relationships and initiating water 

wheeling, this research evaluated a set of publically-available decision supports tools that could 

aid a potential buyer (i.e., a water lessee, such as a municipality or groundwater district) in the 

geographic targeting of likely sellers through geographic and agricultural production 

characteristics. The research was restricted to four decision support tools within two 

southwestern Arizona counties where potential sellers may be located, and one evolving 

institutional arrangement—wheeling from on-river agricultural areas to the CAP-serviced 

municipalities of central Arizona.  

The decision support tools included (a) U.S. Department of Agriculture (USDA) National 

Agriculture Statistics Service’s (NASS) web-based platforms CropScape and Quick Stats, with 

additional information from the USDA 2012 Census of Agriculture and 2014 Arizona Bulletin 

(USDA NASS, 2015); (b) Geographic Information System (GIS) data from Colorado State 

University’s Water Governance Relational Geodatabase (WGRG) (Laituri, 2014) which was 

operated in ESRI ArcGIS 10.1; (c) the consumptive irrigation requirements (CIR) (feet/year); 

and (d) water use values ($/acre foot) for Arizona crops. Sources for CIR and water use values 

included the 2013 Farm and Ranch Irrigation Survey (FRIS), (USDA NASS, 2014), the 

California Department of Water Resources 2014 CIR averages (Cooley, 2015), a 1982 report on 

Arizona CIR (Erie, French, Bucks & Harris, 1981) and the California Water Supply and Demand 

(CWSD) Model (Ackerman & Stanton, 2011). Data from the four decision-support tools were 

compiled into a custom Microsoft Excel spreadsheet. 
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One of the key research findings was the various discrepancies between geospatial results 

when applying different agricultural datasets to the same area. Cotton was found to be the target 

crop with the most variability between the datasets and value categorizations. Also, the 

importance of polycentric water governance was identified in La Paz County, which had less 

water user groups than Yuma County. La Paz was also identified from the research as the best 

target for social capital investment based on the defined set of target crops. The research findings 

also illustrated that the geospatial targeting of crops is critical, because after fallowed and idle 

cropland is considered, the next phase of water transfers could target agricultural land in 

production. Knowing where to invest social capital now could help Arizona address Lower 

Colorado River Basin shortage in the future. 
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Pg. 7, Figure 1. CAP serviced counties, (Gerlitz, 2015).
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Background 

 

The Central Arizona Project 

Since the mid-twentieth century, population increases and economic development 

throughout the West have shifted the focus of water resource management from agriculture to 

municipal planning (Gammage, 2011). The massive population growth in central Arizona 

provides a prime example of the need to find new or different sources of water for growing cities 

(Luckingham, 1983; Beard, 2015). In particular, the Central Arizona Project (CAP) surface water 

deliveries provide the region with a structurally and legally complex water source. The CAP, and 

its special multicounty water district, the Central Arizona Water Conservation District 

(CAWCD), has been charged with managing this need (Glennon, 1995). As a water governance 

institution, the CAP and CAWCD address the challenges of supplying, storing, treating, 

maintaining, protecting and sharing water for growing populations and competing usage types 

(Sternlieb & Laituri, 2015; Eakin et al., 2015). The proposed wheeling policy is one part of the 

larger water planning goals for the CAP, which includes the ability to offer contracts for the 

long-term delivery of other (Non-Project) water (CAP, 2015). 

The self-described mission of the CAP (2015) is to be “the steward of central Arizona’s 

Colorado River water entitlement and a collaborative leader in Arizona’s water community.” 

CAP is Arizona's largest water provider, supplying 80% of the state’s population by bringing 1.5 

million acre-feet of water from the Colorado River to central and southeastern Arizona each 

year. CAP water is delivered to over 5 million people residing in Maricopa, Pima and Pinal 

counties. Structurally speaking, CAP consists of a 336-mile long system of aqueducts, tunnels, 

pumping plants and pipelines which lift the water over 2900 vertical feet (CAP, 2015). 
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For over half a century Arizona fought to obtain rights and build a delivery system to 

transport water from the Colorado River to farms, cities and towns of the central and 

southeastern parts of the state (Glennon, 1995). Although construction on the project didn’t get 

approval until 1968 under the Colorado River Basin Storage Act, the vision for the project was 

conceived several decades prior (Reisner, 1993). As early as the 1920’s, the citizenry recognized 

the need to import Colorado River water to the region (Zarbin, n.d.). The Bureau of Reclamation 

completed planning in 1947 when a perfect storm of disagreement broke out as Arizona lobbyists 

and California congressman contentiously pushed for and against the project (Tarlock et al. 

2009). This water dispute led to the 1963 U.S. Supreme Court case, Arizona vs. California 

(Zarbin, n.d.).   

The two states had a history of disagreement in regards to the 1922 Colorado Compact 

(Fig. 2), which over-allocated total available water to each of the seven basin states and Mexico 

(Reisner, 1993; U.S. Supreme Court, 1963). The 1928 Boulder Canyon Project Act allocated 2.8 

million acre feet to Arizona and 4.4 million acre feet to California, however California had 

extensively developed their water sooner than Arizona (Edwards & Hill, 2012). The movement 

to secure its “rightful share” of the river was thoroughly supported by the majority of Arizonans 

at the time and was viewed as the way to secure future prosperity (Zarbin, n.d.). The CAP was in 

a standstill from 1947 until the Court decision in 1963 ruled in Arizona’s favor. By approving 

the construction of the project in 1968, the Court decision and subsequent legislation (Colorado 

River Basin Storage Act) enacted the doctrine of prior appropriation placing Arizona junior to 

California’s senior status for the water rights to the river (Dozier & McCann, n.d.). The first 

agricultural water deliveries from the CAP began in 1985 however the vast infrastructure system 
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was not fully complete until 1992 with costs upwards of $5 billion making it the largest and most 

expensive water project ever constructed in the United States (Hanemann, 2002). 

With the use of groundwater traditionally supporting regional agriculture, under its initial 

inception the CAP was designed to help alleviate aquifer depletions and was designated for 

farmers (Zarbin, n.d.).  However, the project’s costs and non-subsidized water rates were a 

disincentive for agricultural use, and has lead to the distribution of project water to municipal 

and industrial uses (Reisner, 1993; Hanneman, 2002). Rapidly urbanizing Maricopa County, in 

particular, has seen a decline in irrigated agriculture over the last hundred years (Fig. 3) 

consistent with predictions made by William E. Martin and others (Young, R.A. & Martin, W.E., 

1967; Martin, W.E., Ingram, H. & Laney, N.K., 1982; Martin, W.E., 1988) in the decades prior 

to CAP completion (Hanneman, 2002; USDA NASS, 2012). 

The trend of decreased agricultural use and the dedicated municipal use of CAP water is 

likely to continue (CAGRD, 2014; Western Governors Association, 2012). According to a study 

from the W.P. Carey School of Business at Arizona State University (ASU), the top five sectors 

of Arizona’s economy that have benefited the most from the CAP include: government, 

healthcare, real estate/travel, finance/insurance & retail, which lie in stark contrast to the 

project’s original agricultural intent (James, T. Evans, A. & Madly, E., 2014). This ASU study 

suggested that the CAP has generated $1 trillion of Arizona’s gross state product (GSP) from 

1986 to 2010 and currently accounts for one-third of annual GSP (James et al., 2014). This 

regional economy supports more than 5 million people. With more than 80% of the state's 

population living in the CAP-serviced counties of Maricopa, Pima and Pinal, the water market 

will continue to adapt and reflect these changes (CAP, 2015). For smaller cities of the CAP, 

including municipalities within the Central Arizona Groundwater Replenishment District 
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(CAGRD) Municipal Service Areas (MSAs), the changes in the water market brought forth from 

wheeling could provide more options for water resource managers. 

Wheeling Policy in Arizona 

History of wheeling policy development. Since 2012, the CAP and its governing entity, 

the CAWCD, have been actively planning for the contractual and structural needs for a 

wheeling-based alternative transfer market. Traditionally used in the energy industry, wheeling 

would move surface water across the Arizona landscape on existing infrastructure, delivering 

water to different regions of the state (CAP, 2014). Wheeling involves using the CAP system to 

transport and deliver “Non-Project” water.  Non-Project water includes any other water besides 

CAP deliveries including additional Colorado River water or imported groundwater (McCann & 

Seasholes, 2012). Wheeling was first considered as a long-term solution for supplying water to 

the region in 1983 and was authorized in 1988 under the 1988 Master Repayment Contract (U.S. 

Bureau of Reclamation, 1988). The 1988 Master Repayment Contract is between the Bureau of 

Reclamation and the CAP, however it (including the wheeling-specific provisions) has yet to be 

fully authorized. Currently, CAP is working to resolve the legal, financial and operational issues 

related to how this contract applies to wheeling (McCann & Seasholes, 2012).  The desired 

outcome is for CAWCD to be able to offer contracts, with the approval of Reclamation, for the 

long-term reliable delivery of Non-Project Water, thus increasing the delivery capacity of the 

CAP system (CAP, 2015).  

The backbone and underlying statutes as well as the contentious uncertainties of the 

recent wheeling policy developments are found in the 1988 Master Repayment Contract (See 

Appendix A) under Sections 8.17 (Rights Reserved to the United States to Have Water Carried 
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by Project Facilities and 8.18 (Wheeling Non-Project Water), (McCann & Seasholes, 2012; 

Reclamation, 1988). These sections contain the key issues that must be first resolved, which 

include: availability of project capacity (8.18), federal rights in water transportation (8.17) and 

the identification and quantification of additional capacity associated with system improvements 

(McCann & Seasholes, 2012). The subsequent stakeholder meetings, which were held in 2014, 

started to develop solutions to these issues. 

Stakeholder meetings. The first stakeholder meeting was held in March 2014 and 

reintroduced the baseline elements of the policy. As defined in a presentation by Seasholes 

(2014), “wheeling contracts are tied to a specific supply, with a defined volume and duration, 

issued to a user that has satisfied all regulatory requirements.” Regulatory approvals were 

included in the language to limit speculative activity and to assure public review and oversight. 

Wheeling costs as determined in the third stakeholder meeting held in May 2014, were vague, 

which prompted a response from different stakeholder groups including the Arizona Municipal 

Water Users Association (CAP, 2014). During this stage of the meetings, a review of the policy 

language found that the associated costs could heavily burden the initial wheeling policy users. 

Infrastructure costs (including pumping plant improvements, new spillway construction and 

canal lining), water quality mitigation, system losses, energy sources and CAWCD Board review 

were areas for concern (Seasholes, 2014).  

The CAP staff have since responded to the stakeholder’s concerns and clarified their 

positions in the Major Elements of the CAP Staff Proposal for Wheeling Non-Project Water (See 

Appendix B) document from September, 2014 (CAP, 2014). This document provides the policy 

assumptions on which the research was conducted and designed (See Appendix B). The key 
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element being that until Reclamation approval is granted, the certainty needed to design this 

research to a specific wheeling contract was not feasible. 

Major elements for wheeling Non-Project water. The first consideration for wheeling 

proposals is the capacity of the CAP system. Specifically, any delivery capacity increases to the 

system will include necessary improvements and requires review from Reclamation. The review 

from Reclamation will determine how much capacity and in turn the CAP-arranged contracts 

will be tied to the capacity volume deemed appropriate under the review, all of which are based 

on the original Contract (CAP, 2014). The capacity issue is critical to wheeling because in a 

shortage situation, the ability to transport water on CAP infrastructure could become a feasible 

solution when project-water is unavailable. In contrast, with full-delivery of CAP project water, 

the capacity for wheeling on the existing infrastructure would merit federal review.  

The staff proposal also emphasized that all costs are to be paid by the wheeling parties 

and collected through an up-front fee with annual rates tied to specific system improvement 

projects. Other costs paid for by a wheeling party also include: current market energy rates 

(pumping-plants), turn-in design, construction and equipment costs, water quality impact 

analysis, water quality monitoring equipment and testing, water metering and telemetry as well 

as legal and administrative review costs. Some of these costs are only applicable to certain 

sources of wheeling-water, such as imported groundwater (Seasholes, 2014). 

The wheeling contracts are open to all parties including Tribes within Arizona and will be 

tied to specific intrastate transfers of legal and physical water supplies. Duration of the contract, 

especially for long-term leases, and the number of parties contracting that specific supply can be 

flexible and are not specified by the CAWCD review. Contracts can be modified and transferred 

to another party as long as an “Intent to Contract” agreement specifies time and performance-
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based benchmarks to secure regulatory approval. Approval includes environmental approvals, 

like NEPA, as well as existing CAP processes for attaining public feedback. Basic operation 

details include a 5% system loss factor, state-administered water quality standards and the ability 

to purchase alternative energy, although the CAWCD has deemed those purchases an unrealistic 

option at this time (CAP, 2014). The major assumption that can be made under the current policy 

language is that for Non-Project, main stem Colorado River surface water and for the potential 

alternative transfer market development, the consent of the Arizona Department of Water 

Resources (ADWR) and Reclamation is required (Seasholes, 2014). 

Recent developments. As of February 2016, wheeling has been incorporated into a draft 

CAP System Use Agreement (CAP, 2016). The agreement will create “new flexibility” in the use 

of the CAP canal to benefit water users in CAP’s service area. This development is important 

because the internal CAP wheeling policies and operations could provide a framework from 

which wheeling could be expanded into Yuma and La Paz counties (CAP, 2016).  

Central Arizona Groundwater Replenishment District (CAGRD) Proposal 

Draft proposals for wheeling water transfers have been developed over the last three 

years for the CAGRD Active Management Areas (AMAs) of Maricopa, Pima and Pinal counties 

with mention in its 2015 Plan of Operation (CAGRD, 2014). Policies like wheeling could help 

entities, such as the CAGRD, develop a more robust water market for Arizonans. A robust water 

market is based on the premise that if senior water rights holders have more options to lease or 

sell, and buyers have more market choices, mutually beneficial arrangements will occur (Easter 

& Huang, 2014). Potential wheeling partners include twenty-two municipal water providers 

located throughout the Phoenix, Pinal and Tucson AMAs (Table 1) (CAWCD, 2013).  
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For these municipalities, CAGRD has focused on surface water within their own regional 

irrigated agriculture, which could be transferred, leased or fallowed. However, the 2015 Plan 

developed a pilot fallowing program that wheeled unused main-stem, Non-Project Colorado 

River water to CAP-serviced AMAs (Fig. 4).  The CAGRD developed this program with the 

Yuma Mesa Irrigation and Drainage District (YMIDD), geographically separate from the 

CAGRD, located in the southern Arizona county of Yuma (CAP, 2014). This pilot program 

provided a trial implementation for wheeling outside of CAP governance however it’s details 

and outcomes were not considered further for this research. Instead, the research focused on the 

preliminary steps necessary to find a water market scenario where wheeling could occur. 

