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Abstract

We describe a methodology for developing high performance programs running on clusters of SMP nodes. The
SMP cluster programming methodology is based on a small prototype kernel (SIMPLE) of collective communi-
cation primitives that make efficient use of the hybrid shared and message passing environment. We illustrate the
power of our methodology by presenting experimental results for sorting integers, two-dimensional fast Fourier
transforms (FFT), and constraint-satisfied searching. Our testbed is a cluster of DEC AlphaServer 2100 4/275
nodes interconnected by an ATM switch.

Please seehttp://www.umiacs.umd.edu/research/EXPAR for additional information.
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1 Problem Overview

With the cost of commercial off-the-shelf (COTS) high performance interconnects falling and the respective per-
formance of microprocessors increasing, workstation clusters have become an attractive computing platform of-
fering potentially a superior cost effective performance [27]. Indeed, this trend highly leverages both workstation-
focused technologies including systems software and networking infrastructure, for example, COTS networks
(e.g. Ethernet, Myrinet, FDDI, or ATM). In recent years, we have seen the maturing of Symmetric Multipro-
cessor (SMP) technology (for example, hardware support for hierarchical memory management, multithreaded
operating system kernels, and optimizing compilers), and the heavy reliance upon SMPs as the work-intensive
servers for client/server applications. It can be argued that 1) many future workstations will be SMPs with more
than one processor, and 2) SMP nodes will be the basis of workstation clusters. There are already several ex-
amples of clusters of SMPs, such as clusters of DEC AlphaServer [17], SGI Challenge/PowerChallenge [13], or
Sun Ultra HPC machines, and the IBM SP system with SMP “High” nodes [18, 16]; moreover, the Department
of Energy’s Accelerated Strategic Computing Initiative (ASCI) program relies on the success of computational
clusters such as Option White, a 512-node IBM SP-2 with 16-way SMP nodes. With the acceptance of message
passing standards such as MPI [22], it has become easier to design portable parallel algorithms making use of
these primitives. However, the focus of MPI is a standard for communicating between shared-nothing processes,
and although MPI programs run on clusters of SMPs, this is not necessarily the optimal methodology for these
platforms.
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Figure 1: On the left, we show a message passing algorithm where each task uses sequential code during compu-
tation phases. On the right, the SIMPLE approach replaces each computation step with an optimal SMP algorithm.

This paper describes a methodology for programming clusters of SMP nodes (herein referred to as COSMOS
1) which aids in the design and implementation of efficient high performance parallel algorithms. We call this
approach SIMPLE, referring to the joining of theSMP andMPI -like message passing paradigms and thesimple
programming approach (see Figure 1). Note that our overall algorithmic style is similar in spirit to the one
advocated by the Bulk Synchronous Parallel (BSP) model [32].

Most popular programming methodologies for COSMOS fall into two categories [15]. The first, distributed
shared memory (DSM) systems (for example, TreadMarks [2] from Rice University, Multigrain Shared Memory

1cosmos (’käz-mōs)nounGreekkosmosc. 1650
1: an orderly harmonious systematic universe
2: a complex orderly self-inclusive system
3: ClusterOf SharedMemory Nodes

1



UNM Technical Report: EECE-TR-98-006

(MGS) [34] from MIT and Coherent Virtual Machine (CVM) [19] from University of Maryland), provides a
software layer which simulates coherent shared memory between nodes by internally using messaging to move
around specific data or referenced memory pages. The second, based on message passing primitives (for example,
MPI [22]), enforces a shared-nothing paradigm between tasks, and all communication and coordination between
tasks are performed through the exchange of explicit messages, even between tasks on a node with physically
shared memory. For example, the models assumed in [21] and [30] are that each processor in the cluster will
be assigned a message passing (MPI-level) process, with lower latency communication between processes on
the same SMP node than with internode messages. However, our work differs from both of these approaches,
in that we advocate a hybrid methodology which maps directly to underlying architectural aspects. As such, we
combine shared memory programming on shared memory nodes with message passing communication between
these nodes.

