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Stability and Stabilization of Systems with Time

Delay

Limitations and opportunities

R. Sipahi, S.-I. Niculescu, C.T. Abdallah, W. Michiels, K. Gu

October 25, 2010

Control systems often operate in the presence of delays, primarily due to
the time it takes to acquire the information needed for decision-making, to
create control decisions, and to execute these decisions, as shown in Figure
1. Systems with delays arise in engineering, biology, physics, operations
research, and economics.

In traffic-flow models, the drivers’ delayed reactions, which combine sens-
ing, perception, response, selection, and programming delays, must be con-
sidered [1–3]. These delays are critical in accounting for human behavior,
analyzing traffic-flow stability, and designing collision-free traffic flow using
adaptive cruise controllers [4].

Material distribution and supply-chain systems are composed of inter-
connected supply-demand points that share products and information in
order to regulate inventories and respond to customer demands [5]. Sources
of delay in supply chains include decision-making, transportation-line deliv-
ery, and manufacturing facilities that work with lead times [6]. These delays,
which influence every stage of the supply-demand chain, deteriorate inven-
tory regulation, thereby causing financial losses, inefficiencies, and reduced
quality-of-service [7].

In process control, delay terms arise from mass-transport phenomena
in stirred-tank reactors and flow-temperature-composition control [8, 9]. In
milling processes, the flexibility of the cutting tool prevents a tooth from
precisely machining the desired chip thickness, causing the following tooth
to encounter the uncut portion of the chip in the form of an additional
force [10, 11]. In this setting, the delay arises since the forces affecting the
dynamics are associated with past events. In the milling process, the delay
is the tooth-passing period, which is related to the spindle speed. If the
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spindle speed is not correctly chosen, then undesirable vibrations, known
as regenerative-chatter instability, occur at the interface of the metal work-
piece and the cutting tool. This instability ultimately leads to increased tool
wear, undesirable surface quality, and reduced productivity.

Delays arise in biology [12, 13] and population dynamics [14, 15]. For
instance, a population can grow only after the offspring mature and become
reproductive. Models of reaction chains and transport phenomena have de-
lay terms since chemical reactions and mass transport occur after an interval
of time. An example is the breathing process within the physiological circuit
that controls the carbon-dioxide level in the blood [16,17]. Delay terms also
model sensing times in human motor control [18, 19], HIV dynamics [20],
circulation dynamics of hormones in the bloodstream [21], and the dynam-
ics of chronic myelogenous leukemia [22]. This list of dynamical systems
with delays is far from complete, and additional examples are presented and
discussed throughout this article.

The presence of delays may be either beneficial or detrimental to the
operation of a dynamical system. A feedback system that is stable without
delay may become unstable for some delays [23, 24], yet, judicious intro-
duction of a delay may stabilize an otherwise unstable system [11]. This
paradox may explain the five decades of interest in the stability and control
of delay systems [11, 25–33]. The potentially stabilizing effect of delays is a
motivation for exploiting the ever-present delays in dynamical systems. For
instance, appropriate adjustment of the spindle speed helps in tuning the
delay to avoid chattering in metal machining, while intentionally adding de-
lays to decision-making allows supply-chain managers to observe consumer
trends in order to make better purchasing and stocking decisions [7]. This
stability-seeking approach is known as the wait-and-act control strategy [34].
The presence of properly timed delays designed for waiting before executing
a decision is an effective stabilizing control strategy. For example, prolong-
ing delays in the feedback loop may help recover stability of an otherwise
unstable system [35–38].

Interest in understanding the effects of delays and designing stabilizing
controllers that account for delays is also increasing with the complexity of
control systems [39–41]. In particular, the effect of delays becomes more pro-
nounced in interconnected and distributed systems [42], where multiple sen-
sors, actuators, and controllers introduce multiple deterministic and stochas-
tic delays. In interconnected systems, delays may arise from the availability
of shared communication networks, such as the Internet and wireless net-
works illustrated in Figure 2 [43]. Delays are also found in tele-operation [44],
tele-surgery [45], the coordination of unmanned vehicles [46–50], decentral-
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ized and collaborative control of multiple agents [51, 52], synchronization
and haptics [53], adaptive combustion control [54], combustion dynamics in
liquid-propellant motors [55], chemical processes with transport delays [56],
active vibration suppression [57], and sway control in cranes [58].