Water Transfer Markets  

The term water market refers broadly to all market-based reallocation mechanisms, 

including water transfers (Easter & Huang, 2014). A water transfer is the sale or lease of the 

right to divert a certain amount of water. Typically, a water transfer takes the form of a voluntary 

agreement that results in a temporary or permanent change from one entity or user to another, a 

change in location or a change in type of water use (Western Governors Association, 2012). 

Formal and informal water transfer markets are utilized in the Southwestern U.S. and include 

permanent transfers, a water market-based sale of a water right, and temporary transfers, a water 

market-based lease for the water. Both types of transfers redistribute or reallocate the water right 

(Easter & Huang, 2014).  

Formal markets enable transfers across large geographic areas and are governed by state 

and federal laws and rules. Limitations of formal markets include large upfront costs for 

infrastructure, including canals and control structures (Easter & Huang, 2014). In contrast are 
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informal markets, which develop locally to allow the trade of water among neighboring farmers 

and are operated based on rules informally developed at the community level. Trade of water is 

more immediate, such as for the use of water the next day, week or irrigation turn. These types of 

markets can be used to allocate water without large investments in management or infrastructure 

yet they are very limited in scope and do not involve the exchange of water over a very large 

area or among different sectors (Easter & Huang, 2014). 

All twelve western states including the Lower Colorado River Basin states of Arizona, 

Nevada and California, have used water transfers to address water shortages (Western Governors 

Association, 2012) but not as readily as one might expect (Culp et al., 2014). The legal 

framework and price variability were noted by Culp, Glennon and Libecap (2014) to hinder the 

development of water transfer markets however, the proposed wheeling policy could help change 

some of these challenges to market development. The CAGRD pilot-fallowing program with 

YMIDD could be considered as an alternative to the traditional formal and informal water 

transfers markets.  

Alternative transfer markets (ATMs). Alternative transfer markets (ATMs), are a 

“suite of tools, like leases, rotational fallowing, split-season uses, and water banks…that…avoid 

the permanent dry-up of agricultural land,” (Western Governors Association, 2012, p. 1). ATMs 

are increasingly being used to mitigate scarcity situations, like the current U.S. Southwest 

drought, and are useful throughout the entire Colorado River Basin. For example, the Palo Verde 

Irrigation District (PVID) in Southern California entered into a fallowing agreement with the 

Metropolitan Water District of Southern California (MWD) in 2009 (PVID, 2015). This program 

provided an array of compensation options for farmers with the resulting water savings 

transferred to MWD for urban use. Options included market value payments per acre fallowed 
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and additional compensation per acre of water transferred. These options provide farmers with a 

revenue stream and risk mitigation while providing reliable delivery for municipalities (Culp et 

al., 2014).  Another example includes ATMs for the Upper Colorado River Basin developed by 

the Poudre Water Sharing Working Group (PWSWG). The group’s 2015 report assessed the 

possibility of water transfers from irrigation companies to domestic water providers. The 

PWSWG focused on methods that allowed farmers to lease water temporarily to cities while 

keeping ownership of the water in agriculture. They found specific techniques like changing to 

crops that require less water, fallowing land and deficit irrigation were applicable for ATM 

development (PWSWG, 2015).  

Based on similar techniques as those used in the Colorado River Basin, researchers 

Bjornland and Rossini (2010) found that water markets in Australia have allowed irrigators to 

achieve the highest possible return from declining resources while reducing economic hardship, 

ultimately managing drought situations. One way this was achieved was by moving water from 

lower valued crops (rice) to crops with more flexible irrigation demands and higher return value 

(fruit trees). Agricultural use is the dominant water use in the U.S. Southwest, making the value 

of crops important to market developments. According to works published by Easter and Huang 

(2014), ATMs have potential gains over spatial and temporal allocation inefficiencies and allow 

for societal gains through the changes in the perceived or actual value of a particular water use. 

All three examples illustrate how alternative water markets “provide maximum flexibility in 

responding to changes in agriculture,” (Easter & Huang, 2014, p. 45) which in turn can allow for 

a robust market where wheeling-based water transfers can develop. 
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Social Capital  

However, the proposed wheeling policy is not only dependent on water market 

flexibilities, but is also dependent on having wheeling parties or partners involved and directing 

the process. At present, the CAWCD (which includes CAGRD) has working relationships 

throughout the CAP serviced areas of central Arizona as well as federal agencies involved with 

Lower Colorado River Basin (LCRB) water governance. To wheel Non-Project water from 

different regions of the LCRB, knowing which parties or partners to target is just as essential to 

the process as calculating water volumes and land values (Willardson, 2014). According to City 

of Phoenix water resource representative Kathryn Sorensen, “having relationships helps you 

have conversations when you want new solutions,” (Walton, 2015). Furthermore, Ostrom (2009) 

suggests that “cheap talk,” i.e. informal face-to-face communication, promotes cooperation and 

creates joint strategies for those involved in the decision-making process. 

To build relationships through “cheap talk” and to find new solutions for the emerging 

water market, the engagement and empowerment of existing water users through consent and 

compensation is essential (Easter & Huang, 2014). According to authors from Easter and Huang 

(2014), “this provides a starting point from which a market can begin to efficiently allocate the 

resource to its highest-valued use,” (p. 44). Thus, initiating relationships in order to engage 

potential wheeling partners could be considered an investment in social capital.  

A breadth of literature has been devoted to defining social capital across the disciplines of 

social science and economics and has been applied to the interdisciplinary nature of water 

resource issues (Castle, 2002). As defined by Woolcock (2001) in Castle (2002), social capital is 

“the norms and networks that facilitate collective action,” (p. 334). The combination of 

geographic and economic information when coupled with supportive actions is considered by 
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Eakin et al. (2015) as social capital. This definition of social capital promotes the use of shared 

values, trust and leadership to organize and effect change, particularly for facilitating water 

transfers (Castle, 2002). In other words, social capital, and the investment in it, includes building 

social relationships between individuals and communities alike (Barnes-Mauthe et al., 2015). 

For socio-ecological systems like water resources, social capital is important because 

those who have a greater extent or diversity of relationships can be in a position to influence the 

process (Barnes-Mauthe et al., 2015). For the emerging water transfer markets, Castle (2002) 

suggests social capital can be used as a diagnostic tool to determine the potential of a rural area 

to achieve a specific objective. In this case, the objective is to find mutually beneficial wheeling 

partners. Eakin et al. (2015) noted the mutual need for farmers to build social capital in order to 

actively shape their communities instead of just reacting to policies developed for them. 

Wheeling could provide the flexibility in the Arizona water transfer market needed to allow 

social capital investment both from municipalities to agricultural regions and vice versa. 

Institutions & Water Governance  

How and where to finding wheeling partners as a means to invest in social capital. In 

order to understand the social capital landscape of potential wheeling partners in Arizona, it is 

important to understand the institutional arrangements of the region. Since social capital can be 

assessed by the structure of ones’ social network, assessing the structure of water governance 

institutions is an important element of the social capital investment process (Barnes-Mauthe et 

al., 2015).  An institution can be defined by “the formal and informal rules and norms that 

govern actors, resources and their interactions in any given situation,” (Eakin et al., 2015). Elinor 

Ostrom (2011) defined institutions as “the rules that humans use when interacting 

within…structured situations,” (p. 3). According to Grafton, Landry, Libecap and O’Brien 
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(2009), having the appropriate institutional and legal framework for a water transfer can 

successfully change the designation of water to a higher value application.  

Three basic types of water governance regimes and the institutional arrangements which 

support them have been reviewed for the application to the CAGRD case study: a state, or 

hierarchical regime (Bromley, 1992), a common-pool regime (Ostrom, 2011) and the polycentric 

framework under which multiple regimes operate (Sternlieb & Laituri, 2015). Water governance 

regimes are based on the concept of “property” (i.e. water rights) as not an object for ownership 

but a benefit, or income stream (Bromley, 1992). The ownership or control of the benefit stream 

is dictated by a system of authority, or regime. The regime is a reflection of how individuals 

interact with one another in regards to the specific property (Bromley, 1992).  

Under the institutional arrangement of the state property regime, the “top-down” 

direction of the U.S. Bureau of Reclamation has been the predominant water governance 

structure for the CAP, acting as an intermediary between individual water users and federal 

water projects (Benson, 2013). This is common to irrigated agriculture in the Western U.S. 

(Benson, 2013). Water governance can also be categorized under a common-property regime 

(Ostrom, 2011). In this regime structure, water is a common-property, non-excludable and a 

public benefit stream (Bromley, 1992; Fernald et al, 2012; Ostrom, 2009). Examples include 

fishery co-ops (Wilson et al., 1994), forest harvesting communities (Ostrom, 2011) and in terms 

of water resources, the acequia system of irrigated agriculture of the U.S. Southwest (UNM 

School of Law & The Utton Center, 2013). 

For the proposed wheeling policy for the CAGRD, both of these regimes are interwoven 

throughout the CAP. These regimes play into the polycentric framework of the LCRB. Ostrom 

(2009) has defined the polycentric regime as having “many centers of decision-making that are 
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formally independent of each other,” which can be viewed as “an interdependent system of 

relations,” (p. 411). This definition supports the geographic theory on urban areas that proposes 

that the water governance institutions of cities cannot be strictly defined as individual entities, 

but as a “system of cities” (Ernston et al., 2010). Sternlieb and Laituri (2015) discuss the 

differences in governance patterns specifying the differences between hierarchical structures of 

polycentricism and traditionally nested or internal systems of governance (Fig. 5). Their 

geospatial research has visualized the polycentric nature of the entire Colorado River Basin 

across multiple scales of water governance and throughout all types of institutional arrangements 

(Sternlieb & Laituri, 2015).  

The polycentrism found throughout the LCRB and CAP could allow the wheeling policy 

to navigate throughout the multi-layered institutions and governance systems as well as the 

different property regimes. For example, the CAGRD water governance has the following 

institutions: Reclamation, ADWR, CAP, CAWCD, AMAs, Irrigation Districts, Counties, 

Municipal Service Areas (MSAs) and Tribes (Fig 6). The institutional norms and property 

regimes of each individual governance unit could be streamlined under the existing wheeling 

language albeit, Reclamation approval is granted (Seasholes, 2014). Contracts made between 

wheeling partners could cross the aforementioned institutional barriers and governance 

boundaries currently found in Arizona (Sternlieb & Laituri, 2015). First identifying the 

governance structures, with the use of geospatial tools, could aid development of alternative 

water transfer markets across the social capital landscape. 

Decision-Support Tools 

In the Western U.S., water resource managers are embracing geospatial tools to perform a 

variety of research analyses to develop policies. In particular, the Western States Water Council 
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promotes the use of satellite monitoring systems and geospatial data to inform decision-making 

(Willardson 2014). The quantification and identification of agricultural and urban water demand, 

estimating water use and monitoring commodity market fluctuations can be conducted using 

geospatial tools such as satellite imagery, thermal infrared imaging and other geoprocessing 

technologies (Willardson 2014). Creating transparency and access to this sort of information is 

essential for water market development. However, a steep learning curve often exists to access, 

as well as operate these technologies, creating barriers for non-experts (Braden et al., 2014). To 

enable the use of geospatial tools for water transfer policies like wheeling, McInery and others 

(2014) argued that the tools should be catered to the user group(s) while being able to visualize 

the interwoven science and policy of water resources (McInery et al., 2014).  

USDA NASS CropScape. Fortunately, geospatial tools are becoming more publicly 

available to a range of skill levels. One such tool is a remote sensing derived, web-based GIS 

program called CropScape (USDA NASS, 2015). Created by the U.S. Department of Agriculture 

(USDA) National Statistics Service (NASS), this tool provides agricultural cropland cover data 

for all forty-eight conterminous states with data ranging from 1997 to 2014 (Craig, 2010). As 

explained by Han, Yang, Di and Mueller (2012), addressing the difficulties of finding and 

operating geospatial tools were considered in the development of CropScape: “CropScape uses 

intuitive building of the end user’s skills and experiences to design a user interface that is 

effective for both beginners and advanced users” (p. 112). 

Cropland cover for a specific location, called the area-of-interest (AOI), can be generated 

from this program. The AOI is available for the forty-eight contiguous states, by federal 

agriculture district or county and can be defined by the tool operator. CropScape provides 

geospatial data layers by year and crop type, creates spreadsheets and draws simple user-friendly 
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maps and charts (Boryan et al., n.d.). The data is rooted in remote-sensing technology and 

traditional ground survey verifications (Craig, 2010). All types of land cover data are obtained 

from satellite images by automatic classification or photo-interpretation. Area, by crop 

identification code, is estimated by simply measuring the area covered by each land cover class 

(Gallego, 2004). Primary geospatial data output for these measurements are in pixelated form 

and defined as “pixel count.” The total pixels per cropland cover code are then converted to an 

estimated acreage.  

The advantage of CropScape is its compatibility with other geospatial tools such as 

Google Earth, Q-GIS and ESRI ArcGIS (Han et al., 2012). CropScape’s ability to generate 

agricultural data by specified AOI for the desired temporal period was the key component for 

this research project. Perrone and Hornberger (2012) point out “knowledge of the details of 

changes in irrigated land provides information useful for exploring more effective water 

management strategies,” (p. 1). This supports the utilization of CropScape to generate a 

foundation from which water resource policy dialogue can begin. Braden and others (2014) 

found that to address water issues and problems including policies like wheeling, broad 

community access to natural and social system scientific data is essential. All potential wheeling 

partners, including mangers, planners, elected officials and farmers need accessible technology 

to make and implement water resource management decisions regardless of the scale of use 

(Eakin et al., 2015).  