Other recent research which utilize SMP clusters includes KeLP and Globus. The KeLP library [11] im-
proves data parallel language performance by providing the user with a high-level programming abstraction for
block-structured scientific calculations. KeLP contains runtime support for non-uniform domain decomposition
partitioning taking into consideration the two levels (intra- and inter-node) of memory hierarchy. The Globus
toolkit [12] contains the tools necessary to interconnect heterogeneous systems (including SMP nodes) in a wide-
area network, allowing message passing and shared memory programs to take advantage of these distributed
resources.

The main results of this paper are

1. A programming methodology for COSMOSwhich is both efficient and portable. This methodology provides
a path for optimizing message passing algorithms to clusters of SMPs.

2. A small communication kernel for clusters of SMPs which has superior performance compared to known
MPI implementations.

3. High performance algorithms based on our methodology for sorting integers, constraint-satisfied searching,
and computing the two-dimensional FFT.

Experimental results are provided from implementations on a cluster of DEC AlphaServer 2100 4/275 nodes
each with a DEC (OC-3c) 155.52 Mbps PCI card connected to a DEC Gigaswitch/ATM switch, and using MPI
(e.g., LAM 6.1 [25], MPICH 1.1.0 [14], or CHIMP 2.1.1c [1]) and POSIX threads (pthreads), a standard (IEEE
Std. 1003.1c [28, 31]) portable threads library (e.g. DECthreads [10] or freely available pthreads implementations
[29, 23]). Alternatively, the OpenMP shared memory programming API [26] may be used to provide shared
memory support. Each DEC AlphaServer 2100 4/275 node is a symmetric multiprocessor with four 64-bit, dual-
issue, DEC 21064A (EV4) Alpha RISC processors clocked at 275 MHz. Each Alpha chip has two separate data
and instruction on-chip caches. Both on-chip caches are 16 KB, but the instruction cache is direct mapped, while
the data cache is two-way set-associative. In addition, each CPU has a 4 MB backup (L2) cache [17]. All CPUs
communicate via a 128-bit system bus which connects the four CPU modules to a shared memory up to 2 GB in
size [17].

2 The SIMPLE Computational Model

We use a simple paradigm for designing efficient and portable parallel algorithms. First we will describe charac-
teristics of our target parallel machine architecture. Second, we describe a set of efficient SIMPLE communication
and computation primitives which are intended as user level directives.

Our architecture (shown in Figure 2) consists of a collection of SMP nodes interconnected by a communi-
cation network that can be modeled as a complete graph on which communication is subject to the restrictions
imposed by the latency and the bandwidth properties of the network. Each SMP node contains several identi-
cal processors, each typically with its own on-chip cache (L1) and a larger off-chip cache (L2), which can be
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Figure 2: SMP Cluster Architecture

tightly integrated into the memory system to provide fast memory accesses and cache coherence. Each of the
r symmetric processors on an SMP node has uniform access to a shared memory and other resources such as
the network interface. In practice, SMP configurations range between 2 and 36 CPUs attached to a shared bus
and main memory. In our methodology, only the CPUs from a certain node have access to that node’s config-
uration. In this manner, there is no restriction that all nodes must be identical, and certainly COSMOS can be
constructed from SMP nodes of different sizes. Thus, the number of threads on a specific remote node is not
globally available. Because of this, our methodology supports only node-oriented communication, meaning we
restrict communication such that, given any source nodesand destination noded, with s 6= d, only one thread on
nodes can send (receive) a message to (from) noded at any given time. We will show later that no performance
loss will be incurred by this restriction.

2.1 Communication Primitives

The communication primitives are grouped into three modules: Internode Communication Library (ICL), SMP
NODE, and SIMPLE. ICL communication primitives handle internode communication, SMP NODE primitives
aid shared-memory node algorithms, and SIMPLE primitives combine SMP NODE with ICL on SMP clusters.

