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Abstract

This paper presents a comparison study of the computational complexity of the general job shop protocol
and the ow line protocol in a exible manufacturing system. It is shown that a certain representative
problem of �nding resource invariants is NP-complete in the case of the job shop, while in the ow line case
it admits a closed-form solution. The importance of correctly selecting part ow and job routing protocols
in exible manufacturing systems to reduce complexity is thereby conclusively demonstrated.
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Chapter 1

Introduction

In a general exible manufacturing system (FMS) where resources are shared, a key role in part routing, job
selection, and resource assignment is played by the FMS controller. Given the same resources of machines,
robots, �xtures, tooling, and so on, di�erent structures result under di�erent routing/assignment strategies
by the controller. Unstructured strategies are generally clasi�ed as the so-called job shop organization,
while structured protocols result in various sorts of ow lines, with or without assembly. The importance of
structure in determining complexity has not been rigorously addressed in FMS.

The theory of NP-completeness [7] potentially provides a comprehensive approach for analysis of compu-
tational complexity in FMS. This possiblility has not been rigorously explored. There are many distinct
analysis and design problems to be solved in FMS, including scheduling with optimality, computation of the
Petri net (PN) p-invariants to determine resource loops, analysis of deadlocks and circular waits, design and
implementation of deadlock avoidance strategies, and design/selection of dispatching and routing algorithms.
These problems have varying degrees of complexity, and complexity varies as well depending on whether one
has a ow line, assembly line, or job shop protocol structure.

Many traditional scheduling and sequencing problems have been found to be inNP , thus it has been necessary
to develop heuristics or approximate methods for analysis and solution. It has been shown, for instance that,
even for the ow line with 2 processors, scheduling while minimizing the maximum ow time is NP-complete
for both nonpreemptive and preemptive schedules [8]. For the general job shop protocol the situation is even
worse (see for example page 242 of [7]). Branch and bound algorithms are generally used in this case. For
the ow line, the lot-sizing problem is polynomial, while for the ow line with assembly it is exponential.
On the other hand, determining circuits in a graph, as required, e.g., to �nd the wait relations in an FMS,
is polynomial. The complexity of many problems, including the determination of the PN p-invariants, has
not yet been determined. There is currently no comprehensive theory that provides a categorization of the
complexity of analysis problems for the ow line, assembly line, and job shop. There is no formal theory
describing how to impose structured ow and command protocols on an FMS to simplify its complexity.

Petri nets (PN) [16, 18] have been extensively used in the analysis of manufacturing systems, with quite
variable results. Though, ad hoc applications abound, PN have a body of theoretical results on liveness,
boundedness, reachability, and so on that make them very useful in studies of FMS when seriously applied.
Applications of PN are found in [3, 6, 9, 23]. PN approaches to the design of FMS sequencing/dispatching
controllers are found in [10, 11, 17].

The PN incidence matrix has been used for analysis applications in FMS. It has been shown that it can be
used to study structural properties of FMS, including determination of the siphons [1] and deadlock avoidance
[14]. In these papers, the problem of �nding a binary basis for the nullspace of W is important, for such a
basis de�nes a special class of siphons known as the p-invariants or resource loops, which must be known
for e�ective deadlock avoidance. However, matrix applications in PN have not been fully exploited. In this
paper we show that it is possible by judicious means to reveal a special structure of the PN incidence matrix
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in a very general class of reentrant ow lines that can include assembly operations. To reveal the importance
of structure in the study of complexity for FMS, we select the representative problem of determining the
p-invariants. It is shown that for unstructured job shop protocols this problem is NP-complete, while for
reentrant ow line protocols it is polynomial. The importance of selecting suitable controller sequencing
protocols to reduce complexity in FMS is thereby shown.

This paper is organized as follows. Chapter 2 presents an overview of computational complexity theory and
of the reduction approach. Chapter 3 presents various manufacturing structures including the job shop,
assembly line, and ow line, and introduces some PN notions. The computational complexity of �nding the
p-invariants is shown to be NP-hard for the job shop in Chapter 4 and polynomial for a general class of
reentrant ow lines in Chapter 5.
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Chapter 2

Complexity Theory Overview

Until recently, it was felt that decidable problems are practically solved and thus not very interesting. The
introduction of computational complexity theory has since changed this misconception. Computational
complexity theory is often used to establish the tractability or intractability of computational problems, and
is concerned with the determination of the intrinsic computational di�culty of these problems [7].