USDA NASS Quick Stats vs. state specific data. The web-based program called Quick 

Stats is publically available from the USDA and is used to access a large collection of data, 

analysis, and statistics (USDA NASS, 2015). Located within the USDA’s Research, Economics 

and Education section, Quick Stats aids the department’s mission to develop “sustainable, 
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competitive … as well as strong communities… through integrated research, analysis, and 

education,” (USDA NASS, 2015). Quick Stats is designed to provide census data and/or 

surveyed agricultural estimates as broad or as specific as needed (USDA NASS, 2015). Housed 

under five sectors (i.e. Animals and Products; Crops; Demographics; Economics; 

Environmental), Quick Stats builds queries of the agricultural census and survey statistics based 

on the simple filtering rules of What, Where, and When (USDA NASS, 2015). However, 

individual, state-specific reports are an easier resource to locate and glean the same information 

from. Annual state-based statistical bulletins, like the 2014 Arizona Bulletin, provide overviews 

for the specific region including individual counties, drawing from the same sources as the Quick 

Stats program but in a more user-friendly format. 

Consumptive irrigation requirement. Consumptive Irrigation Requirement (CIR) was 

the physical metric used for targeting social capital investment. CIR, for the purposes of this 

research, is a combination of different agriculture terms typically used in the development of 

irrigation schedules (Erie et al., 1981).  Consumptive use is defined by Erie et al. (1981) as, “the 

unit amount of water used on a given area in transpiration, building of plant tissues, and 

evaporation from adjacent soil” (pg. 2).  Another term pertaining to the use of CIR is irrigation 

water requirement. Erie et al., (1981) defined irrigation water requirement as “the amount of 

water necessary for a particular crop’s consumptive use (consumptive water requirement),” (pg. 

3). However, CIR was clearly defined by Pochop and others (1992) as “the consumptive use 

requirement of a crop minus precipitation” (pg. 2) and is the chosen definition for this research. 

CIR data was collected from three sources including the 2013 Farm and Ranch Irrigation Survey 

(FRIS) (USDA NASS, 2014, Table 36), a 1982 report for Maricopa County, AZ (Erie et al., 

1981) and the California Department of Water Resources (CADWR), (Cooley, 2015). 
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Water Governance Relational Geodatabase.  A Colorado River Basin specific 

geodatabase was assembled by Laituri in 2014. The Water Governance Relational Geodatabase 

(WGRG) provides another “geospatial method to examine the governance of water resource use 

by sector” and across scientific disciplines (Sternlieb & Laituri, 2015, p. 52). Collins and Law 

(2013) define a geodatabase as “a database or file structure primarily used to store, query, and 

manipulate spatial data. Geodatabases store geometry, a spatial reference system, attributes, and 

behavioral rules for data,” (p. 729). This geodatabase was developed to understand the 

institutional structure for the basin including physical, geopolitical, legal and cultural boundaries 

(Sternlieb & Laituri, 2015). This geodatabase can also examine all the water governance 

institutions in the basin as well as provide a range of qualitative and quantitative data 

(Attachment 3).  

The ESRI ArcGIS 10.1 platform is commonly used for geoprocessing both for the 

WGRG and CropScape data. Geoprocessing is the operation of a GIS to manipulate GIS data 

which in turn “helps define, manage, and analyze the information used to form decisions,” 

(Collins & Law, 2013, p. 730). Although, not a totally unrestricted software tool, the variations 

of ESRI ArcGIS can be sourced on the web through its online program ArcGIS Online and from 

other open-platform sources such as Q-GIS, AZGEO, Google Earth, etc. (Collins & Law, 2013, 

p. 148). The WGRG decision-support tool was used to delineate the agricultural water 

governance boundaries (counties, irrigation districts, Tribes, etc.) in southern Arizona for social 

capital investment (Fig. 7). 

California Water Supply and Demand model. Social capital investment, and the search 

for where to invest for wheeling purposes, focused on low-valued, highly consumptive 

agricultural uses. The use of regional values of crops per water unit provided the low-valued 
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economic aspect to the social capital investment locational search while seasonal rates of CIR 

isolated the highly consumptive crops. Specifically, the California Water Supply and Demand 

Model (CWSD) output for Arizona was used to provide average water values by crop type to 

reflect the agricultural water values available for alternative water transfer markets. The values 

as seen in Table 2, are based on a model, developed for California, from Stanton and Fitzgerald 

(2011) at the Stockholm Environment Institute-U.S. Center (Stanton & Fitzgerald, 2011). 

The model was developed to examine how climate change could affect California’s water 

supply and demand, in economic terms, and focused on the energy, agriculture and urban sectors 

(Stanton & Fitzgerald, 2011). Specifically for this research, the Arizona values were pulled from 

a supplementary model developed for Western states that was based on the original CWSD 

model assumption that “crop and animal water use by county is a function of projected summer 

temperatures by county,” (Stanton & Fitzgerald, 2011, p. 4) and that water can be transported 

without cost, within the state. The latter assumption is akin to the most basic element of wheeling 

in Arizona, which is that the costs of water transport are unknown at this point in the policy 

development.  

Furthermore, the model was designed with the economic measuring unit by county, with 

data accrued from the USDA NASS Quick Stats 2007 Census output (Ackerman & Stanton, 

2011).  These values were converted into the 2014 consumer price index for the research. The 

model’s use of the county as the smallest unit of measurement is advantageous to this research 

and the institutional arrangements of the wheeling policy as the county is the largest unit of water 

governance to be examined. Additionally, the customization of crop values by individual states is 

beneficial for capturing the regional agriculture, which is inherently different throughout the 

Colorado River Basin and the U.S. Southwest (Stanton & Fitzgerald, 2011). 
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The original model estimated water use for 27 irrigated crop categories and five livestock 

categories in California (Stanton & Fitzgerald, 2011), however in Ackerman & Stanton’s (2011) 

analysis, average values for ten grouped crop categories for the Southwest and California, and 

even further specificity for the Western states were developed (Table 2). Arizona has eight crop 

categories and an average for all crops available from the model (Ackerman & Stanton, 2011). 

Furthermore, economic value determination methods from Gleick, Cooley and Groves (2005) 

classified major crops into four broad categories: Field, Vegetable, Orchard, Vineyard (Gleick et 

al., Appendix 2, p. 2) These classifications were further considered in Groves, Maytac and 

Hawkins’s (2005) definitions for effective crop water use. In Groves et al. (2005), which was 

later applied to the CWSD model (Ackerman & Stanton, 2011; Stanton & Fitzgerald, 2011), high 

value crops were considered all truck crops, trees, vines; while low value crops included grain, 

rice, cotton, sugar beets, corn, safflower, dry beans, other field, pasture and alfalfa (p. 68). 
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Pg. 13, Figure 2. 1922 Colorado Compact states, (Gerlitz, 2015). 
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Pg. 14, Figure 3. Irrigated agriculture, Maricopa County, AZ, (Adapted from Fleck, 2015). 

 

 

 

Pg. 19, Table 1. CAGRD municipal water providers by Active Management Area, (Gerlitz, 

2015). 
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Pg. 19, Figure 4. CAGRD Active Management Areas, (Gerlitz, 2015). 
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Pg. 25, Figure 5. Conceptual governance patterns: Nested hierarchy and polycentricism, 

(Adapted from Sternlieb & Laituri, 2015, p. 39) 
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Pg. 25, Figure 6. Water Governance Relational Geodatabase layers for the CAGRD, (Gerlitz, 

2015). 
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Pg. 29, Figure 7. Southern Arizona social capital investment areas, (Gerlitz, 2015). 
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Pg. 30, Table 2. Value of crops per acre-foot of water for Arizona, California and the Southwest 

average, (Adapted from Ackerman & Stanton, 2011). 

CWSD MODEL RESULTS: ARIZONA   CPI INFLATION CALCULATOR* 

CROP CATEGORY 2007 $/AF 2014 $/AF 

Other crops and hay $171  $195  

Cotton and cottoneed $238  $272  

Other grains, oilseeds, dry beans/peas $243  $277  

Wheat $441  $504  

Fruits, tree nuts, and berries $772  $881  

Dairy, cattle (including water for hay) $783  $894  

Vegetables, melons, sweet potatoes $2,875  $3,283  

Nursery, greenhouse, floriculture, sod $15,370  $17,549  

Average for all crops $1,101  $1,257  

      

CWSD MODEL RESULTS: SOUTHWEST     

CROP CATEGORY 2007 $/AF 2014 $/AF 

Other crops and hay $121  $138  

Rice $172  $196  

Corn $290  $331  

Cotton and cottonseed $337  $385  

Other grains, oilseeds, dry beans/peas $217  $248  

Wheat $341  $389  

Fruits, tree nuts, and berries $1,370  $1,564  

Dairy, cattle (including water for hay) $878  $1,002  

Vegetables, melons, sweet potatoes $2,254  $2,574  

Nursery, greenhouse, floriculture, sod $28,265  $32,272  

Average for all crops $1,199  $1,369  

*http://data.bls.gov/cgi-bin/cpicalc.pl?cost1=1.00&year1=2007&year2=2014 
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Methods 

The USDA NASS CropScape platform is accessed from the following web address: 

http://nassgeodata.gmu.edu/CropScape (USDA NASS, 2015). The CropScape tool was used first 

to find cropland cover acreage values for the entire state of Arizona for data year 2014. Next, La 

Paz and Yuma Counties were examined. ESRI ArcGIS 10.1 processed the CropScape data and 

provided a way to visualize the polycentric institutional arrangements of the Colorado River 

Basin with geospatial data from the WGRG (Laituri, 2014). The geodatabase isolated the water 

user groups as “Area(s) of Interest” (AOIs) to import into CropScape and then, the 2014 data for 

each AOI was exported and analyzed in Microsoft Excel (Excel). See Appendix C for a step-by-

step process for importing an AOI from the WGRG and attaining cropland data layers and 

associated attributes.  

Following CropScape, the USDA Quick Stats program was reviewed for usability to 

compare with the geospatial-based data. USDA Quick Stats platform is accessed from the 

following web address: http://quickstats.nass.usda.gov. The learning curve required to use this 

web-based platform proved more troublesome than beneficial to the project. Preliminary 

investigation found the Quick Stats database to be more complex than CropScape, with variable 

datasets dependent on individual crop types, the geographic location, as well as the year. As a 

substitute, the USDA NASS Arizona Field Office 2014 Annual Statistics Bulletin provided crop 

production data including total acres harvested and the total value for major crops for data year 

2013, which was the most recent (USDA NASS, 2014). The Bulletin is available at 

http://www.nass.usda.gov/Statistics_by_State/Arizona. Furthermore, CIR values for Arizona 

were not found in the initial review of USDA Quick Stats but were identified in Table 36 of the 

2013 FRIS state-specific information (USDA NASS, 2014).  
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CIR was further investigated by two other sources. The first source was a 1982 report on 

Maricopa County agriculture (Erie et al., 1981). The Erie et al. values were average water 

application depth, reported by total inches-per-season. Inches-per-season were converted into 

feet per year (Attachment 1). Average values for crops unavailable from the Erie et al. dataset 

were pulled from Figure 3 of the Pacific Institute’s California Agricultural Water Use: Key 

Background Information, which reported average water application depth in feet per year 

(Cooley, 2015).   

Lastly, for crop water use value data, the California Water Supply and Demand (CWSD) 

Model for the Southwest and Arizona (Ackerman & Stanton, 2011) was assigned to the 

CropScape output. Reported in 2007 dollars, these values along with the USDA NASS Bulletin 

values were converted into 2014 dollars with the Consumer Price Index (CPI) Calculator (U.S. 

Bureau of Labor Statistics, 2016). All water use values in this research were reported in 2014-

dollar values. 

Excel was used to organize and manipulate crop acreage data from the CropScape tool, data 

from the USDA 2012 Census FRIS table and USDA NASS 2014 Bulletin (USDA, 2015), 

regional crop water use values from the CWSD model (Ackerman & Stanton, 2011) and Arizona 

CIR charts (Erie et al., 1981). The research spreadsheet is provided as an attached document with 

specific details about how data was organized (Attachment 1). The spreadsheet was designed to 

compare and access data across all decision-support tools to target low-valued, highly 

consumptive crops, both with tables and with GIS data layers.  

ESRI ArcGIS 10.1 created maps for the CIR values (FT/YR), water use values ($/AF), 

target crops and sensitivity analyses for the two counties and four individual water user groups 
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(Attachment 2). The creation of the maps required crop name assignments by cropland data layer 

(CDL) gridcodes from CropScape. CDL gridcode assignments to the different agricultural 

datasets required the development of crop-naming categorizations. GIS data layers were created 

for each crop name and value categorization group, including all dataset combinations and 

sensitivity analyses. The Excel worksheet includes all GIS data layer “Query by Attributes” 

scripts that identified individual gridcodes by categorization group (Attachment 1). The 

categorizations used to create GIS layers are described below. 

Crop Name (CDL Gridcode) Categories  

Spanning multiple USDA NASS sources, state specific metrics and peer-reviewed journal 

data, the social capital investment targeting required a divergence from the CropScape-only 

naming structure. To append CropScape data crop names (total acres/gridcode) to CIR (FT/YR) 

and water use value ($/AF), four data source groups were developed. The first was based on the 

USDA 2012 Census’s FRIS 2013 values. The second was a combination of CIR metrics from 

Erie et al. (1981) and the California Department of Water Resources (CADWR) state averages 

(Cooley, 2015). The third group was based on the USDA NASS 2014 Bulletin for Arizona. 

However, the majority of water use values for the research were drawn from the last name group, 

developed from the CWSD model (See Appendix D), (Ackerman & Stanton, 2011).  

USDA CropScape. The 2014 CDL gridcode numbers and the associated crop names from 

the CropScape data served as the baseline for all CIR and water use values for the research. 

Seventy gridcodes (USDA NASS, 2015) out of a possible 121 types for data year 2014 were 

identified for the entire state of Arizona.  
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USDA NASS 2014 Bulletin for Arizona.  The Bulletin contains multi-year Census and 

Survey data sources allowing in some instances, crop names in-line with the CropScape 

gridcodes. However, the crop names are generalized for standard crops, like wheat and corn with 

only a few specific crops found within Arizona, like cotton. Sixteen crop name categories from 

the 2014 Bulletin were identified for crop water use value. Unfortunately, this naming system 

was limited due to data gaps for the most recent year (2013) and was only applicable to nine 

CropScape gridcodes (See Appendix D).   