Internode communication (ICL) uses message passing across the network, and can use any of the vendor-
supplied or freely available thread-safe implementation of MPI. Our ICL library is based upon a reliable, application-
layersend andreceive primitive, as well as asend-and-receive primitive which handles the exchanging of
messages between sets of nodes where each participating node is the source and destination of one message. The
library also provides abarrier operation based upon thesend andreceive which halts the execution at each
node until all nodes check into the barrier, at which time, the nodes may continue execution. In addition, ICL
includes collective communication primitives, for example,scan , reduce , broadcast , allreduce , alltoall ,
alltoallv , gather , andscatter .

Processors on an SMP node communicate via coordinated accesses to shared memory.The SMP NODE Li-
brary contains important primitives for an SMP node:barrier , replicate , broadcast , scan , reduce , and
allreduce , whereby on a single node,barrier synchronizes the threads,replicate uniquely copies a data
buffer for each processor,scan (reduce ) performs a prefix (reduction) operation with a binary associative opera-
tor (for example, addition, multiplication, maximum, minimum, bitwise-AND, and bitwise-OR) with one datum
per thread, andallreduce replicates the result fromreduce . For certain SMP algorithms, it may not be neces-
sary to replicate data, but to share a read-only buffer for a given step. Abroadcast SMP primitive supplies each
processor with the address of the shared buffer by replicating the memory address.

Finally, the SIMPLE communication library, built on top of ICL and SMP NODE, includes the primitives

3
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for the SIMPLE model:barrier , scan , reduce , broadcast , allreduce , alltoall , alltoallv , gather , and
scatter . These hierarchical layers of our communication libraries are pictured in Figure 3. The SMP NODE,
ICL, and SIMPLE libraries are implemented at a high-level, completely in user space. Because no kernel modifi-
cation is required, these libraries easily port to new platforms.

Parameter Description
NODES= p Total number of nodes in the cluster.
MYNODE My node rank, from 0 toNODES�1.
THREADS = r Total number of threads on my node.
MYTHREAD The rank of my thread on this node, from 0 toTHREADS�1.
TID Total number of threads in the cluster.
ID My thread rank, with respect to the cluster, from 0 toTID �1.

Table I: The local context parameters available to each SIMPLE thread.

As mentioned previously, the number of threads per node can vary, along with machine size. Thus, each
thread has a small set of context information (Table I) which holds such parameters as the number of threads on
the given node, the number of nodes in the machine, the rank of that node in the machine, and the rank of the
thread both on the node and across the machine.

Because the design of the communication libraries is modular, it is easy to experiment with different im-
plementations. For example, the ICL module can make use of any of the freely-available or vendor-supplied
thread-safe implementations of MPI, or a small communication kernel which provides the necessary message
passing primitives. Similarly, the SMP NODE primitives can be replaced by vendor-supplied SMP implementa-
tions. We ran a simple experiment whereby a message is sent between two DEC AlphaServer 2100 nodes, using
the Digital Gigaswitch/ATM and OC-3c adapter cards, which have a theoretical peak bandwidth rating of 155.52
Mbps. Using the ICL, we find a point-to-point communication latency of 150µsand achieve a application-level
bandwidth of 132 Mbps between a pair of nodes. For more details, see [5].

Now that the basics of the communication system and node library have been presented, we are ready to
describe an example of a SIMPLE communication primitive.

The Alltoall Primitive . One of the most important collective communication events is thealltoall
(or transpose ) primitive which transmits regular sized blocks of data between each pair of nodes. More formally,
given a collection ofp nodes each with anmelement sending buffer, wherep dividesm, thealltoall operation
consists of each nodei sending itsjth block of m

p data elements to nodej, where nodej stores the data fromi in

the ith block of its receiving buffer, for all(0� i; j � p�1).

4
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To implement this algorithm efficiently on a COSMOS [5, 6], we use multiple threads(r � p) per node.
Trivially, one thread on nodei concurrently can perform a local memory copy of the data blocki, while the
remainingp�1 internode communications are partitioned in a straightforward manner to the remaining threads.
Each thread has the information necessary to calculate its subset of loop indices, and thus, this loop partitioning
step requires no synchronization overheads.