In order to discuss the complexity of an algorithm, one must begin with a model of computation, for which
the Turing Machine is the most commonly used. The simplicity of the Turing machine model appears to
make it of little practical value; however, the Church-Turing Thesis holds that the class of problems that are
tractable on a Turing machine are also tractable on any other reasonable model of computation (including
the computers we use).

One important concept in this theory is that of a polynomial-time algorithm, i.e. an algorithm whose running
time can be bounded by a polynomial in the size of the description of the problem. In practice, such an
algorithm can be feasibly implemented on a real computer. This is in contrast to an exponential-time
algorithm, which is only feasible if the problem being solved is extremely small.

The complexity class P consists of all decision problems that can be decided in polynomial-time, while the
class EXP consists of those that can be decided in exponential-time. The complexity class NP lies inbetween
consisting of all decision problems that can be decided algorithmically in nondeterministic polynomial-time.
An algorithm is nondeterministic if it is able to choose or guess a sequence of choices that will lead to
a solution, without having to systematically explore all possibilities. This model of computation is not
realizable, but it is of theoretical importance. In practice, problems in NP are those for which a candidate
solution can be veri�ed to be a valid solution in polynomial-time, but the best known algorithms to �nd
such a solution run in exponential time.

Many practical problems belong to NP and it is as of yet unknown whether P = NP . In other words,
these two complexity classes form an important boundary between the tractable and intractable problems.
A problem is said to be NP-hard if it is as hard as any problem in NP . Thus, if P 6= NP , the NP-hard
problems can only admit deterministic solutions that take an unreasonable (i.e., exponential) amount of time,
and they require (unattainable) nondeterminism in order to achieve reasonable (i.e., polynomial) running
times.

The central idea used to demonstrate NP-hardness evolves around the NP-complete problems. A problem
is said to be NP-complete if every decision problem in NP is polynomial-time reducible to it. This means
that the NP-complete problems are as hard as any decision problem in NP . Given two decision problems �1

and �2, �1 is said to be polynomial-time reducible to �2 (written as �1 �p �2), if there exists a polynomial
time algorithm R which transforms every input x for �1 into an equivalent input R(x) for �2. By equivalent
we mean that the answer produced by �2 on input R(x) is always the same as the answer �1 produces on
input x. Thus, any algorithm which solves �2 in polynomial time can be used to solve �1 on input x in
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polynomial time by simply computing R(x), and then running �2.

In order to show that a particular decision problem �2 is NP-complete, one starts with a problem �1 which
is known to be NP-complete, and shows that �1 �p �2. This proves that �2 is NP-hard. To complete
the proof that �2 is NP-complete, it must be demonstrated that a candidate solution can be veri�ed in
polynomial time.

In this paper, we use the One-In-3Sat problem which is known to be NP-complete [7] in order to show
that solving a certain problem for the general job shop is NP-complete. We then use the special structure of
the reentrant ow line problem to show that the same problem can be e�ciently obtained for the ow line.
This highlights the importance of structure in exible manufacturing systems. The One-In-3Sat problem
is as follows:

One-In-3Sat:

Instance: Given a set U of variables, a collection C of clauses over U such that each c 2 C has jcj = 3.
Question: Is there a truth assignment for U such that each clause in C has exactly one true literal?

Example 1 Let U = fa; b; c; dg and C =
�
a�bc; �abd;�bc �d

	
. Then a solution is a = b = true and c = d = false.
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Chapter 3

Structure and Modeling of Flexible

Manufacturing Systems

In this chapter we discuss exible manufacturing systems with several sorts of structures, including the
reentrant ow line, the assembly line, and the job shop. The importance of structure and protocol in exible
manufacturing systems is highlighted. Some Petri Net modeling techniques are introduced.