USDA NASS 2013 Farm and Ranch Irrigation Survey (FRIS). The Arizona CIR values 

from Table 36 of the FRIS were less specific than CropScape, but were applicable for the 

majority of crops. Of note was the “All other crops” name category found in the 2012 Census, 

which provided direct definitions of CIR for CropScape gridcode (44) “Other Crops”.  

Erie et al. & CADWR. The 1982 USDA publication based on the CIR values found in Erie 

et al. (1981) provided a list of 32 crops. When the Arizona-specific CIR values from Erie et al. 

lacked a direct match, the California Department of Water Resources (CADWR) naming system 

was utilized (Cooley, 2015). CADWR provided a list of 20 crop categories from which to assign 

to the proper gridcodes. These broad categories were first assigned to a gridcode, but when 

unsuitable, the crop categories provided further classification into a total of 82 specific crops.  

California Water Supply and Demand (CWSD) model. The CWSD naming group 

provided a base of eight crop categories for Arizona. When unsuitable, the Southwest averages 

were applied expanding the range of names to eleven. When further specification was needed to 

assign a dollar value for a gridcode not available from the model, the CADWR crop categories 

(20 crop types) and associated definitions (82 crops) were used (See Appendix D). 
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Consumptive Irrigation Requirement (CIR) Categories  

 

After developing a process for crop naming, consumptive irrigation requirement (CIR) 

values were defined. CIR was defined by the depth of water applied in a growing season in feet-

per-year.  Depending on this depth, a HIGH, MEDIUM, or LOW value was assigned. Gridcodes 

were represented in ESRI ArcGIS 10.1 by color types blue (LOW 0-2.5 FT/YR), orange 

(MEDIUM 2.51-3.75 FT/YR) and red (HIGH +3.76 FT/YR) (Table 3).  

To assign a specific CIR value designation to gridcodes, the value-by-name assignments 

were conducted for Erie et al. and CADWR as well as for the USDA FRIS metrics. When a 

combination of two gridcode name types composed an individual gridcode, metrics for each 

individual crop were added, or an average was calculated. For example, (230) 

DblCropLettuce/Cotton would have a sum of (227) Lettuce and (2) Cotton (Fig. 8). Double-

cropped gridcodes (231—238) often had some of the highest CIR values. Generalized values 

were sometimes applied to a crop with further specifications. For example, wheat was divided 

into (22) Durum Wheat, (23) Spring Wheat and (24) Winter Wheat in CropScape but lacked the 

specific CIR values from Erie et al., CADWR or USDA FRIS (Fig. 9). Comments were inserted 

into each individual value’s cell within the attached Excel spreadsheet. This Excel feature 

provided a way to manipulate existing CIR data sources and explained the custom calculated 

value designations with their source(s) (Attachment 1). 

Erie et al. & CADWR. This CIR data group served as a baseline to assign feet-per-year 

values to HIGH, MEDIUM or LOW designation (Table 4). Limitations in the CIR assignments 

for this group led to the removals for (31) Canola, (35) Mustard, (44) Other Crops and (57) 

Herbs, which were left out of the analyses. In addition, (44) Other Crops was not easily definable 

from Erie et al. or CADWR and was not used for the Target AOI or sensitivity analyses.  
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USDA NASS 2013 Farm and Ranch Irrigation Survey (FRIS). As the most current 

CIR data set, FRIS Table 36 provided ample values for Arizona’s CIR including a value for (44) 

Other Crops which was lacking in the Erie et al./CADWR group. Gridcodes (31) Canola, (35) 

Mustard and (57) Herbs had similar definition issues as the Erie et al./CADWR group (Table 5). 

 

Crop Water Use Value ($/AF) Categories 

Defined by a HIGH, MEDIUM, or LOW determination, the dollar values provided an 

economic metric for agricultural water use in the case study regions. While differing in approach, 

(revenue based versus model output), the two categorical groups provided a general assessment 

of crop water value. All dollar values were converted from the existing data source value to the 

2014 CPI calculated amount, thus providing a connection for the 2014 CropScape data (U.S. 

Department of Labor, 2016). Crops were identified for water use value by the following 

definitions with acreage pixels represented in ESRI ArcGIS 10.1 by color types green (HIGH 

+$1000/AF), yellow (MEDIUM $300-999/AF) and light blue (LOW $1-299/AF) (Table 6). Like 

the custom calculations conducted in Excel for CIR, a similar approach was used for water use 

values. For example, double crop plantings were the sum of each individual crop gridcode value, 

($/AF) (Fig. 10). Double-cropped gridcodes (231—238) that included (227) Lettuce often had 

some of the highest water use values. 

 

USDA NASS 2014 Bulletin for Arizona. The USDA NASS group had the most recent 

Census data for Arizona agriculture. From the report’s 2013 data set for acreage, yield, 

production, price and value metrics, the dollar value of the water was calculated. With the 

inclusion of a CIR value from the USDA FRIS Table 36, MEDIUM and LOW valued crops were 

identified. All calculations were performed in the Excel spreadsheet (Attachment 1). The crop 
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water use value ($/AF) was identified for eight major crops (Table 7). For example, “Corn for 

Grain” was determined by the relation of “Value of Production” to “Harvested Acres” divided by 

USDA FRIS Table 36 CIR value for (1) Corn. Then the 2014 CPI calculator converted the 2013 

value into $455/AF (Fig. 11) (U.S. Department of Labor, 2016). Due to the limitations in 

available 2013 data as well as crop name categorization challenges, further application of this 

naming group to all possible gridcodes was not conducted.  

California Water Supply and Demand (CWSD) model. Where the USDA NASS 

group lacked in categorization options, the California Water Supply and Demand (CWSD) 

model provided a broad set of categories. The model was designed with the assumption that 

“crop…water use by county is a function of projected summer temperatures by county,” (Stanton 

& Fitzgerald, 2011, pg. 10). This approach to determining average crop water use dollar values 

stemmed from the model’s focus on how climate change Affects water supply and demand, in 

economic terms. This approach applied to the wheeling policy focus on this research because 

climate change and LCRB supply shortages are driving the need to find ATMs. Secondly, the 

original data used in the model was county-based, from the USDA 2007 Census. All values for 

CWSD crop categories were reported in 2014-dollar values with comments similar to the CIR 

groups (Table 8).  

 

Target Area of Interest (AOI) 

 

The target social capital investment type for CIR was the HIGH value (+3.76 FT/YR). Each 

naming group (Erie et al./CADWR), (USDA FRIS) were identified and mapped individually but 

were also combined in the final target maps. The target social capital investment type for the 

dollar value by crop water use was LOW ($1-299/AF). Each naming group (CWSD), (USDA 
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NASS) were identified and mapped individually but were also combined in the final target maps. 

Target crops were identified by color type purple (TARGET). 

USDA NASS 2014 Arizona report and USDA FRIS Table 36.  The USDA-based target 

values consisted of five gridcodes, selected from a total of 20 crops which fit either HIGH CIR 

or LOW water use value definitions. Target gridcodes for this group were (2) Cotton, (27) Rye, 

(36) Alfalfa, (37) Other Hay/Non Alfalfa and (41) Sugarbeets (Table 9). 

Erie et al.-CADWR-CWSD. The Arizona-California based target values consisted of four 

gridcodes, selected from a total of 21 crops, which fit either HIGH CIR or LOW water use value 

definitions. Target gridcodes for this group were (4) Sorghum, (36) Alfalfa, (37) Other Hay/Non 

Alfalfa and (176) Grass/Pasture (Table 10). 

Combined groups. The combined target values included seven gridcodes, selected from the 

two groups (Table 11). The combined target values were used in the results and include 

gridcodes (2) Cotton, (4) Sorghum, (27) Rye, (36) Alfalfa, (37) Other Hay/Non-Alfalfa, (41) 

Sugarbeets and (176) Grass/Pasture. 
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Pg. 43, Table 3. Key for consumptive irrigation requirement, (Attachment 1, Gerlitz, 2016). 

 

 
Key: Consumptive Irrigation Requirement (CIR) 

USDA 2012 Census, FRIS , Table 36 AZ (2014) 

AZ USDA CIR (Erie et al., 1981) 

CADWR/Custom Calc - see comment 

NA-see statewide totals 

L (Low CIR)= 0-2.5 FT/YR 

M (Medium CIR)= 2.51-3.75FT/YR 

H (High CIR)= 3.76 FT/YR and above 

 

 

Pg. 43, FIGURE 8. Comment example for CIR, (Attachment 1, Gerlitz, 2016). 

 

 

232 

Dbl Crop 

Lettuce/Cotton 

4.14 

FT/YR H 
Gerlitz, Sara: Sum lettuce and cotton, AZ USDA CIR (Erie, et. Al, 1981). 

 

 

 

Pg. 43, FIGURE 9. Comment example for CIR, (Attachment 1, Gerlitz, 2016). 

 

 

22 Durum Wheat 

2.15 

FT/YR L 
Gerlitz, Sara: Wheat used for all CDL wheat types, AZ USDA CIR, (Erie et al., 1981). 
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Pg. 43, Table 4. CIR values by gridcode for Arizona: Erie et al. and CADWR (Attachment 1, 

Gerlitz, 2016). 

GRIDCODE CROP NAME CIR (FT/YR) RANK 

234 Dbl Crop Durum Wht/Sorghum 6.56 H 

236 Dbl Crop WinWht/Sorghum 6.56 H 

235 Dbl Crop Barley/Sorghum 6.49 H 

36 Alfalfa 6.19 H 

37 Other Hay/Non Alfalfa 6.19 H 

238 Dbl Crop WinWht/Cotton 5.57 H 

4 Sorghum 4.41 H 

176 Grass/Pasture 4.36 H 

27 Rye 4.25 H 

232 Dbl Crop Lettuce/Cotton 4.14 H 

74 Pecans 4.00 H 

75 Almonds 4.00 H 

204 Pistachios 4.00 H 

225 Dbl Crop WinWht/Corn 3.78 H 

59 Sod/Grass Seed 3.63 M 

72 Citrus 3.63 M 

41 Sugarbeets 3.57 M 

67 Peaches 3.45 M 

68 Apples 3.45 M 

71 Other Tree Crops 3.45 M 

77 Pears 3.45 M 

2 Cotton 3.43 M 

212 Oranges 3.26 M 

226 Dbl Crop Oats/Corn 2.90 M 

205 Triticale 2.86 M 

230 Dbl Crop Lettuce/Durum Wht 2.86 M 

211 Olives 2.85 M 

233 Dbl Crop Lettuce/Barley 2.79 M 

231 Dbl Crop Lettuce/Cantaloupe 2.27 L 

22 Durum Wheat 2.15 L 

23 Spring Wheat 2.15 L 

24 Winter Wheat 2.15 L 

21 Barley 2.08 L 

43 Potatoes 2.03 L 

47 Misc Vegs & Fruits 1.92 L 

208 Garlic 1.92 L 

216 Peppers 1.92 L 

219 Greens 1.92 L 
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Pg. 43, Table 4. …continued, (Attachment 1, Gerlitz, 2016). 

GRIDCODE CROP NAME CIR (FT/YR) RANK 

245 Celery 1.92 L 

246 Radishes 1.92 L 

243 Cabbage 1.74 L 

49 Onions 1.70 L 

214 Broccoli 1.64 L 

1 Corn 1.63 L 

42 Dry Beans 1.63 L 

209 Cantaloupes 1.56 L 

48 Watermelons 1.55 L 

213 Honeydew Melons 1.55 L 

244 Cauliflower 1.55 L 

28 Oats 1.48 L 

69 Grapes 1.44 L 

206 Carrots 1.38 L 

61 Fallow/Idle Cropland 1.09 L 

227 Lettuce 0.71 L 

44 Other Crops 0.00 L 
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Pg. 44, Table 5. CIR value by gridcode for Arizona: USDA NASS 2013 FRIS, Table 36, 

(Attachment 1, Gerlitz, 2016).  

GRIDCODE CROP NAME CIR (FT/YR) RANK 

238 Dbl Crop WinWht/Cotton 7.9 H 

232 Dbl Crop Lettuce/Cotton 7.8 H 

231 Dbl Crop Lettuce/Cantaloupe 7.5 H 

225 Dbl Crop WinWht/Corn 6.93 H 

236 Dbl Crop WinWht/Sorghum 6.7 H 

234 Dbl Crop Durum Wht/Sorghum 6.7 H 

230 Dbl Crop Lettuce/Durum Wht 6.7 H 

226 Dbl Crop Oats/Corn 6.33 H 

235 Dbl Crop Barley/Sorghum 6.1 H 

233 Dbl Crop Lettuce/Barley 6.1 H 

36 Alfalfa 5.4 H 

2 Cotton 4.5 H 

44 Other Crops 4.2 H 

41 Sugarbeets 4.2 H 

209 Cantaloupe 4.2 H 

213 Honeydew Melons 4.2 H 

37 Other Hay/Non Alfalfa 3.9 H 

59 Sod/Grass Seed 3.63 M 

212 Oranges 3.6 M 

211 Olives 3.6 M 

204 Pistachios 3.6 M 

77 Pears 3.6 M 

75 Almonds 3.6 M 

74 Pecans 3.6 M 

72 Citrus 3.6 M 

71 Other Tree Crops 3.6 M 

68 Apples 3.6 M 

67 Peaches 3.6 M 

41 Sugarbeets 3.57 M 

176 Grass/Pasture 3.5 M 

24 Winter Wheat 3.4 M 

23 Spring Wheat 3.4 M 

22 Durum Wheat 3.4 M 

227 Lettuce 3.3 M 

4 Sorghum 3.3 M 

246 Radishes 3.1 M 

245 Celery 3.1 M 

244 Cauliflower 3.1 M 
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Pg. 44, Table 5. …continued, (Attachment 1, Gerlitz, 2016). 

GRIDCODE CROP NAME CIR (FT/YR) RANK 

243 Cabbage 3.1 M 

219 Greens 3.1 M 

216 Peppers 3.1 M 

214 Broccoli 3.1 M 

208 Garlic 3.1 M 

206 Carrots 3.1 M 

49 Onions 3.1 M 

48 Watermelons 3.1 M 

47 Misc Vegs & Fruits 3.1 M 

205 Triticale 2.86 M 

28 Oats 2.8 M 

27 Rye 2.8 M 

21 Barley 2.8 M 

1 Corn 2.53 M 

42 Dry Beans 2.2 L 

43 Potatoes 1.9 L 

61 Fallow/Idle Cropland 1.09 L 
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Pg. 44, Table 6. Key for water use value, (Attachment 1, Gerlitz, 2016). 