Four Nodes Eight Nodes
Figure 4: Comparison ofAlltoall (Transpose) Primitives

In Figure 4, we compare the performance of threealltoall primitives, using the MPI, ICL, and SIMPLE

communication libraries on four and eight DEC AlphaServer 2100 4/275 nodes. In all cases, the SIMPLE primitive
is faster than an implementation using only message passing such as ICL or MPI2. Now, with only a single
network interface per node, why would one expect a performance improvement by using multiple threads? Our
algorithm exploits two main sources of parallelism. The first is task level concurrency exhibited by one thread
performing the local memory copy while other threads utilizing the network. The second form of parallelism
is less obvious, but nonetheless an important observation. Unlike clusters of workstations where each network
interface is closely coupled to a single processor’s communication stream, on an SMP node, the operating system
is itself capable of internal parallelism (via multi-threaded kernel routines) and can more efficiently pipeline
requests between the processors and the network interface.

2.2 Computation Primitives

We first discuss basic support for data parallelism, that is, “parallel do” concurrent execution of loops across
processors on one or more nodes. Next we describe the control primitives which restrict (or contextualize) thread
execution, for example, to some subset of threads or nodes. Lastly, we cover a few shared memory management
directives which make it easier for the user to develop portable shared memory code by standardizing the interface
for allocating and deallocating shared memory locations.

Data Parallel. The SIMPLE methodology contains several basic “pardo ” directives for executing loops con-
currently on one or more SMP nodes, provided that no dependencies exist in the loop. Typically, this is useful
when an independent operation is to be applied to every location in an array, for example, in the element-wise
addition of two arrays.Pardo implicitly partitions the loop to the threads without the need for coordinating over-
heads such as synchronization or communication between processors. By default,pardo uses block partitioning
of the loop assignment values to the threads, which typically results in better cache utilization due to the array
locations on left-hand side of the assignment being owned by local caches more often than not. However, SIMPLE

explicitly provides both block and cyclic partitioning interfaces for thepardo directive.

Control . SIMPLE control primitives restrict which threads can participate in the context. For instance, control
2The MPI alltoall implementation switches from a small-sized input algorithm to one for larger inputs during this experiment. Thus, the
performance graph reflects a discontinuity in execution time with respect to the critical input size.

5
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may be given to a single thread on each node in a cluster, all threads on a one node, or a particular thread on a
particular node.

Memory Management. Finally, shared memory management is the third category of SIMPLE computation
primitives. Two directives are provided (node malloc andnode free ) that, respectively, dynamically allocate a
shared structure and release this memory back to the heap.

Thus, we have described the fundamental elements of the SIMPLE methodology and can now present a high-
level approach for designing algorithms on COSMOS.

3 SIMPLE Algorithmic Design

Programming Model. The user writes an algorithm for an arbitrary cluster sizep and SMP sizer (where
each node can assign possibly different values tor at runtime), using the parameters from Table I. SIMPLE

expects a standard main function (called SIMPLEmain() ) that, to the user’s view, is immediately up and running
on each thread in the COSMOS. SIMPLE also supplies the program’s command line arguments.

A Possible Approach. The latency for message passing is an order of magnitude higher than accessing local
memory. Thus, the most costly operation in a SIMPLE algorithm is internode communication, and algorithmic
design must attempt to minimize the communication costs between the nodes. Since this is a similar optimization
criterion used when designing efficient message passing algorithms [3], it is beneficial to first design an efficient
message passing algorithm on a COSMOS, and then adapt the algorithm for the SIMPLE paradigm.

Given an efficient message passing algorithm, an incremental process can be used to design an efficient
SIMPLE algorithm. The computational work assigned to each node is mapped into an efficient SMP algorithm.
For example, independent operations such as those arising infunctional parallelism(for example, independent
I/O and computational tasks, or the local memory copy in the SIMPLE alltoall primitive presented in the
previous section) orloop parallelismtypically can bethreaded. For functional parallelism, this means that each
thread acts as a functional process for that task, and for loop parallelism, each thread computes its portion of the
computation concurrently. Note that we may need to apply loop transformations to reduce data dependencies
between the threads. Thread synchronization is a costly operation when implemented in software and, when
possible, should be avoided.