3.1 Flexible Manufacturing Systems (FMS)

To meet competition in a global marketplace and provide exible manufacturing in today's high-mix low-
volume manufacturing environment, manufacturing systems have gone away from old-style �xed-hardware
sequential assembly lines with dedicated workstations. The trend for several years has been towards exible
manufacturing systems (FMS), which have four major components [2]: a set of machines or work stations,
an automated material handling system that allows exible job routing, distributed bu�er storage sites,
and a computer-based supervisory controller for monitoring the status of jobs and directing part routing
and machine job selections. With this change in style, the emphasis has shifted towards the design of
sophisticated decision-making controllers that include functions of job sequencing and dispatching, parts
routing, job release, deadlock avoidance, etc.

Unfortunately, rigorous approaches to FMS in problems such as dispatching and routing, steady-state anal-
ysis, queueing stability, bottleneck studies, and so on have focused on simple types of systems including
single-server, ow line without assembly, serial forms, etc. Systems with �nite bu�ers and nonserial systems
(e.g. systems with assembly, etc.) have few results, with fewer still for general job shop structures and
large-scale interconnected systems. It is by now known that many manufacturing problems are in NP so
that signi�cant increases in computing power do not signi�cantly improve computational capabilities. There
is no general approach for taking advantage of the FMS structure to reduce computational complexity.

3.2 Manufacturing System Structures

The physical portion of an FMS is comprised of its resources: the set of machines or work stations, the
automated material handling system, and the distributed bu�ers. We call these the manufacturing facility.
Given the same resource facilities in the FMS, di�erent sequencing algorithms by the controller produce dif-
ferent ow/protocol structures, including the reentrant ow line, the assembly line, and the general job shop
protocol. Not only should the controller provide guaranteed performance, but it should impose a suitable
structural protocol to achieve prescribed performance speci�cations, and it should be easily recon�gurable to
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part 1

part 2

Machine 1

Machine 2 Machine 3

Machine 4

Robot 1

Robot 2

Buffer 1 Buffer 2

product 1

product 1
M4

M1

R2

R1

B1 M2 B2 M3

Figure 3.1: Reentrant ow line with 4 machines and 2 parts.

change the FMS structure, dispatching rules, routing algorithms, etc. as products or performance require-
ments change. Disciplines such as discrete event (DE) systems are emerging to confront such problems [19].
A major issue is that the structure imposed by the controller should avoid or reduce NP-complexity problems.

Formally, a manufacturing facility is a set R = frig of resources (e.g. machines, tools, �xtures, robots,
transport devices, etc.), each of which has a distinct function. Each ri can denote a pool of more than one
machine that performs the same function. The resources operate on parts; parts of the j-th type are denoted
pj . A job sequence for part type pj is a sequence of Pj jobs Jj = fJ1j ; J2j ; : : : JPjjg required to produce a
�nished product. We distinguish between jobs in the part sequence even if, for instance J2j and J5j are both
drilling operations. The sequence of jobs may be determined from a task decomposition, bill of materials,
assembly tree, or precedence matrix (c.f. Steward's sequencing matrix [20]). If each job is performed on a
single part and delivers a single part there is said to be no assembly.

Once the sequence of jobs for a part type has been assigned, resources must be assigned to perform the jobs.
This is performed by a manufacturing engineer based on the facilities available. If a single resource is needed
for each job, for instance, this corresponds to a pairing (Jkj ; ri) of the k-th job for part pj with a resource ri.
The ordering of the jobs for a given part type can be either �xed or variable. For instance, in an application
it may be allowable to either drill then machine a part, or to machine and then drill the part. Likewise,
the resources assigned to each job can be either �xed or variable. For instance, either of two machines of
di�erent types (e.g. from di�erent resource pools) might be capable of performing a given drilling job.

In the general job shop the sequence of jobs is not �xed, or the assignment of resources to the jobs is not
�xed. The e�ect is that part routing decisions must be made during processing. In the ow line the sequence
of jobs for each part type is �xed and the assignment of resources to the jobs is �xed. The result is that each
part type visits the resources in the same sequence, though di�erent part types may have di�erent sequences.
The ow line is also known as the \job shop with �xed part routing". The sequence in which part type pj
visits the resources in a ow line will be called the j-th part path. A ow line is said to reentrant if any
part type revisits the same resource more than once in its job sequence [12, 15]. This occurs if the same
resource is assigned to di�erent jobs in the part's sequence. A sample reentrant ow line is given in Fig.
3.1. In this �gure, R1 and R2 could be transport robots, for instance, that move the parts between certain
jobs; B1; B2 could be bu�ers; and M1;M2;M3;M4 could be machines. Thus, the resources may include
machines, robots, bu�ers, transport devices, �xtures, tools, and so on.
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M1A

M1P

B1A M2A B2A M3A
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part  1:

part  2:

u1

Figure 3.2: PN representation of the reentrant ow line.