The objectives and scope of this article are as follows. We discuss vari-
ous problems and opportunities arising due to delays in linear time-invariant
(LTI) systems modeled by delay differential equations (DDEs). We illustrate
that intentional delays, when judiciously chosen, can be used to stabilize and
improve the closed-loop response of these systems. We use eigenvalues, spec-
trum assignment, and parametric techniques to study stability. Lyapunov
and linear matrix inequality techniques are considered in [59].

The remainder of this article is organized as follows. We first present
models of linear time-invariant systems with multiple delays, and the result-
ing characteristic equations. We then illustrate the spectral properties of
these systems using an example, and explain how this spectrum, and thus
stability, is affected by a single delay and a single controller gain. Next,
visualization of asymptotic stability in the form of stability charts is demon-
strated. We then present two application examples. The first example con-
cerns network systems, where delays arise from communication lines. The
second example demonstrates a case of uncontrolled vibration in which de-
lays are part of metal-machining dynamics. For each example, we illustrate
how delays can have either a stabilizing or destabilizing effect. These ex-
amples serve as an introduction to more technical discussions regarding the
limitations of designing controllers. Stability analysis in the presence of mul-
tiple delays is also discussed, including the robustness of Smith predictors
with respect to uncertainty in the delays. Finally, we draw some conclusions
and give a view of potential directions for future work. For notation used in
the text, see “Notation”.

1 Delay Differential Equations and the Character-
istic Equation

Most models of systems with delays are obtained based on inflow-outflow
interactions, such as conservation laws involving mass and energy. These
models describe relationships among the rates of change of flow variables, as
well as the balance among the corresponding inflow rates and outflow rates
affected by delays. Inflow may be due to production and reproduction, while
outflow may represent consumption, death, or elimination [11,25,28–30].
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The examples we consider can be cast as the DDE

dx(t)

dt
= A0x(t) +

N∑
i=1

Aix(t− τi), (1)

where x(t) is the n-dimensional state variable, Ai, i = 0, . . . , N , is an n× n
matrix with constant real entries, and N is a positive integer. In (1), τi > 0
is the delay, that is, ẋ(t) depends on x(t) at time t as well as at the time
instants t − τi. The delay is a shift operator that lags an input signal by
the constant amount of time τi as illustrated in Figure 3. This type of
delay represents a first-in-first-out-type model found in sensing, information
transmission, and mass transport.

1.1 Characteristic Equations

The characteristic equation of (1) is given by

f(s; τ1, . . . , τN ) := det

[
sI −A0 −

N∑
i=1

Aie
−sτi

]
= 0, (2)

where I is the n × n identity matrix, and the exponential functions arise
from the Laplace transforms of the delay terms. Due to the presence of the
exponential terms, (2) is a quasi-polynomial, and thus is a transcendental
equation, which possesses an infinite number of roots in the complex plane
C, called characteristic roots.

For a given set of delays, (1) is asymptotically stable if and only if all
of the roots of (2) lie in the open left-half complex plane C−. Verifying
asymptotic stability can be difficult since (2) has infinitely many character-
istic roots. To address this difficulty, continuity of the spectrum of (1) needs
to be exploited [11, 25, 28, 40]. Henceforth, “stability” refers to asymptotic
stability.

To illustrate how to analyze the stability of a DDE, consider the plant
transfer function H(s) = 1/s with the controller C(s) = −ke−sτ , where
τ is the delay and k is the controller gain. The characteristic equation of
this system is given by f(s; τ) := s + ke−sτ . If τ = 0, then f(s; τ) = 0
has a single root at s = −k. As we increase τ from zero to 0+, the root
s = −k moves in C, while at the same time an infinite number of roots
s = s̃i, i = 1, 2, . . ., appear in C. These roots satisfy two conditions, namely,
<(s̃i) < 0, and |s̃i| → ∞, as τ → 0+. That is, for an infinitesimally small
delay, the roots s̃i are dormant from a stability point of view. As the delay
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parameter increases, however, the real parts of these roots may increase,
and consequently these roots can destabilize the closed-loop system.

To understand the movement of roots in C, define g : R+ × R 7→ R by

g(τ ; k) := sup
{
<(s) : f(s; τ) := s+ ke−sτ = 0, s ∈ C

}
. (3)

The function g(τ ; k), called the spectral abscissa function, defines the real
part of the rightmost characteristic root, and the stability analysis reduces
to checking the sign of g(τ ; k). Furthermore, since g(τ ; k) is a continuous
function of both τ and k [26,31,60], it follows that the system can switch from
stability to instability, or vice versa, only when at least one characteristic
root moves to the imaginary axis as τ changes. That is, stability analysis
of the system requires calculating the characteristic roots s = ω of the
corresponding characteristic equation. This approach is the basis of the
stability analysis of (1) using (2) [11,39,61,62].