4 SIMPLE Algorithm Examples

The following section demonstrates examples of SIMPLE algorithms for a variety of problems, including complex
communication routines, integer sorting, scientific computing with the fast Fourier transform, and constrained
searching. The reader is referred to [5, 6] for detailed algorithmic descriptions and analyses.

Permutation. As mentioned briefly in the previous section, more complex communication algorithms can
be developed from the primitives described in Section 2. For example, the SIMPLE alltoallv communication
primitive handles the case where the messages for each destination are already collected into a contiguous block
of an array holding all of the messages, and the messages to be received from the other nodes likewise will appear
in contiguous blocks in another array. Suppose instead that each node contains a set of messages, each message
holding a destination tag, such that no node sends or receives more thanh messages [32]. The resultingh-relation
personalized communication [4] is a useful communication routine used in a variety of parallel algorithms. Each
node determines the number of its keys to be sent to every other node, announces these counts to the destination
nodes, rearranges the input elements into a single send buffer such that all keys for the destination nodej are

6
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in contiguous memory and appear before the keys for nodej +1, routes the all-to-all communication event, and
finally, unpacks each received element into the correct destination position. The permutation algorithm minimizes
the number of communication steps, which is optimal on our COSMOStestbed where communication is expensive
compared with local computation.

Radix Sort. Consider the problem of sortingn integers spread evenly across a cluster ofp shared-memory
r-way SMP nodes, wheren� p2. Fast integer sorting is crucial for solving problems in many domains, and as
such, is used as a kernel in several parallel benchmarks such as NAS3 [7] and SPLASH [33]. We present an
efficient sorting algorithm based on our SIMPLE methodology. We chose the technique of radix sort since it is
well known for sequential programming, but efficient methods for solving this problem on clusters of SMPs are
not. The SIMPLE approach for radix sort is similar to our efficient message passing algorithm [4], except when
applicable, shared memory computation replaces sequential node work, and communication uses the improved
SIMPLE communication library. [5, 6].

Consider the problem of sortingn integer keys in the range[0;M�1] (andM = 2b) that are distributed equally
in the shared memories of ap-node cluster ofr-way SMPs.Radix sort decomposes each key into groups ofρ-bit
digits, for a suitably chosenρ, and sorts the keys by applying a Counting Sort routine on each of theρ-bit digits
beginning with the digit containing the least significant bit positions [20]. LetR= 2ρ � p. Assume (w.l.o.g.) that
the number of nodes is a power of two, sayp= 2k, and henceRp is an integer= 2ρ�k � 1. We needb

ρ passes of
Counting Sort; each pass works onρ-bit digits of the input keys, starting from the least significant digit ofρ bits
to the most significant digit.

The performance of the SIMPLE Radix Sort algorithm on a COSMOSof DEC AlphaServer nodes is given in
the left plate of Figure 5. In this experiment, we use four user threads per node, and vary both the problem size
and the number of nodes used. Here, the SIMPLE code shows linear speedups when using multiple nodes of a
COSMOSplatform.

Execution Time of SIMPLE Radix Sort withr = 4 and
p= 1;2;4; and 8 nodes.

Comparison of DSM, MPI, and SIMPLE Radix Sort on
a cluster of eight DEC AlphaServer 2100 4/275 nodes.

Figure 5: Performance of SIMPLE Radix Sort on a COSMOS. Note that we tested the DSM/CVM and
MPI/MPICH radix sort implementations using one to four processes per node, and the SIMPLE implementation
usesr = 4 threads per node.

As we claim in the introduction, software distributed shared memory and message passing algorithms are not
optimal for COSMOS platforms. For instance, we ported an efficient SMP radix sort code into a software dis-

3Note that the NAS IS benchmark requires that the integers be ranked and not necessarily placed in sorted order.