3.3 Petri Net Representation of FMS

Some knowledge of Petri nets is assumed. A Petri net (PN) is a bipartite (e.g., having two sorts of nodes)
digraph described by (P ; T ; I; O), where P is a set of places, T is a set of transitions, I is a set of (input) arcs
from places to transitions, and O is a set of (output) arcs from transitions to places. In our application, the PN
places represent manufacturing resources and jobs, and the transitions represent decisions or rules for resource
assignment/release and starting jobs. Operation duration times and resource setup times are captured in
timed places, as opposed to the timed transition approach. For instance, a standard representation for a
reentrant ow line is given in Fig. 3.1. The PN representation for the same system is shown in Fig. 3.2,
where the places are drawn as circles and the transitions as bars. The ow line structure is evident in the
parallel part type paths, interconnected by shared resource places (e.g., B1;M2) that service jobs for several
part types. Note that along one part path, some resources (e.g., R1; R2) are used more than once, so that
this ow line is reentrant. Each part path in the �gure has a set of pallets denoted by PA1; PA2; one pallet
is needed to hold each part entering the cell. Places ending in P , all on the job paths, correspond to jobs in
progress. Places ending in A correspond to the availability of resources.

3.3.1 Incidence Matrix and Marking Transition Equation

It is common in PN theory [18] to represent the sets of arcs I and O in the PN description (P ; T ; I; O) as
matrices. Thus, element Iij of matrix I is equal to 1 if place j is an input to transition i. Element Oij

of matrix O is equal to 1 if place j is an output of transition i. Otherwise the elements of I; O are set to
0. Matrix I is called the input incidence matrix, and O the output incidence matrix. Both matrices are
considered as maps from P to T . Then, the PN incidence matrix is de�ned as

W = O � I: (3.1)

A column vector p indexed by the set of places P is called the PN p-vector (place vector). The PN marking
vector is the marking vector m(p) de�ned as follows.

De�nition 1 (Marking and Support) Given a PN, the PN marking is the number of tokens in each
place in the net. Given a place p 2 P, the marking of p, m(p), is the number of tokens in p. Given a vector
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of places p = [p1 p2 : : : pq]
T , the marking m(p) is the vector m(p) = [m(p1) m(p2) : : :m(pq)]

T of markings
of the individual places. The support of a vector is the set of its elements having nonzero values.

It is common to simplify the notation so that m(t) denotes the marking vector m(p) at time t. Then, in
terms of the PN incidence matrix, one can write the PN marking transition equation

m(t2) = m(t1) +W T � = m(t1) + (O � I)T �; (3.2)

where m(t) is the PN marking vector at time t, t1 < t2, and � is a vector denoting which transitions have
�red between times t1 and t2; element �i = ni if the i� th transition has �red ni times in the interval.

3.3.2 Resource Loops and p-Invariants

Central to the study of resource allocation in FMS are the following notions.

De�nition 2 (p-Invariant and Resource Loop) A p-invariant is a place vector p having elements of
zeros and ones that is in the nullspace of W , that is

Wp = 0: (3.3)

The set of places corresponding to the support of p is known as a resource loop, also loosely called a p-
invariant.

The complete set of p-invariants of a PN gives a great deal of information. In [14] it is shown that they
provide the basis for deadlock avoidance algorithms. The importance of p-invariants may be understood by
noting that, beginning with (3.2), for any p-invariant p one has

pTm(t2) = pTm(t1) + pTW T � = pTm(t1): (3.4)

Noting that premultiplication by pT simply sums up the tokens in the positions of m(�) corresponding to the
support of p, this is seen to be a statement that the total number of tokens in positions of m(�) corresponding
to the support of p is conserved. That is the p-invariants de�ne those loops in the PN within which the
numbers of tokens are conserved. These conservative loops de�ned by the p-invariants are the resource
loops.