Key Water Use Values ($/AF) by Crop Type 

USDA NASS AZ 2013 Values (2014 adjusted) (USDA, 2014) 

CWSD$ Values (2014 adjusted) (Ackerman & Stanton, 2011) 

substitutes-see comment 

NA 

L (Low $/AF)= $1-299 

M (Medium $/AF)= $300-999 

H (High $/AF)= $1000+ 

 

Pg. 45, Table 7. Water use values by gridcode for Arizona: USDA NASS 2014 AZ Bulletin, 

(Attachment 1, Gerlitz, 2016). 

GRIDCODE CROP NAME $/AF (2014 adj) Value (adj.) 

1 Corn 455 M 

36 Alfalfa 305 M 

2 Cotton 258 L 

21 Barley 248 L 

22 Durum Wheat 248 L 

23 Spring Wheat 248 L 

24 Winter Wheat 248 L 

37 Other Hay/Non Alfalfa 224 L 

4 Sorghum 132 L 

 

Pg. 45, Figure 10. Comment example for water use value categorizations, (Attachment 1, 

Gerlitz, 2016). 

 

 

Gerlitz, Sara: Sum Vegetables, melons, sweet potatoes and Wheat (Ackerman & Stanton, 2011) 

 

 

Pg. 45, Figure 11. Example of water use value calculation: USDA NASS 2014 AZ Bulletin, 

(Attachment 1, Gerlitz, 2016). 

 

(GRIDCODE) Crop Name: 

[(‘Value of Production’/’Harvested Acres’) / CIR (FT/YR)] = $/AF (2013) ~ CPI Calculator (2014) = $/AF 

(1) Corn: 

[(57,834,000/51,000) / 2.53] = $448/AF (2013) ~CPI Calculator (2014) = $455/AF 

230 Dbl Crop Lettuce/Durum Wht Vegetables, melons, sweet potatoes/Wheat $3786/AF 
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Pg. 45, Table 8. Water use value by gridcode: Erie et al., CADWR and substitute, (Attachment 

1, Gerlitz, 2016). 

GRIDCODE CROP NAME ($/AF) RANK 

59 Sod/Grass Seed  17,549  H 

231 Dbl Crop Lettuce/Cantaloupe  6,565  H 

230 Dbl Crop Lettuce/Durum Wht  3,786  H 

233 Dbl Crop Lettuce/Barley  3,560  H 

232 Dbl Crop Lettuce/Cotton  3,554  H 

246 Radishes  3,283  H 

245 Celery  3,283  H 

244 Cauliflower  3,283  H 

243 Cabbage  3,283  H 

227 Lettuce  3,283  H 

219 Greens  3,283  H 

216 Peppers  3,283  H 

214 Broccoli  3,283  H 

213 Honeydew Melons  3,283  H 

211 Olives  3,283  H 

209 Cantaloupes  3,283  H 

208 Garlic  3,283  H 

206 Carrots  3,283  H 

49 Onions  3,283  H 

48 Watermelons  3,283  H 

47 Misc Vegs & Fruits  3,283  H 

67 Peaches  881  M 

68 Apples  881  M 

69 Grapes  881  M 

71 Other Tree Crops  881  M 

72 Citrus  881  M 

74 Pecans  881  M 

75 Almonds  881  M 

77 Pears  881  M 

204 Pistachios  881  M 

212 Oranges  881  M 

225 Dbl Crop WinWht/Corn  835  M 

234 Dbl Crop Durum Wht/Sorghum  781  M 

236 Dbl Crop WinWht/Sorghum  781  M 

238 Dbl Crop WinWht/Cotton  775  M 

226 Dbl Crop Oats/Corn  609  M 

235 Dbl Crop Barley/Sorghum  555  M 
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Pg. 45, Table 8. …continued, (Attachment 1, Gerlitz, 2016). 

GRIDCODE CROP NAME ($/AF) RANK 

22 Durum Wheat  504  M 

23 Spring Wheat  504  M 

24 Winter Wheat  504  M 

28 Oats  504  M 

42 Dry Beans  504  M 

1 Corn  331  M 

4 Sorghum  277  L 

21 Barley  277  L 

2 Cotton  272  L 

205 Triticale  236  L 

27 Rye  195  L 

36 Alfalfa  195  L 

37 Other Hay/Non Alfalfa  195  L 

41 Sugarbeets  195  L 

43 Potatoes  195  L 

176 Grass/Pasture  195  L 

31 Canola  NA   NA  

35 Mustard  NA   NA  

44 Other Crops  NA   NA  

57 Herbs  NA   NA  

61 Fallow/Idle Cropland  NA   NA  
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Pg. 45, Table 9. Target AOI crops by gridcode: USDA NASS 2013 FRIS, Table 36 and USDA 

NASS 2014 AZ Bulletin, (Attachment 1, Gerlitz, 2016). 

Crop Name CDL HCIR USDA  L$ USDA TARGET AOI 

Corn   1 

 
Cotton 2 2 2 

Sorghum   4 

 
Barley   21 

 
Rye 27 27 27 

Alfalfa 36 36 36 

Other Hay/Non Alfalfa 37 37 37 

Sugarbeets   41 41 

Potatoes   43 

 
Pecans 74   

 
Almonds 75   

 
Grass/Pasture   176 

 
Pistachios 204   

 
Triticale   205 

 
Dbl Crop WinWht/Corn 225   

 
Dbl Crop Lettuce/Cotton 232   

 
Dbl Crop Durum Wht/Sorghum 234   

 
Dbl Crop Barley/Sorghum 235   

 
Dbl Crop WinWht/Sorghum 236   

 
Dbl Crop WinWht/Cotton 238   
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Pg. 46, Table 10.Target AOI crops by gridcode: Erie et al., CADWR and CWSD (Attachment 1, 

Gerlitz, 2016). 

 

Crop Name CDL HCIR ERIE/CADWR L$ CWSD TARGET AOI 

Cotton   2 

 
Sorghum 4 4 4 

Barley   21 

 
Rye 27 27 

 
Alfalfa 36 36 36 

Other Hay/Non Alfalfa 37 37 37 

Sugarbeets   41 

 
Potatoes   43 

 Pecans 74   

 
Almonds 75   

 
Grass/Pasture 176 176 176 

Pistachios 204   

 
Triticale   205 

 Dbl Crop WinWht/Corn 225   

 
Dbl Crop Lettuce/Cotton 232   

 Dbl Crop Durum Wht/Sorghum 234   

 
Dbl Crop Barley/Sorghum 235   

 
Dbl Crop WinWht/Sorghum 236   

 Dbl Crop WinWht/Cotton 238   

  

 

 

 

Pg. 46, Table 11. Combined Target AOI crops by gridcode, (Attachment 1, Gerlitz, 2016). 

Crop Name Erie/CADWR&CWSD USDA NASS COMBINED 

Cotton   2 2 

Sorghum 4   4 

Rye   27 27 

Alfalfa 36 36 36 

Other Hay/Non Alfalfa 37 37 37 

Sugarbeets   41 41 

Grass/Pasture 176   176 
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Results 

Yuma County 

Yuma County, Arizona is located on the state’s Colorado River border next to California 

and Mexico, in the most southwestern region of the state. Yuma’s agricultural profile is diverse 

across both crop types and the assigned crop water use and CIR values. The size of the majority 

of farms range from 1-9 acres or 10-49 acres with a total of 562 farms as indicated by the 

USDA’s 2012 Census of Agriculture profile (USDA NASS, 2012). Yuma County saw a 24% 

increase in the number of farms for the five-year period between the 2012 and 2007 Census. 

Major crops were reported in 2012 to be “vegetables, harvested, all”, “lettuce”, “wheat for 

grain”, “durum wheat for grain”, and “forage-land used for all hay and haylage, grass silage, and 

greenchop”. The county ranks fourth in forage-land and holds the top position in vegetables, 

lettuce, wheat and durum wheat for Arizona counties (USDA NASS, 2012; Table 12). The 

combined target crop acreage values for Yuma County are shown in Figure 12. From the CIR 

maps and water use value maps, the visualization from the CropScape data showed a mix of all 

CIR as well as all water use designations. The use of color variations for the different pixel types 

was well illustrated in this county. 

Ten water user groups were found from the WGRG to be located completely within the 

county (Laituri, 2014). Nine irrigation districts, and one Tribe, the Cocopah Indian Tribe, were 

identified for the social capital investment targeting exercise. The raw CropScape geospatial 

data, filtered for crop-only gridcodes, showed high-density agricultural both on the Colorado 

River and the Gila River Valley. For the AOI targeting, all ten user groups were included in the 

maps, however individual analysis was conducted for one high density area along the Colorado 

River and one large and self-contained water user group on the Gila River. 
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On-river agriculture (Cocopah Indian Tribe/YCWUA). The on-river group selected 

from Yuma County (Cocopah Indian Tribe/YCWUA) is a small area with a dense amount of 

target gridcodes located within multiple water user group boundaries (Fig. 13). Three total and 

two identifiable water user groups in this on-river area are the Cocopah Indian Tribe’s northwest 

boundary and a portion of the Yuma County Water Users Association (YCWUA). For the 

Cocopah Indian Tribe, a total of 1,818 agricultural acres were identified from the 2014 

CropScape CDL data for the WGRG defined area (Table 13). 

The Cocopah Indian Tribe had similar acreage across the top six gridcodes including 

target crops and non-target crops.  For example, target gridcodes (36) Alfalfa had 334 acres, 

(176) Grass/Pasture had 356 acres while non-target gridcode (227) Lettuce had 381 acres. Other 

non-target gridcodes had relatively higher totals than the remaining target gridcodes. Non-target 

gridcodes (22) Durum Wheat had 119 acres, (47) Misc Fruits & Veg had 165 acres and (230) 

Dbl Crop Lettuce/Durum Wht had 155 acres for 2014 CDL gridcodes. No (27) Rye was 

identified. 

For the larger, neighboring YCWUA water user group, a total of 48,052 agricultural acres 

were identified from the 2014 CropScape CDL data for the WGRG defined area (Table 14). The 

YCWUA had high acreage for (227) Lettuce and (230) Dbl Crop Lettuce/Durum Wht with low 

comparable acreage values for the target gridcodes. For example, (227) Lettuce acreage was 

14,304 acres while the target gridcodes (36) Alfalfa was 3,175 acres and (2) Cotton only at 845 

acres. With a paltry 0.4 acres identified as (27) Rye, Cocopah Indian Tribe, like most of the state, 

had a very low amount of this target gridcode present.  

The reason this small on-river agriculture area was chosen for Yuma County analyses 

was the overlap of multiple water user groups in a very small region. In the polycentric 
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framework as provided in the WGRG, this on-river agricultural area (Cocopah Indian 

Tribe/YCWUA) included, overlapped, held, or were part of seven governance boundaries within 

Arizona (Fig. 14). Its proximity to Mexico and California’s Fort Yuma Indian Reservation, 

located in Imperial County, should also be considered however this Tribe was not counted 

towards the water governance total because the wheeling policy is focused on intrastate ATMs. 

Wellton-Mohawk Irrigation and Drainage District (WMIDD). In contrast, the 

Wellton-Mohawk Irrigation and Drainage District (Wellton-Mohawk) was selected for its 

distance from the Colorado River and its relative isolation in regards to the other agricultural 

districts Yuma County. Wellton-Mohawk is also the largest water governance entity in Yuma 

County. A total of 75,065 agricultural acres were identified from the 2014 CropScape data for 

the WGRG defined area (Table 15). With the exception of (61) Fallow/Idle Cropland, (22) 

Durum Wheat (4,213 acres) and (72) Citrus (1,257 acres), the highest acreage crops are target 

gridcodes as illustrated in Figure 16. No (27) Rye was identified. 

Wellton-Mohawk had three water governance boundaries in the polycentric governance 

review (Fig. 16). While located in the Gila River Valley, Wellton-Mohawk receives water from 

the main-stem Colorado River through a series of canals (WMIDD, 2016). Yuma Mesa Irrigation 

and Drainage District (YMIDD) and Yuma County Water Users Association (YCWUA) were 

located nearby Wellton-Mohawk along with a few unidentified water users from the WGRG’s 

“BOR irrigation district” layer, which were located within its boundary. There were seven city 

locations as well. For identifying a target AOI for Yuma County, Wellton-Mohawk is a good 

option. 
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La Paz County  

La Paz County, Arizona is located on the state’s Colorado River border with California, north 

and up-river of Yuma County. The size of the majority of farms range from 50-179 acres with a 

total of 125 farms as indicated by the USDA’s 2012 Census of Agriculture profile (USDA 

NASS, 2012). La Paz County saw a 26% increase in the number of farms for the five-year period 

between the 2012 and 2007 Census. Major crops were reported in 2012 to be “forage-land used 

for all hay and haylage, grass silage and greenchop”, cotton (“all cotton” and “upland cotton”); 

and wheat (“all”, “for grain” and “durum for grain”). The county ranks third in forage-land and 

cotton production for the state and fourth in wheat (USDA NASS, 2012), (Table 16). 

From the CIR maps and water use value maps, the visualization from the CropScape 

gridcode designations showed a majority of HIGH and MEDIUM CIR as well as MEDIUM and 

LOW water use value crops. The combined map, shown in Figure 17 provides a clear view on 

where the county’s agriculture is located, in terms of social capital investment targeting of HIGH 

CIR and LOW valued crop water. 

Three water user groups were found from the WGRG to be located completely within the 

county (Laituri, 2014). Two irrigation districts, Cibola Irrigation and Drainage District (Cibola) 

and McMullen Irrigation and Drainage District (McMullen) and one Tribal entity, the Colorado 

River Indian Tribes (CRIT) were identified for the social capital investment targeting exercise. 

The raw CropScape geospatial data, filtered for crop-only gridcodes easily located these three 

water user groups prior to the WGRG identification.  