7



UNM Technical Report: EECE-TR-98-006

tributed shared memory package called Coherent Virtual Machine (CVM, version 0.1) [19] which is an extension
of the commercial TreadMarks [2] DSM implementation. The performance of this DSM radix sort is given in
Figure 5. In addition, we took an efficient message passing code for radix sort (the reader is referred to [4, 5] for
a complete analysis of the algorithm and its performance) which performs very well on an IBM SP-2.

The right plate of Figure 5 provides a summary of the performance of the SIMPLE methodology with DSM/CVM
or MPI/MPICH on our testbed. In this experiment, we compare the performance of a SIMPLE radix sort code
using eight 4-way SMP nodes with that of both DSM/CVM and MPI/MPICH code for various cases, such as
using one or multiple threads of execution per node. In all situations on the cluster of SMPs testbed, the SIM -
PLE algorithm substantially outperforms that of both the distributed shared memory and the message passing
implementations.

Two-Dimensional Fast Fourier Transform. Fourier transforms are at the heart of many computations
in medical image analysis, computational fluid dynamics, speech recognition, seismic analysis, image and signal
processing, and detecting surface defects in manufacturing. The straightforward and well-known FFT takes a one-
dimensional signal and transforms it into a one-dimensional vector of frequency components. However, when the
input is a two-dimensional digital image, a corresponding two-dimensional FFT (2D-FFT) can be used similarly
to transform the image into its two-dimensional frequency image. A 2D-FFT computation can be reduced to 1D-
FFT’s by first performing 1D-FFT’s across the rows, followed by 1D-FFT’s down the columns, similar to the FFT
algorithms in [8, 9] which performs an all-to-all transpose of the data between two phases of local computation.
In fact, ak-dimensional transform can be formed by performingk (k�1)-dimensional FFTs along each axis.

Assume that ann�n image is originally partitioned in strips among thep nodes such that each node originally
holds n

p rows of the image.

Step (1):Each node performsnp n-point 1-D FFTs across the rows of its local image strip.

Step (2): Locally rearrange the image such that eachn
p�

n
p block of the image is transposed. Thus, for each

block, each column of data is gathered into contiguous memory in preparation for the following step.

Step (3):Apply thealltoall primitive to transpose the blocks.

Step (4):Locally rearrange the data such that each node holdsn
p columns of the image in contiguous memory.

Step (5):Each node performsnp n-point 1-D FFTs down the columns4 of its local image strip.

Algorithm 1: SIMPLE Two-Dimensional FFT Algorithm.

Note that the 2-D FFT algorithm above (Alg. 1) is valid for both the message passing and SIMPLE paradigms.
The SIMPLE optimization assignsn

rp rows and columns inSteps (1)and(5), respectively, to each thread, and
substitutes the SIMPLE alltoall primitive in Step (3). (Note that the local rearrangements inSteps (2)and(4)
similarly can be optimized for shared memory threads on each node.) The SIMPLE implementation resulted in
superior performance in all test cases as reported in [5].

We begin with an efficient message passing algorithm for the FFT [5]. The one-dimensional FFT used in the
first and last steps is a benchmark kernel from netlib [24].

Without any modifications, we ran the message passing code on both a cluster of DEC AlphaServer 2100
4/275 nodes (with only one task per node) and using message passing solely on a single node (see the left and
right plates of Figure 6, respectively). For a fixed image size, the performance does not scale well with four more
more nodes. In addition, the code running on one, two, and four, processors of a single node shows very little gain
by using more than a single CPU per node. Compare these results with the SIMPLE execution times presented in
Figure 7 for a variety of configurations (from one to eight nodes and from one to four CPUs per node) and image

4In fact, the image strip is transposed, so the 1-D FFTs are performed physically across rows of memory.
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cluster node
Figure 6: MPI Code for Two-Dimensional FFT. On the left, we show the performance on a cluster of DEC
AlphaServer nodes. On the right, multiple processors on a single DEC AlphaServer 2100 4/275 are used.

sizes (128�128 to 1024�1024 pixels). For instance, on a 1024�1024 pixel image, using just a single node and
four tasks, the message passing implementation takes approximately 3.3 seconds, while the SIMPLE approach is
about a second faster, or equivalently, two-thirds the execution time. We see an improvement for using multiple
CPUs on a node, even at our largest available machine configuration of eight nodes.