8



Chapter 4

Computational Complexity of Finding

the p-Invariants in the Job Shop

The resource loops of an FMS contain information of great value in deadlock avoidance, shared resource
conict resolution using dispatching techniques, and so on. Unfortunately, to �nd the p-invariants it is
necessary solve (3.3), determining a basis for the nullspace of W that has only ones and zeros. In this
chapter, we show that �nding such a binary basis is an NP-complete problem for the general job shop
structure. Then, in Section 5 it is shown that for the reentrant ow line, with or without assembly, an
analytic solution can be given for the problem.

Theorem 1 The problem if �nding a binary basis for W in the general job shop is NP-Complete.

Proof: In order to solve the general job shop problem, we need to �nd a basis of the nullspace of the inci-
dence matrix W . Since W contains coe�cients wij 2 f�1;+1; 0g and since a meanigful basis of its nullspace
will have vectors p whose entries pi also belong to f0;+1g, the problem is equivalent to �nding pi such thatPn

i=1 wijpi = 0; 8j = 1; � � �n. Note however, that the zero vector pi = 0;8i should be excluded. We shall
then de�ne the following problem

Matrix Basis

Instance: An n� 2n matrix A 6= 0 with entries in f�1; 0; 1g.
Question: Does there exist a vector x 6= 0 with entries in f0; 1g such that Ax = 0?

and prove that Matrix Basis is NP-complete by transformation from One-In-3Sat.

We begin with a proof for A of size n�m and then later show how to augment the matrix to make it of size
n� 2n.

Let n = jU j+ jCj and m = 2jU j+ 1, where U and C are the sets of variables and clauses in the instance of
One-In-3Sat. The columns of A (and thus the components of the vector x) will correspond to complemented
and uncomplemented assignments of the jU j literals and an auxiliary variable z, i.e.

x =
�
x1 �x1 x2 �x2 : : : xn �xn z

�0
:

A valid solution vector will correspond to each component of x being equal to 0 or 1 depending on whether
the corresponding literal is true or false. All nontrivial solutions will have z = 1.

The �rst jU j rows of A are used to insure that the solution vector is a valid truth assignment to the literals,
i.e. so that value assigned to xi will be the logical complement of the value assigned to �xi. Speci�cally, the

9
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�rst jU j rows are con�gured as,

ai;j =

8<
:

1 j 2 f2i� 1; 2ig
�1 j = 2jU j+ 1
0 otherwise

The remaining jCj rows are used to satisfy the requirement that exactly one literal in each clause is true.
Speci�cally, denote a literal by ~xi (i.e. ~xi 2 fxi; �xig), and denote the ith clause by ci = ~xpi ~xqi ~xri . Then set

ajUj+i;j =

8>><
>>:

1 j = 2s� 1; ~xs = xs; s 2 fpi; qi; rig
1 j = 2s; ~xs = �xs; s 2 fpi; qi; rig

�1 j = 2jU j+ 1
0 otherwise

Example 2 Let U = fx1; x2; x3; x4g and let C = fx1�x2x3; x2x3�x4; �x1x2x4g. Then the matrix A is given by

x1 �x1 x2 �x2 x3 �x3 x4 �x4 z

A =

2
666666664

1 1 0 0 0 0 0 0 �1
0 0 1 1 0 0 0 0 �1
0 0 0 0 1 1 0 0 �1
0 0 0 0 0 0 1 1 �1
1 0 0 1 1 0 0 0 �1
0 0 1 0 1 0 0 1 �1
0 1 1 0 0 0 1 0 �1

3
777777775

Every solution besides the trivial solution must have z = 1 since if z = 0 then the �rst jU j rows of A will
guarantee that every other entry will also be equal to zero. The same rows will guarantee that for nontrivial
solutions exactly one of xi and �xi will be equal to one. The last jCj rows of A will only be satis�ed by
nontrivial solutions such that exactly one literal of each clause is true.