The on-river CRIT and Cibola water governance boundaries show the agriculture hub of 

the county. McMullen, on the other hand, located to the east and off-river is a groundwater 

dependent irrigation district that has existing water transfer contracts with the City of Phoenix 
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(Carr, 2010). Its inclusion in the analyses was to provide a variety of agricultural water users for 

La Paz County. For the county targeting, all three were included in the maps however individual 

analysis was conducted for the on-river water user groups. 

Cibola Irrigation and Drainage District (Cibola). Cibola Irrigation and Drainage 

District is a small water governance region located in the southwest, on-river portion of La Paz 

County. A total of 5,371 agricultural acres were identified from the 2014 CropScape data for the 

WGRG defined area (Table 17). With the exception of (61) Fallow/Idle Cropland and (71) Other 

Tree Crops, the highest acreage crops are target gridcodes as illustrated in Figure 18. 

In the polycentric framework as provided in the WGRG, Cibola’s water governance 

boundaries were completely contained (Fig. 19). Cibola had only one city located within the 

vicinity and had California water governance boundaries shared on or across the Colorado River. 

Palo Verde Irrigation District (PVID) located in Imperial County, CA was the only nearby water 

user group. 

Colorado River Indian Tribes (CRIT). The Colorado River Indian Tribes is the largest 

water governance entity located along the Colorado River in La Paz County. A total of 97,026 

agricultural acres were identified from the 2014 CropScape data for the WGRG defined area 

(Table 18). With the exception of (22) Durum Wheat, (61) Fallow/Idle Cropland and (71) Other 

Tree Crops, the highest acreage crops are target gridcodes as illustrated in Figure 20. 

In the polycentric framework as provided in the WGRG, CRIT’s water governance 

boundaries were completely contained (Fig. 21). CRIT had two cities located within its 

governance boundary and one city outside. The only major water governance boundary layer 

associated with CRIT is the WGRG’s ‘CRB Indian Lands’ layer that incorporates the majority of 

CRIT, including lands in California and throughout the river floodplain (Laituri, 2014). This 
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water governance boundary excludes the southeast corner of CRIT. Outside of CRIT on the 

California side of the river is the northeastern extent of Palo Verde Irrigation District, located in 

Riverside County, CA. CRIT also shares the river with San Bernardino County, CA.  

 

Sensitivity Analysis 

 

HIGH CIR (FT/YR). To test the sensitivity of the CIR and water use value definitions 

by crop type, a separate analysis was conducted for each county and for the four featured water 

user groups. HIGH CIR sensitivity was changed from +3.76 FT/YR crops to +2.0 FT/YR crops. 

This expanded the range of possible gridcodes from 23 to 53. The Cibola and Wellton-Mohawk 

maps show the combined HIGH CIR layers with an overlay of the Sensitivity Analysis (Figures 

22-23). At smaller spatial scales, such as in the Cibola map, the sensitivity analysis layer is easier 

to identify. However at a larger scale, with few polycentric boundaries, such as in Wellton-

Mohawk, a big-picture view of an agricultural region is well-defined. 

LOW Value ($/AF). LOW value sensitivity was changed from $1-299/AF crops to $1-

199/AF crops. This decreased the range of possible gridcodes from thirteen to seven. The on-

river area of Yuma County (Cocopah Indian Tribe/YCWUA) and CRIT maps show the 

combined LOW dollar value layers with an overlay of the Sensitivity Analysis LOW value layer 

(Figures 24-25). At smaller spatial scales, such as in the on-river Yuma County map, the 

sensitivity analysis layer further refines individual pixels.  However at a larger scale, such as the 

CRIT map, in an already majority LOW value AOI, the Sensitivity Analysis layer is easy to 

identify, typically located in the same areas as the original layer. 

Target AOI. Target AOI sensitivity was the combination of the two adjusted variables. 

Initially, the total possible number of gridcodes expanded but in combination the total was re-

restricted. The main result of the sensitivity analysis was the exclusion of (2) Cotton (Table 19).   
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Pg. 58, Table 12. Yuma County crops by acreage and gridcode, (Attachment 1, Gerlitz, 2016). 

 

GRIDCODE CROP ACRES 

36  Alfalfa 55401 

61 Fallow/Idle Cropland 41128.6 

230  Dbl Crop Lettuce/Durum Wht 25959 

227  Lettuce 23023.6 

72  Citrus 15798 

176  Grass/Pasture 12188.1 

47  Misc Vegs & Fruits 11804 

22  Durum Wheat 10710.7 

232  Dbl Crop Lettuce/Cotton 8849.8 

2  Cotton 5885 

37  Other Hay/Non Alfalfa 3772.9 

231  Dbl Crop Lettuce/Cantaloupe 2900.2 

214  Broccoli 2388.1 

1  Corn 1901.9 

243  Cabbage 1501.8 

21  Barley 1358.6 

209  Cantaloupes 1082.2 

59  Sod/Grass Seed 960.1 

71  Other Tree Crops 694.1 

4  Sorghum 641.4 

244  Cauliflower 603.1 

75  Almonds 559.3 

219  Greens 551.8 

42  Dry Beans 549.3 

28  Oats 455.5 

48  Watermelons 447.5 

44 Other Crops 443.7 

49  Onions 386.3 

57 Herbs 226.6 

74  Pecans 198.4 

24  Winter Wheat 151.2 

233  Dbl Crop Lettuce/Barley 121.6 

27  Rye 116.3 

211  Olives 40.5 

212  Oranges 36.7 

234  Dbl Crop Durum Wht/Sorghum 17.6 

213  Honeydew Melons 16.2 

246  Radishes 11.6 
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Pg. 58, Table 12. …continued, (Attachment 1, Gerlitz, 2016). 

GRIDCODE CROP ACRES 

35 Mustard 10.5 

41  Sugarbeets 5.8 

208  Garlic 4.7 

235  Dbl Crop Barley/Sorghum 3.1 

206  Carrots 2.2 

67  Peaches 0.9 

238  Dbl Crop WinWht/Cotton 0.9 

  TOTAL ACRES  232,910  

  % ACRES IN TARGET AOI: 33.4 
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Pg. 57, Figure 12. Yuma County target AOIs, (Attachment 2, Gerlitz, 2016). 
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Pg. 58, Figure 13. Cocopah/YCWUA target AOIs, (Attachment 2, Gerlitz, 2016). 
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Pg. 58, Table 13. Cocopah Indian Tribe crops by acreage and gridcode, (Attachment 1, Gerlitz, 

2016). 

 

GRIDCODE CROP ACRES 

227  Lettuce 381.6 

176  Grass/Pasture 358.5 

36  Alfalfa 334.3 

47  Misc Vegs & Fruits 165 

230  Dbl Crop Lettuce/Durum Wht 154.6 

22  Durum Wheat 119.4 

61  Fallow/Idle Cropland 77.2 

72  Citrus 48.3 

232  Dbl Crop Lettuce/Cotton 40.5 

2  Cotton 37.6 

37  Other Hay/Non Alfalfa 16.2 

57  Herbs 15.1 

74  Pecans 14.9 

214  Broccoli 9.3 

231  Dbl Crop Lettuce/Cantaloupe 9.3 

28  Oats 7.8 

212  Oranges 7.8 

209  Cantaloupes 7.6 

219  Greens 3.8 

41  Sugarbeets 2.9 

42  Dry Beans 2 

49  Onions 2 

48  Watermelons 0.9 

75  Almonds 0.7 

44  Other Crops 0.2 

71  Other Tree Crops 0.2 

211  Olives 0.2 

244  Cauliflower 0.2 

  TOTAL ACRES 1818.1 

  %  ACRES IN TARGET AOI: 41.2 
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Pg. 589, Table 14. YCWUA crops by acreage and gridcode, (Attachment 1, Gerlitz, 2016). 

GRIDCODE CROP ACRES 

230 Dbl Crop Lettuce/Durum Wht 14308.4 

227 Lettuce 14304.4 

22 Durum Wheat 3702.2 

36 Alfalfa 3174.5 

232 Dbl Crop Lettuce/Cotton 2904 

231 Dbl Crop Lettuce/Cantaloupe 1840.1 

47 Misc Vegs & Fruits 1799.6 

176 Grass/Pasture 879.6 

2 Cotton 845.1 

72 Citrus 519.3 

243 Cabbage 493.5 

244 Cauliflower 456.1 

214 Broccoli 450.1 

219 Greens 426.1 

209 Cantaloupes 358.3 

37 Other Hay/Non Alfalfa 355.6 

61 Fallow/Idle Cropland 266.2 

42 Dry Beans 259.8 

74 Pecans 137.4 

57 Herbs 116.3 

233 Dbl Crop Lettuce/Barley 109 

1 Corn 106.1 

49 Onions 83.8 

48 Watermelons 56 

212 Oranges 28.2 

75 Almonds 27.1 

211 Olives 20.5 

28 Oats 10 

41 Sugarbeets 5.6 

44 Other Crops 2.4 

4 Sorghum 2 

246 Radishes 1.8 

59 Sod/Grass Seed 0.9 

21 Barley 0.7 

71 Other Tree Crops 0.7 

27 Rye 0.4 

208 Garlic 0.4 

  TOTAL ACRES 48052.2 

  % ACRES IN TARGET AOI: 11.0 
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Pg. 59, Figure 14. WGRG polycentric boundary layers for Cocopah/YCWUA, (Attachment 2, 

Gerlitz, 2016). 

  



WHERE’S THE WATER? USING GEOSPATIAL TOOLS  
 

70 

Pg. 59, Table 15. Wellton-Mohawk crops by acreage and gridcode, (Attachment 1, Gerlitz, 

2016). 

GRIDCODE CROP ACRES 

36  Alfalfa 29261.1 

61  Fallow/Idle Cropland 9632.4 

230  Dbl Crop Lettuce/Durum Wht 6852.6 

22  Durum Wheat 4213 

2  Cotton 3488.5 

227  Lettuce 3377.1 

232  Dbl Crop Lettuce/Cotton 3182 

176  Grass/Pasture 2815.3 

37  Other Hay/Non Alfalfa 1839.4 

1  Corn 1656.6 

214  Broccoli 1529.6 

47  Misc Vegs & Fruits 1260.3 

72  Citrus 1256.8 

243  Cabbage 871.6 

59  Sod/Grass Seed 853.8 

231  Dbl Crop Lettuce/Cantaloupe 739.2 

209  Cantaloupes 629.2 

71  Other Tree Crops 399.2 

75  Almonds 291.6 

48  Watermelons 268.4 

49  Onions 195.5 

42  Dry Beans 125 

57  Herbs 66.7 

28  Oats 62 

219  Greens 54.5 

24  Winter Wheat 27.4 

44  Other Crops 26 

244  Cauliflower 21.1 

213  Honeydew Melons 13.1 

211  Olives 11.6 

233  Dbl Crop Lettuce/Barley 11.6 

35  Mustard 10.5 

246  Radishes 6.9 

4  Sorghum 4 

21  Barley 3.8 

208  Garlic 2.7 

74  Pecans 2.4 

212  Oranges 1.1 

67  Peaches 0.9 

206  Carrots 0.7 

  TOTAL ACRES 75065.2 

  %ACRES IN TARGET AOI: 49.8 
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Pg. 59, Figure 15. Wellton-Mohawk target AOI, (Attachment 2, Gerlitz, 2016). 
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Pg. 59, Figure 16. WGRG polycentric boundary layers for Yuma County, (Attachment 2, Gerlitz, 

2016). 
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 Pg. 60, Table 16. La Paz County crops by acreage and gridcode, (Attachment 1, Gerlitz, 2016). 

GRIDCODE CROP ACRES 

36  Alfalfa 68346.3 

176  Grass/Pasture 57541.9 

61  Fallow/Idle Cropland 24999.6 

2  Cotton 13325.4 

71  Other Tree Crops 6171 

22  Durum Wheat 5392.4 

37  Other Hay/Non Alfalfa 3917.5 

49  Onions 844.4 

208  Garlic 654.5 

28  Oats 407.6 

72  Citrus 219.5 

47  Misc Vegs & Fruits 192.1 

214  Broccoli 181.3 

1  Corn 163 

4  Sorghum 127.4 

21  Barley 92.7 

227  Lettuce 65.2 

42  Dry Beans 56.7 

75  Almonds 38.9 

243  Cabbage 38.7 

232  Dbl Crop Lettuce/Cotton 32.5 

67  Peaches 30.7 

31  Canola 26.5 

209  Cantaloupes 19.6 

230  Dbl Crop Lettuce/Durum Wht 18.5 

44  Other Crops 15.3 

59  Sod/Grass Seed 11.1 

211  Olives 5.6 

74  Pecans 5.3 

213  Honeydew Melons 3.8 

235  Dbl Crop Barley/Sorghum 3.6 

24  Winter Wheat 3.3 

234  Dbl Crop Durum Wht/Sorghum 2 

231  Dbl Crop Lettuce/Cantaloupe 1.3 

219  Greens 0.9 

236  Dbl Crop WinWht/Sorghum 0.9 

  TOTAL ACRES 182957 

  % ACRES IN TARGET AOI: 78.3 
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Pg. 60, Figure 17. La Paz County target AOIs, (Attachment 2, Gerlitz, 2016). 
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Pg. 61, Table 17. Cibola crops by acreage and gridcode, (Attachment 1, Gerlitz, 2016). 

 

GRIDCODE CROP ACRES 

2  Cotton 1825.4 

36  Alfalfa 1275 

71  Other Tree Crops 1119.3 

61  Fallow/Idle Cropland 573.6 

176  Grass/Pasture 484.8 

47  Misc Vegs & Fruits 27.1 

232  Dbl Crop Lettuce/Cotton 14.7 

22  Durum Wheat 10 

209  Cantaloupes 9.6 

227  Lettuce 8.9 

75  Almonds 7.6 

37  Other Hay/Non Alfalfa 4.7 

59  Sod/Grass Seed 2.9 

1  Corn 2.4 

72  Citrus 1.8 

230  Dbl Crop Lettuce/Durum Wht 1.8 

231  Dbl Crop Lettuce/Cantaloupe 0.7 

214  Broccoli 0.4 

243  Cabbage 0.4 

  TOTAL ACRES 5371.1 

  % ACRES IN TARGET AOI: 66.8 
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Pg. 61, Figure 18. Cibola target AOIs, (Attachment 2, Gerlitz, 2016). 
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Pg. 61, Figure 19. WGRG polycentric boundary layers for Cibola, (Attachment 2, Gerlitz, 

2016). 
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Pg. 61, Table 18. CRIT crops by acreage and gridcode, (Attachment 1, Gerlitz, 2016). 