9
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Figure 7: Two-dimensional FFT on a cluster of DEC AlphaServer 2100 nodes using the SIMPLE methodology

10
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Constrained Search Algorithm: The n-Queens Problem. A classic puzzle used in benchmarking
and performance analysis is then-queens problem. Here, the objective is to report the number of ways to placen
queens on ann�n chessboard such that none of the queens can attack each other. For those readers unfamiliar
with the game of chess, this restricts the placement of the queens such that no two queens share the same rank (or
row), column, or diagonal. Since there aren2Cn =

n2!
n!(n2

�n)!
ways to placen queens on ann�n board, a brute force

algorithm which checks each of these candidate solutions is infeasible. If we limit the search space to include
just those candidates which have exactly one queen per rank, then we reduce the search space tonn (or n! for one
queen per rank and column) possible candidates, which is still too large. Therefore, the most desirable search
method aggressively eliminates sets of candidate solutions which do not satisfy the constraints. Even with the
best search method, solving then-queens problem has exponential complexity in the problem size.

Our algorithm uses a tree-based backtracking approach where queens are placed one by one on each rank
until all n queens are placed. If a constraint is not met, or a solution is found, the last queen placed on the board
is removed and re-placed in the next column position. This is equivalent to a depth-first search with pruning of
branches where the constraints are not met. Note that we are not taking into consideration the special topological
properties and symmetries of the chessboard, for example, rotating known solutions by 90Æ, 180Æ, and 270Æ, to
discover similar solutions, or reflecting solutions about the horizontal, vertical, or diagonal axes.

0 1 2 n-1

0 n 2n (n-1)n

0 n 2n

0 n 2n

rank 0

rank n-1

rank 2

rank 1

C
olum

n 2

C
olum

n n-1

C
olum

n 0

C
olum

n 1

2 2(n-1)n

n-1 n-1 n-1
(n-1)n

2

Figure 8: Encoding of the chessboard

Search Space

k = n

k = 2

k = 1

Figure 9: Search Tree for a constrained search, e.g. the nqueens problem.

A paralleln-queens constraint-satisfaction search algorithm withp processors uses a distributed search tree
approach as follows. First, the algorithm enumerates a set of independent search-tree seed nodes and partitions

11
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these to the processors. Suppose we generate all possible queen placements on the firstk ranks of ann� n
chessboard. There will benk of these placements, uniquely encoded into the integers from 0 tonk�1 by summing
a term from each queen placed on ranki, (0� i < k), and columnj, (0� j < n), equal tojni . For clarity, Figure 8
shows the value of each position on the chessboard. Thesenk partial placements then can be partitioned randomly
and evenly among the processors, checked for validity, and used as a root node for a sequential depth-first search
of the remainingn�k queen positions from that starting point. Figure 9 contains an example of this search tree
for k= 2.

Algorithm n CPUs Time (s)
p r

Netlib 14 1 36.336
SIMPLE 14 1 1 38.8
SIMPLE 14 1 4 10.0
SIMPLE 14 4 4 2.73
SIMPLE 14 8 4 1.32

Netlib 15 1 237.080
SIMPLE 15 1 1 255.
SIMPLE 15 1 4 66.4
SIMPLE 15 4 4 15.5
SIMPLE 15 8 4 8.05

Netlib 16 1 1646.131
SIMPLE 16 1 1 1785.
SIMPLE 16 1 4 455.
SIMPLE 16 4 4 107
SIMPLE 16 8 4 54.2

Table II:n-Queens Performance Summary.

This SIMPLE algorithm scales linearly with the total number of processors used, and compares favorably with
the standard netlib [24] “queens” sequential benchmark results forn= 14;15; and 16 (see Table II).
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