We can easily make A of size n � 2n by adding one additional row and 2jCj + 1 additional columns, i.e.
construct the augmented matrix

A0 =

�
A B

C D

�

where B and C are matrices of zeros of sizes (jU j + jCj) � (2jCj + 1) and 1 � (2jU j + 1) respectively, and
D is a matrix of ones of size 1� (2jCj + 1). The last row insures that the last 2jCj + 1 components of the
solution vector must be equal to zero, but these variables in no way interfere with the construction above.
The augmented matrix is of size n� 2n where n = jU j+ jCj+ 1.

The transformation is easily done in time linear in the size of the matrix, which is quadratic in jU j and jCj.
Therefore, we have shown that Matrix Basis is NP-Hard. On the other hand, one can easily verify the
existence of pi as a member of the nullspace of W which then proves that the problem is NP-Complete.
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Chapter 5

Computational Complexity of Finding

the p-Invariants in the Flow Line

Like many other problems, �nding the p-invariants in a general job shop protocol is NP-complete, as seen
in the previous chapter. In this chapter, a special job ow protocol is imposed that allows one to give an
analytical solution to this problem, so that the complexity is polynomial. This protocol corresponds to a
large class of reentrant ow lines with or without assembly. The importance of structure in an FMS is thereby
shown in regards to computational complexity, so that care should be taken in selecting job sequencing and
routing strategies in FMS. The ow line structure allows one to model and analyze large-scale interconnected
FMS in a polynomial number of operations using block matrices.

5.1 Structure of the Reentrant Flow Line

In the reentrant ow line with or without assembly, e.g. Fig. 3.2, denote the set of jobs for part type j as
Jj and the set of all the jobs as J =

S
j Jj . It is noted that the part input places PI and part output places

PO are not included as jobs. Places that occur o� the part paths represent the availability of resources;
denote by R the set of all such places. The set of resources may be partioned as R = Rns [ Rs, with Rns

the nonshared resources and Rs the shared resources. The set of PN places is given by P = J [ R, the set
of resources plus the set of jobs. Note that all transitions occur along the part paths.

Partition the PN marking vector p as

p =

�
v

r

�
; (5.1)

where v is the vector of places corresponding to the jobs J and r is the vector of places corresponding to
the resources R. Then, the PN incidence matrix has the structure

W = [Wv Wr ] � ST � F = [ST
v �Fv ST

r �Fr] (5.2)

where ST
v ; S

T
r are the output incidence matrices of the jobs and resources respectively , and F T

v ; F
T
r are

the input incidence matrices of the jobs and resources respectively. This formalizes some discussions in [3]
concerning places of type A;B;C. Matrix Fv is called the Steward sequencing matrix [20] or the Bill of
Materials (BOM) [4] in manufacturing; it has element (i; j) = 1 if job j is an immediate prerequisite for
job i. Matrix Fr is the resource requirements matrix used in [13]; it has element (i; j) = 1 if resource j is
required for job i.

It is important to order the job places correctly to obtain a lower triangular matrix Fv [5, 21], for then the
sequencing of the jobs is causal. A causal ordering is also important in taking advantage of structure to

11
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reduce complexity. The special structure of matrices Fv ; Fr; Sv ; Sr for a general class of reentrant ow lines
is revealed in terms of the following constructions.

5.1.1 De�nition of a General Class of Reentrant Flow Lines

De�nition 3 (Complete and Partial Part Paths) Given a reentrant ow line with assembly, de�ne a
complete part path as one that terminates in an output product (e.g. a PO place in the PN), and a partial
part path as one that merges with another part path in an assembly operation.

Note that each complete part path terminates in an extra transition that is required to produce the product
output equations and to release the pallets, if any are used in that corresponding part path. To obtain a
causal ordering of the jobs, number the job places sequentially from left to right along each single part path.
Suppose part path j1 is a complete path, with a partial part path j2 merging into path j1 at the assembly
point, represented by a transition on that path. In this situation, one may number the jobs of partial path
j2 from left to right, stopping at the last job prior to the assembly transition. Then, return to the beginning
of path j1, picking up the place ordering by numbering the the job places of path j1 from left to right. The
transitions should be numbered corresponding to the job places they feed into. This procedure corresponds
to numbering the jobs from bottom to top as is standard in a manufacturing assembly tree [22].