 

 

GRIDCODE CROP ACRES 

36  Alfalfa 59319.3 

61  Fallow/Idle Cropland 11537.2 

2  Cotton 8735.7 

176  Grass/Pasture 5759.1 

22  Durum Wheat 3891.9 

37  Other Hay/Non Alfalfa 3651.7 

71  Other Tree Crops 1798.3 

49  Onions 844 

208  Garlic 636 

28  Oats 394.1 

214  Broccoli 177.5 

47  Misc Vegs & Fruits 68.7 

72  Citrus 48.5 

227  Lettuce 42.5 

67  Peaches 28 

31  Canola 26.5 

44  Other Crops 12.7 

243  Cabbage 11.3 

1  Corn 8.9 

232  Dbl Crop Lettuce/Cotton 7.6 

209  Cantaloupes 7.3 

230  Dbl Crop Lettuce/Durum Wht 6.2 

211  Olives 5.3 

213  Honeydew Melons 3.3 

59  Sod/Grass Seed 2.4 

75  Almonds 1.1 

24  Winter Wheat 0.4 

4  Sorghum 0.2 

231  Dbl Crop Lettuce/Cantaloupe 0.2 

   TOTAL ACRES  97,025.90  

  % ACRES IN TARGET AOI: 79.8 
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Pg. 61, Figure 20. CRIT target AOIs, (Attachment 2, Gerlitz, 2016). 
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Pg. 61, Figure 21. WGRG polycentric boundary layers for CRIT, (Attachment 2, Gerlitz, 2016). 
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Pg. 62, Figure 22. HIGH CIR sensitivity analysis for Cibola, (Attachment 2, Gerlitz, 2016). 
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Pg. 62, Figure 23. HIGH CIR sensitivity analysis for Wellton-Mohawk, (Attachment 2, Gerlitz, 

2016). 
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Pg. 62, Figure 24. LOW water use value sensitivity analysis for Cocopah/YCWUA, (Attachment 

2, Gerlitz, 2016). 
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Pg. 62, Figure 25. LOW water use value sensitivity analysis for CRIT, (Attachment 2, Gerlitz, 

2016). 
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Pg. 62, Table 19. Target AOI crops and sensitivity analysis, (Attachment 1, Gerlitz, 2016). 

 

Crop Name Erie/CADWR&CWSD 

USDA 

NASS COMBINED 

SENSITIVITY 

ANALYSIS 

Cotton   2 2   

Sorghum 4   4 4 

Rye   27  27 27 

Alflalfa 36 36 36 36 

Other Hay/Non Alfalfa 37 37 37 37 

Sugarbeets   41 41 41 

Grass/Pasture 176   176 176 
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Discussion of Results 

 From the geospatial tools developed and utilized in this case study research, the 

recommendation as to where to invest social capital for potential wheeling policy-based ATMs 

would be the CRIT water governance entity in La Paz County. For on-river, irrigated agriculture, 

CRIT had the highest percentage of agricultural acreage in target gridcodes (79.8%), as well as 

the most agricultural acreage for La Paz County (182,957 acres), (Table 20). While McMullen 

IDD had a slightly higher percentage (81.7%), it’s location off-river and its utilization of 

groundwater over surface water disqualified this water user as the best place to start wheeling-

based social capital investments. Yuma County had the most agricultural acreage (232,910 acres) 

but only 33.4% was target crops. On the county level, La Paz County is the recommended target 

agricultural region not only for the high percentage of target crops (78.3%) but also for its small 

amount of water governance institutions. With less polycentrism than Yuma County (Fig. 16), 

the initial search for wheeling partners is simplified (Table 21). In addition, geographically 

isolated AOI(s), like CRIT, Cibola and Wellton-Mohawk, are recommended targets for social 

capital investment because relationship-building in agricultural regions with only one water user 

group could prove easier than attempting to engage in areas with several. 

CIR 

 The differences between the two CIR datasets was apparent in the Yuma County maps 

where the USDA NASS dataset had significantly more HIGH (red) crop gridcodes than the Erie 

et al./CADWR map (Figures 26—27). However, for an at-a-glance analysis of the CIR maps for 

the two counties, La Paz appears to have more HIGH and MEDIUM crops than Yuma regardless 

of the CIR dataset used (Figures 28—29). Also, on the smaller water user group scale, such as 

for Cibola, orCocopah Indian Tribe/YCWUA, the CIR at the pixel level shows the diversity of 
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water use within an individual agricultural area. Mapped individually, the three CIR types are 

less pronounced than when visualized together. 

Water Use Value 

 For the case study area, the LOW (light blue) water use value highlighted differences in 

the two counties. La Paz, while having pixels for all value categories was dominated by LOW 

and MEDIUM value crops, more so than Yuma County. A similar scale issue, as found in the 

CIR, applied to water use value maps as well. One important factor to consider was the USDA 

NASS maps lack of a HIGH (green) water use value layer, as none of the crops under that 

naming and value assignment category were present (Fig. 30). The CWSD model maps (Figures 

31—32) visually aid the targeting process with the three color distinctions. Yuma’s smaller farm 

size and diversity of crops were well defined with the HIGH (green) water use value layer. 

Target AOI Crops 

The target crops layers generated in ESRI ArcGIS 10.1 have unique exclusions of certain 

gridcodes between the naming groups. The USDA NASS-based target group had a total of five 

gridcodes illustrated in the maps. This group’s map excluded (4) Sorghum and (176) 

Grass/Pasture and appear to be denser with less presence of scattered pixels throughout the AOI 

of interest (Fig. 33). The Erie/CADWR/CWSD maps show slightly less density in agricultural 

areas yet are more widespread throughout an AOI (Fig. 34). This layer excluded (2) Cotton, (27) 

Rye and (41) Sugarbeets. As (27) Rye and (41) Sugarbeets have very low acreages, the notable 

exclusion in this group is (2) Cotton. The combined layer had a total of seven gridcodes, 

accounting for the discrepancies between the two separate groups. The combined layer was the 

chosen layer in which to work for the social capital investment recommendations as well as for 

the sensitivity analysis (Fig. 35). 
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Sensitivity Analysis 

For further investigation into the target crop designations, a sensitivity analysis of the 

agricultural datasets was performed. CIR values considered HIGH were re-defined to be at or 

above 2.0 FT/year, a 1.76-foot increase of the HIGH definition. The LOW water use value 

category was changed to $1-199 per acre-foot, a decrease in value of $100 from the original 

LOW value. The result of these changes in the different crop categorization groups was the 

exclusion of target gridcode (2) Cotton. The sensitivity analysis showed how different CIR 

definitions, more so than water use values, could produce different geospatial results for the case 

study region (Fig. 36). The restriction of the LOW water use value group to exclude crops worth 

more than $200/AF had little no change. The sensitivity of CIR was most prevalent in the USDA 

NASS 2013 FRIS group. One outcome from the sensitivity analysis was the exclusionary feature 

for (2) Cotton.    

Water Governance 

 

 The polycentric governance throughout the case study area varied between the two 

counties. Yuma County, with ten water user groups, also had several other WGRG data layers 

(Federal Lands, BIA lands, BOR irrigation districts, international border, state border, etc.) to 

consider in terms of social capital investment. While having more individual groups could be 

beneficial in terms of targeting options, the heavy overlap of water governance in the on-river 

areas (Cocopah Indian Tribe/YCWUA) could prove more difficult to identify potential wheeling 

partners than from geographically isolated areas. For Yuma County, Wellton-Mohawk was 

determined to be the preferred water governance entity in which to invest social capital due to its 

location and high percentage of target crops (49.8%). Similar geographic isolation preference 

was found for La Paz County (Cibola/CRIT).  
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Pg. 86, Table 20. Percent acres in target AOI crops, (Attachment 1, Gerlitz, 2016). 

 

WATER USER GROUP COUNTY ACRES 

% ACRES IN 

TARGET 

McMULLEN IDD LA PAZ            10,030  81.7% 

CRIT LA PAZ            97,026  79.8% 

LA PAZ COUNTY (ALL) LA PAZ         182,957  78.3% 

CIBOLA LA PAZ              5,371  66.8% 

WELLTON MOHAWK YUMA            75,065  49.8% 

COCOPAH  YUMA              1,818  41.2% 

YUMA COUNTY (ALL) YUMA         232,910  33.4% 

YUMA MESA IDD YUMA            21,606  32.7% 

UNIT B IDD YUMA              2,559  32.1% 

HILLANDER C IDD YUMA              2,704  19.8% 

NORTH GILA VALLEY YUMA              6,968  19.6% 

STURGEST GILA MONSTER YUMA              1,878  15.2% 

YUMA CO WATER USERS YUMA            48,052  11.0% 

YUMA IDD YUMA            11,284  5.1% 

 

 

 

 

 

Pg. 86, Table 21. Water governance entities per water user group (excluding California and 

cities layers), (Attachment 1, Gerlitz, 2016).  

 

WATER USER GROUP COUNTY 

POLYCENTRIC  

GOVERNANCE 

CRIT LA PAZ 1  

CIBOLA LA PAZ  1  

WELLTON MOHAWK YUMA  3  

ON-RIVER YUMA CO AREA  YUMA  7  
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Pg. 86, Figure 26. Yuma County CIR: USDA NASS 2012 Census, 2013 FRIS, Table 36 

(Attachment 2, Gerlitz, 2016). 
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Pg. 86, Figure 27. Yuma County CIR: Erie et al. and CADWR, (Attachment 2, Gerlitz, 2016). 
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Pg. 86, Figure 28. La Paz County CIR: USDA NASS 2012 Census, 2013 FRIS, Table 36, 

(Attachment 2, Gerlitz, 2016). 
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Pg. 86, Figure 29. La Paz County CIR: Erie et al. and CADWR, (Attachment 2, Gerlitz, 2016). 
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Pg. 87, Figure 30. CRIT water use values: USDA NASS 2014 AZ Bulletin, (Attachment 2, 

Gerlitz, 2016). 
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Pg. 87, Figure 31. CRIT water use values: CWSD model, (Attachment 2, Gerlitz, 2016). 

 

 
  



WHERE’S THE WATER? USING GEOSPATIAL TOOLS  
 

96 

Pg. 87, Figure 32. Yuma County water use values: CWSD model, (Attachment 2, Gerlitz, 2016). 
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Pg. 87, Figure 33. CRIT target AOI: USDA NASS 2012 Census, 2013 FRIS, Table 36 and 2014 

AZ Bulletin, (Attachment 2, Gerlitz, 2016). 
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Pg. 87, Figure 34. CRIT target AOI: Erie et al., CADWR and CWSD, (Attachment 2, Gerlitz, 

2016). 
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Pg. 87, Figure 35. CRIT target AOI, combined datasets, (Attachment 2, Gerlitz, 2016). 
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Pg. 88, Figure 36. CRIT combined target AOI with sensitivity analysis, (Attachment 2, Gerlitz, 

2016). 
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Conclusions and Possible Future Research Applications 

 

As argued from the evidence provided in this Arizona case study, utilizing geospatial 

tools such as USDA CropScape and the WGRG can provide adequate information for targeting 

social capital investment opportunities. Specifically, illustrating geographic areas of highly 

consumptive and low valued agriculture in Yuma and La Paz Counties is advantageous as the 

CAP slowly develops the wheeling policy for intrastate transfers of Non-Project water. The 

continual development of free, publically available decision-support tools, and the methods in 

which to use them, is essential for water resource management in Arizona as well as the entire 

Lower Colorado River Basin (Fishman, 2016).  

CropScape, as a standalone geospatial tool, is a suitable resource for the initial steps of 

targeting agricultural areas for social capital investment. Its benefits include the relative ease-of-

use of the platform and the ability for geoprocessing the raw data. Besides identifying AOI 

boundary locations, transferring the raw CropScape data to value assignments was the most 

important step to determine target locations. However, the acreage values are estimates; the 

accuracy of the data is based on satellite image quality and margins of error when conversions 

from raster-based pixels to acreage are performed (Han et al., 2012; 2014). These issues were 

accepted in the methods used for this research, however, for more quantitative applications, the 

shortcomings of the tool should be considered. On the other hand, the GIS tools (WGRG and 

ESRI ArcGIS 10.1) were successful in interpreting agricultural production characteristics on a 

geographic level. With these tools, the identification of water user boundaries and polycentric 

governance throughout Arizona facilitated the examination of the wheeling policy for ATM 

development.  
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The suite of publically available USDA NASS and USDA Census publications provided 

different information than CropScape and the WGRG, which was challenging to incorporate into 

the 2014 data. Also, the methods used for the name-assignments and value categorizations were 

not based on a statistical spread of the datasets, thus leaving the arbitrary categories open for 

scrutiny. However, the customized Excel spreadsheet did provide a way to interpret and apply 

the variability in information across all agricultural datasets for qualitative use. 

The CIR data spanned a forty-year period from 1981 (Erie et al.) to 2014 (CADWR). 

Calculating the specific CIR value (FT/YR) for any given parcel of agricultural land, in any 

given growing season presented a challenging task. With a simplified and multi-sourced 

approach in this research, the CIR values illustrated the best publically available estimates for 

Arizona. Most importantly, the use of CIR and CropScape together, visualized the high 

consumptive use of irrigated agriculture. Whether from groundwater or Colorado River surface 

water, all thirteen water user groups are applying large volumes of water to a variety of crops. 

 The simple calculations and manipulations used to determine water use value ($/AF) in 

both the USDA NASS and CWSD datasets attempted to give a monetary estimate for locating 

target areas. The decision-support tools used to estimate this target variable were not ideal, as 

they did not consider external factors such as the price for the delivery of agricultural water, the 

location of the use or the water rights priority of the user. These factors, in addition to 

polycentric water governance and existing social capital, are essential parts of wheeling 

development. As discussed earlier, the CAP, CAWCD and Reclamation will need to find ways to 

address these issues to implement wheeling. 