The subsequent analysis deals with the class of reentrant ow lines now de�ned. This class is more general
than the one in [6] as it allows assembly operations as well as the use of more than one resource per job (e.g.
tool, �xture, and machine) as in [10].

De�nition 4 (Dot Notation for Input and Output Sets of a Node) Given a transition t 2 T , de-
�ne by �t the set of places that are inputs to t, and by t� the set of places that are outputs of t. Given a
place p 2 P, de�ne by �p the set of transitions that are inputs to p, and by p� the set of transitions that are
outputs of p. Given a set of nodes S = fvig (either places or transitions), de�ne �S = f�vig and S� = fvi�g.

De�nition 5 (Pallet Places) Let the set of transitions along the j-th part path be xj1; xj2; : : : ; xjLj
. Then,

if part path j is complete, it may have a pallet place pj0. If so, it should be selected such that pj0 2 �xj1; pj0 62
�xj`; ` 6= 1, and pj0 2 xjLj

�; pj0 62 xj`�; ` 6= Lj . That is, if present, pallets are used for all jobs on a complete
part path.

De�nition 6 (Set of Jobs of a Given Resource) Given a reentrant ow line with jobs J and resources
R, de�ne the jobs associated with resource r 2 R as

J(r) = r�� \ J : (5.3)

In terms of these constructions, the class of FMS studied here is given as follows. Denote the set of resources
minus the pallets as R�0 = R� fpj0g.

De�nition 7 (De�nition of a Class of Reentrant Flow Lines) De�ne the class of reentrant ow lines
with or without assembly as those satisfying the following properties.

1. For all places p 2 P, one has �p \ p� = � the empty set. (No self-loops.)

2. For each part path j, the �rst transition satis�es xj1 � \R = � and, if the path is complete the last
transition satis�es �xjLj

\ R = �. (Each part path has a well-de�ned beginning and end.)

3. For each resource r 2 R�0, one has r 2 p�� \ R for all p 2 J(r) = r�� \ J . (Unity job duration|
each job is described by only one job place along the part path.)

12
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This de�nition results in the following facts, easily derivable using de�nition.

Lemma 2 (Properties of the Class of Reentrant Flow Lines) The class of reentrant ow lines con-
sidered satis�es the following properties:

1. The job set of r is given by J(r) = r�� \ J =�� r \ J for all resources r 2 R�0.

2. p�� \ R =�� p \ R for all jobs p 2 J .

3. If there are pallets for part path j, then pj0�� \ R = �; �� pj0 \ R = �. (This follows directly from
De�nition 5 and De�nition 7 item 2).

4. Let p 2 P = R [ J . Then p 2 p` for some p-invariant p`. That is, the owline is covered by
p-invariants.

5.1.2 Special Form of the Incidence Matrices.

The reentrant ow line De�nition and Lemma mean that the PN matrices in (5.2) have a particular form.
Matrices Fv ; S

T
v consist of diagonal blocks, one per part path, which in ST

v are identity matrices, and in Fv
have a subdiagonal of 1's. If there is assembly there will be some 1's in Fv below the diagonal blocks, where a
1 in element (i; j) means that place j is the last place in a partial part path and joins transition i in another
part path.

Matrices Fr ; S
T
r are related as follows. If the i-th transition is not the last transition in a partial part path,

and there is an entry of 1 in position (i; j) of Fr , meaning resource j is committed at transition i, then there
is an entry of 1 in position (i+ 1; j) of ST

r , meaning that the resource is released at the next transition. If
the i-th transition is the last transition in a partial part path, and there is an entry of 1 in position (i; j) of
Fr, then there is an entry of 1 in position (k; j) of ST

r , meaning that the resource is released at the assembly
transition k.

This structure results in a particularly convenient form of the PN incidence matrixW = [ST
v �Fv S

T
r �Fr] �

[Wv Wr]. Block Wv has diagonal blocks having 1's on the diagonal and -1's on the subdiagonal, with some
-1's below these blocks in the case of assembly operations. In each column, matrix Wr has a -1 immediately
followed by a 1, except in the case of assembly where the occurrence of the following 1 is shifted down to
the assembly transition. In the case of shared resources, there is more than one -1,1 pair in the column. In
columns corresponding to pallets, the 1 occurs at the beginning of the associated diagonal block of Wv and
the -1 at its end.