Finally, the data presented in this research is for actual farmland in production. The 

methods and subsequent results did not include gridcode (61) Fallow/Idle Cropland, as it is not 
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an actual crop with applicable metrics. In terms of a target, this gridcode from CropScape was 

one of the highest acreage counts for the 2014 data, both for each county and individual water 

user groups. When calculated as a percentage of total agricultural land, this gridcode was notable 

(Table 22). From existing examples of ATMs (CAGRD pilot, MWD/PVID programs) 

throughout the basin, one could assume that fallowed land would be the first option for social 

capital investment. However, since little-to-no water is being applied, and no crops are growing, 

targeting this gridcode was not applicable in the research. Hence, identifying the agricultural 

land in production and the types of crops being grown is useful information for targeting social 

capital investment in this region. 

With respect to both the fallowed land and the target crops, one water user group in 

particular illustrated another approach to identifying an AOI for wheeling. Hillander “C” 

Irrigation and Drainage District (Hillander C) is a small, geographically isolated water user 

group located just north of the Mexican border in southwestern Yuma County. This AOI 

displayed an extremely high percentage of (61) Fallow/Idle Cropland, (71.6%). In addition, 

existing agriculture largely consisted of the target crops. It also displayed a simple representation 

of the Sensitivity Analysis, which helped isolate the difference in cotton categorizations (Fig. 

37). These three attributes of Hillander C, when coupled with water governance (Fig. 38), 

identify this irrigation district as a prospective target for wheeling. It also indicates the potential 

to identify agricultural areas by both (61) Fallow/Idle Cropland and target crop gridcodes in both 

rural and urban regions of Arizona. 

The CAP-serviced counties of Maricopa, Pima and Pinal are changing the water use 

demands for their Colorado River surface water deliveries from agricultural use to municipal and 

industrial uses. Identifying the location for both fallowed land and productive agricultural land 
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for wheeling within their own water governance boundaries is just as important as knowing 

where to look outside of the CAP. The development of ATMs internally could end up being the 

most likely application of wheeling in the near-term Lower Colorado River Basin shortage 

restrictions and drought conditions (CAP, 2016). The following application of this research to 

future work within the CAP is recommended and expounded on below. 

Lower Colorado River Basin Shortage  

The Colorado River and its tributaries provide surface water to nearly 40 million people 

and support the irrigated agriculture on which the nation’s food supply is reliant (Culp, Glennon 

& Libecap, 2014). In addition to reservoir system supply issues, climate change, population and 

economic growth have steadily increased the demand on regional water resources. The 2007 

Interim Agreement “Memorandum of Understanding” is a federal water resource management 

decision apportioning the three LCRB states and Mexico specific amounts of Colorado River 

surface water based on the reservoir system’s surface level elevation. The surface level 

elevations of Lake Mead dictate how and where water is to be delivered, based on the complex 

priority system of the LCRB, which is of particular importance for Arizona and the CAP (CAP, 

2014).  

Lake Mead surface water level status. Shortages are defined by the surface elevations 

of Lake Mead and mandatory restrictions will fall on the junior priority status states of Arizona 

and Nevada, while California experiences no shortage restrictions (Table 23), (McCann & 

Cullom, 2014). Currently, the CAP has subcontracts with around sixty water providers, including 

irrigation districts, municipalities and tribal authorities (CAP, 2014).  In 2012, the Arizona Water 

Settlement Act reallocated the CAP project water and clarified Tribal authority water priorities 

throughout the institution. Based on these updated water allocations, an internal set of priority 
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statuses for each type of water user group have been developed and are important in terms of the 

larger basin apportionment issues. For example, under a Level 1 shortage (1075’), the shortage 

restrictions for Arizona would go into effect as seen in Table 22 (McCann & Cullom, 2014). 

CAP priority levels. Figure 39 classifies CAP water deliveries into Priority 3, M&I 

Priority (Municipal, Industrial), Indian Priority, NIA (Non-Indian Agriculture) Priority, Ag Pool 

and Ag Pool Shortage and Other Excess Shortage (McCann & Cullom, 2014). The majority of 

the CAGRD water user groups are classified under the M&I delivery category (CAP, 2014). 

With a relatively high delivery priority, the M&I classified cities of the CAGRD are relatively 

secure under Level 1. However, the Other Excess Shortage under which the CAGRD 

replenishment is conducted is the first to be cutoff (McCann & Cullom, 2014). This reduction in 

Other Excess Shortage “will directly reduce or eliminate deliveries to the CAP excess supply for 

underground storage, and severely reduce the volume of CAP water available to [central AZ] 

agriculture,” (CAP, 2014, p.1).  

Identifying social capital investment opportunities within CAP. The potential for an 

elevation below 1000’ carries a real danger of cutbacks to all Colorado River water users over 

the next decade (CAP, 2014). Wheeling water from sources both outside and within the CAP can 

provide additional options for the CAGRD “given the significant potential of water markets to 

alleviate growing water stress both in the long run and in response to short-term water 

variability” (Easter & Huang, 2015, p.36). Future work on applying wheeling solutions to the 

LCRB shortages is recommended. Applying similar geospatial methods from this research to 

target CAGRD water user groups where social capital investment for wheeling could occur is a 

natural next step for this project. 
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Pg. 103, Table 21. Percent acres in gridecode (61) Fallow/Idle Cropland, (Attachment 1, 

Gerlitz, 2016). 

 

 

WATER USER GROUP COUNTY 

CROP 

ACRES 

% ACRES IN (61) 

Fallow/Idle Cropland 

HILLANDER C IDD YUMA                2,704  71.63 

YUMA COUNTY (ALL) YUMA            232,910  17.66 

LA PAZ COUNTY (ALL) LA PAZ            182,957  13.66 

UNIT B IDD YUMA                2,559  13.24 

WELLTON MOHAWK YUMA              75,065  12.83 

CRIT LA PAZ              97,026  11.89 

STURGEST GILA MONSTER YUMA                1,878  11.67 

CIBOLA LA PAZ                5,371  10.68 

McMULLEN IDD LA PAZ              10,030  10.27 

YUMA MESA IDD YUMA              21,606  10.02 

COCOPAH INDIAN TRIBE YUMA                1,818  4.25 

YUMA IDD YUMA              11,284  3.69 

NORTH GILA VALLEY YUMA                6,968  1.43 

YUMA CO WATER USERS YUMA              48,052  0.55 
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Pg. 103, Figure 37. Hillander C with target AOI, sensitivity analysis and (61) Fallow/Idle 

Cropland, (Attachment 2, Gerlitz, 2016). 
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Pg. 103, Figure 38. WGRG polycentric boundary layers for Hillander C, (Attachment 2, Gerlitz, 

2016). 
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Pg. 104, Table 22. Lake Mead surface elevation-based shortage under 2007 Interim Guidelines, 

Reclamation, (Adapted from McCann & Cullom, 2014). 

Surface Elevation Arizona Reduction Nevada Reduction Mexico Reduction 

1075’ 320,000 AF 13,000 AF 50,000 AF 

1050’ 400,000 AF 17,000 AF 70,000 AF 

1025’ 480,000 AF 20,000 AF 125,000 AF 

 

Pg. 105, Figure 39. Level 1 shortage, CAP delivery priority, (Adapted from McCann & Cullom, 

2014). 
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Appendix A 

1988 Master Repayment Contract, Bureau of Reclamation
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Appendix B 

 

Major Elements of the CAP Staff Proposal for Wheeling Non-Project Water 
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Appendix C 

CropScape Data Layer and ESRI ArcGIS Data Processing Methods 

1) ACCESS CROPSCAPE WEBSITE http://www.nassgeodata.gmu.edu/CropScape 

2) DEFINE AREA OF INTEREST (AOI) BY COUNTY 

3) SELECT LAYERS 

a. Background Layers Folder-Default ON 

b. Cropland Data Layers-Year of Choice “2014” ON 

c. Crop Mask Layer-Default OFF 

d. Crop Frequency Layer-Default OFF 

e. Boundary Layers-“County” “State” ON 

f. Water Layers-Default OFF 

g. Road Layers-Default OFF 

4) AREA OF INTEREST STATISTICS 

a. Export Table as .csv 

i. Ex) cdl_2014_04027.csv OPEN 

ii. Save to File Ex) SGerlitz/DATA/YUMA 

1. .csv 

2. .xlsx (Excel Workbook) 

b. Export the select crop(s)/land cover types for mapping  

i. Check VALUE (for all) or Specific Types 

ii. Download (as .tif) Ex) “NASS_DATA_CACHE-extract_59418000_CDL_2014_04027 

iii. Save to YUMA folder  

5) IMPORT AOI (Compressed ESRI shapefile) 

a. Define AOI by agricultural water user 

i. ArcCatalog examine OnlinePilot_CRBGov.gdb (Laituri, 2014) 

1. Arizona->agricultural user feature classes 

2. View Contents/Preview-Geography, Table 

3. Look at individual agricultural users in feature class attribute table(s) 

Ex) “AZ_irrigation districts” -> “Yuma Mesa Irrigation & Drainage District”, 

etc. 

b. ArcMap Add Data Layer Ex) “AZ irrigation districts” 

i. Build “New Blank Map” with WGRG (Laituri, 2014); TemplateData.gdb (UNM, 2015) 

ii. Add/arrange data for benefit of map use. Ex) cities, states, tribal lands, etc. 

c. Select particular institution from attribute table for AOI ESRI shapefile upload 

i. Selection->Create Layer from Selected Features 

ii. Rename New Layer as Appropriate for Map Use 

d. Toolbox: Feature Class to Shapefile [INPUT-.lYR; OUTPUT FOLDER-same as .lYR] 

e. Check on ArcCatalog 

f. Create Compressed .zip folder for CropScape import by selecting individual shapefile components 

as requested by CropScape import [.dbf .prj .sbn .sbx .shp .shx] 

g. CropScape Platform, Browse to newly compressed shapefile components 

h. Upload 

6) DOWNLOAD NEWLY DEFINED AOI  

a. Area of Interest Statistics Button 

i. Select all CDL, VALUE 

ii. Export Table as .csv file 

1. Open in Excel, saved also as Excel Workbook .xlsx 
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Appendix D 

Crop Name Categories (Water Use Values) 

Table 23. Water Use Value Categories-USDA NASS naming structure (Gerlitz, 2016) 

GRIDCODE CROP NAME USDA NASS Categories 

1 Corn Corn for Grain 

2 Cotton Upland Cotton 

4 Sorghum Sorghum for Grain 

21 Barley Barley 

22 Durum Wheat Durum Wheat 

23 Spring Wheat Other Wheat 

24 Winter Wheat Other Wheat 

36 Alfalfa Alfalfa Hay 

37 

Other Hay/Non 

Alfalfa Other Hay 

 

Table 24. Water Use Value Categories-CWSD Model Naming Structure (Gerlitz, 2016) 

GRIDCODE CROP CWSD$ Category 

1 Corn Corn 

2 Cotton Cotton and cottonseed 

4 Sorghum Other grains, oilseeds, dry beans/peas 

21 Barley Other grains, oilseeds, dry beans/peas 

22 Durum Wheat Wheat 

23 Spring Wheat Wheat 

24 Winter Wheat Wheat 

27 Rye Other crops and hay 

28 Oats Other grains, oilseeds, dry beans/peas 

31 Canola   

35 Mustard   

36 Alfalfa Other crops and hay 

37 Other Hay/Non Alfalfa Other crops and hay 

41 Sugarbeets Other crops and hay 

42 Dry Beans Other grains, oilseeds, dry beans/peas 

43 Potatoes Other crops and hay 

44 Other Crops Other crops and hay 

47 Misc Vegs & Fruits Vegetables, melons, sweet potatoes 

48 Watermelons Vegetables, melons, sweet potatoes 

49 Onions Vegetables, melons, sweet potatoes 

57 Herbs   

59 Sod/Grass Seed Nursery, greenhouse, floriculture, sod 

61 Fallow/Idle Cropland N/A 
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Table 24. …continued, (Gerlitz, 2016). 

GRIDCODE CROP CWSD$ Category 

67 Peaches Fruits, tree nuts, and berries 

68 Apples Fruits, tree nuts, and berries 

69 Grapes Fruits, tree nuts, and berries 

71 Other Tree Crops Fruits, tree nuts, and berries 

72 Citrus Fruits, tree nuts, and berries 

74 Pecans Fruits, tree nuts, and berries 

75 Almonds Fruits, tree nuts, and berries 

77 Pears Fruits, tree nuts, and berries 

176 Grass/Pasture Other crops and hay 

204 Pistachios Fruits, tree nuts, and berries 

205 Triticale Other grains, oilseeds, dry beans/peas & Other Crops, Hay 

206 Carrots Vegetables, melons, sweet potatoes 

208 Garlic Vegetables, melons, sweet potatoes 

209 Cantaloupes Vegetables, melons, sweet potatoes 

211 Olives Vegetables, melons, sweet potatoes 

212 Oranges Fruits, tree nuts, and berries 

213 Honeydew Melons Vegetables, melons, sweet potatoes 

214 Broccoli Vegetables, melons, sweet potatoes 

216 Peppers Vegetables, melons, sweet potatoes 

219 Greens Vegetables, melons, sweet potatoes 

225 Dbl Crop WinWht/Corn Wheat/Corn 

226 Dbl Crop Oats/Corn Other grains, oilseeds, drybeans/peas/Corn 

227 Lettuce Vegetables, melons, sweet potatoes 

230 

Dbl Crop Lettuce/Durum 

Wht Vegetables, melons, sweet potatoes/Wheat 

231 

Dbl Crop 

Lettuce/Cantaloupe Vegetables, melons, sweet potatoes x2 

232 Dbl Crop Lettuce/Cotton Vegetables, melons, sweet potatoes/Cotton 

233 Dbl Crop Lettuce/Barley 

Vegetables, melons, sweet potatoes/Other grains, oilseeds, dry 

beans/peas 

234 

Dbl Crop Durum 

Wht/Sorghum Wheat/Other Grains, oil seeds, dry beans/peas 

235 

Dbl Crop 

Barley/Sorghum Other grains, oilseeds, dry beans/peas x2 

236 

Dbl Crop 

WinWht/Sorghum Wheat/Other Grains, oil seeds, dry beans/peas 

238 

Dbl Crop 

WinWht/Cotton Wheat/Cotton and cottonseed 

243 Cabbage Vegetables, melons, sweet potatoes 

244 Cauliflower Vegetables, melons, sweet potatoes 

245 Celery Vegetables, melons, sweet potatoes 

246 Radishes Vegetables, melons, sweet potatoes 
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