5.2 Algorithm for Computation of the p-Invariants

For the reentrant ow line, an algorithm for determining all the p-invariants in a polynomial number of
operations is given by the following theorem.

Theorem 2 (Computation of a Set of Independent p-Invariants) Let there be given the PN matrices
(5.2) for a ow line satisfying De�nition 7, with places in the job vector v ordered in the causal ordering
speci�ed in Section 5.1. Form matrices F̂v; F̂r by deleting the rows of Fv ; Fr corresponding to the extra
terminating transitions in each complete part path. Form matrices Ŝv; Ŝr by deleting the columns of Sv; Sr
corresponding to the extra terminating transitions in each complete part path. Then, the complete set of
p-invariants (resource loops) is given by the columns of the matrix

P =

�
�(ŜT

v �F̂v)
�1(ŜT

r �F̂r)
I

�
(5.4)
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where I is the identity matrix.

proof:

The p-invariants are de�ned using (3.3) where W is given by (5.2) and, for the reentrant ow line, Wv ;Wr

have the special form noted in Section 5.1.2. This shows that the p-invariants are de�ned by

[Wv Wr]

�
v

r

�
= 0;

with v a vector of job places and r a vector of resource places, or

Wvv = �Wrr:

To construct a special left inverse of Wv to solve this equation for v, delete the extra last transitions in the
complete part paths to de�ne

Ŵ = ŜT � F̂ = [ŜT
v �F̂v ŜT

r �F̂r] � [Ŵv Ŵr]:

This makes matrix Ŵv square. This is allowed as the deleted rows of Wv are in the row space of the remaining
rows. Then, the p-invariants are de�ned by

Ŵvv = �Ŵrr:

so that v = �Ŵ�1
v Ŵrr for any r. To obtain a basis for nullspace W , set r = I, the identity, resulting in

(5.4).

It is required now to show that the resulting v is binary. According to the discussion in Section 5.1.2 on the
special structure of the DE matrices, Ŵv is lower block triangular with blocks on the diagonal corresponding
to each part path and having the form

2
664

1 0 0 0
�1 1 0 0
0 �1 1 0
0 0 �1 1

3
775 :

The inverse of such a block is

2
664

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

3
775 ; (a)

which appears as the corresponding diagonal block of Ŵ�1
v . In the case of assembly, there are some entries

in Ŵ�1
v below these diagonal blocks. Speci�cally, if there is a subdiagonal entry of -1 in position (i; j) of Wv

the meaning is that there is a partial part path j1 whose last place j feeds into an assembly transition i in a
part path j2. In this event, the lower o�-diagonal block corresponding to the diagonal blocks j1 and j2 (e.g.
block (j2; j1)) is zero, but �lled with 1's on rows i and below.

Now one must turn to the structure of �Ŵr. Since resources are always committed prior to their release,
and all jobs have unity duration, the entries in any column of �Ŵr consist in the case of no assembly of
1's followed immediately by -1's. It is easy to see that such entries multiplied by blocks such as (a) always
result in elements of 0 or 1 in v. In the case of an assembly with partial part path j1 feeding into part path
j2, an entry of 1 on the row corresponding to the last transition of partial path j1 is followed in any column
j by a -1 in row i, where transition i is the assembly transition in path j2. However, this corresponds to the
beginning of the �ll of 1's in block (j2; j1) of Ŵ

�1
v , and hence Ŵ�1

v Ŵr can be seen to yield only entries of 0
or 1 in v.
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Chapter 6

Conclusion

We have shown by reduction from the One-In-3Sat problem that �nding a binary basis for the nullspace
of the p-invariant matrix is NP-complete in the general job shop problem. This implies that the job shop
deadlock analysis problem will be at least as hard as the subproblem of �nding the p-invariants. In the case
of the reentrant ow line with assembly, however, we exhibited a closed-form solution for a binary basis.
The importance of correctly selecting part ow and job routing protocols in exible manufacturing systems
is thereby conclusively demonstrated. The job routings and resource allocations should follow the structural
protocols developed Section 5.1 to simplify the complexity of shared resource dispatching analysis of the
FMS.
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