1.2 Stability Charts

When studying the stability of (1), one of the main objectives is to deter-
mine necessary and sufficient conditions for closed-loop stability in either the
delay-parameter space or the controller-parameter space [63–65]. Charac-
terization of stability in delay-parameter space relies on the τ -decomposition
technique [66], while stability in controller-parameter space is studied using
the D-decomposition principle [67]. These decomposition techniques state
that boundaries in the parameter space exist to divide the space into re-
gions, where all the values the parameter can attain in each region make the
system either stable or unstable.

A DDE that is stable for only some values in the delay-parameter space
is called delay-dependent stable [62]. If the stability of a DDE is maintained
independently of the delay, then DDE is called delay-independent stable.
Multiple disjoint delay regions may also exist, where the system may be sta-
ble within each region, while becoming unstable outside [68]. These regions,
which are known as stability regions, become stability intervals in a system
with a single delay, that is, when N = 1 in (1). Stability intervals can
be detected using Kronecker summation [69], matrix pencils [33], frequency
sweeping [40], and algebraic tools [68,70].

Stability intervals can be extended to a 2D map, known as a stability
chart [11], in which the intervals are displayed with respect to a controller
gain, see Figure 4. A stability chart can also be obtained in the plane of
two delays, where each delay arises from a different input-output system
in the closed-loop control. Compared to the 1D stability analysis along
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a single delay axis, the stability information in a 2D delay plane is richer
since it represents whether a system is stable or not with respect to all
combinations of delays. A stability chart can reveal whether increasing a
delay value favors stability or instability. Moreover, for a fixed ratio τ2/τ1

between two delays, stability may be independent of the delays satisfying
this ratio, although a small perturbation of this ratio may yield multiple
switches from instability to stability. The sensitivity and existence of these
special ratios is of practical interest when designing robust controllers.

Characterizing higher dimensional stability charts in delay-parameter
space is challenging since the stability analysis of (1) is an NP-hard problem
for N > 1 [71]. In this case, hardness is a computational measure of the
amount of time or space it takes to solve an example of a decision question
as a function of the size of its input. Nondeterministic polynomial (NP)
hard problems are considered costly in this setting.

2 Examples of Systems with Delays

We now illustrate how delays appear either in engineered feedback systems,
such as network control systems, or naturally as part of vibrational dynamics
without the presence of feedback control. Further examples are discussed
in “Delays in Microscopic Vehicular Traffic Flow”, “Delays in Biology”, and
“Delays in Operations Research”.

2.0.1 Networked Control Systems

Delays appear in parallel computation and computer networking. Distributed
computing architectures use a network of computational elements to achieve
performance levels that are not attainable by a single element. A distributed
architecture is a cluster of computers communicating through a shared net-
work [72]. In this context, the distribution of the computational load across
available resources is referred to as load balancing.

Consider a computing network consisting of n computers, called nodes,
which can communicate with each other. At startup, the nodes are assigned
an equal number of tasks. Since some nodes may operate faster than others,
load imbalance can occur. To balance the load, each node sends its queue size
qj(t) to the remaining nodes in the network. Node i receives the information
qj(t−τij) from node j delayed by the length of time τij . Node i then uses this
information to compute its local estimate of the average number of tasks in
the queues of the n nodes. This estimate, which is based on the observations,
is given by 1

n

∑n
j=1 qj(t− τij) with τii = 0. Node i then compares its queue
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size qi(t) with its estimate of the network average in order to compute

β = qi(t)−
1

n

n∑
j=1

qj(t− τij). (4)

If β is greater than a nonnegative threshold βi, then node i sends some of its
tasks to the remaining nodes. If β < βi, then no task is sent. Furthermore,
the tasks sent by node i are received by node j with a task-transfer delay
hij . The delay hij , which depends on the number of tasks to be transferred,
is much greater than the communication delay τij . The controller, that is,
the load-balancing algorithm, decides how often and how fast to implement
load balancing, and how many tasks are to be sent to each node.

In high-speed networks, load imbalance can also occur when multiple
users attempt to compete for resources. For example, the congestion-dynamics
model

Ẋ(t) = Z(t− τ1)− µ, (5)

Ż(t) = −a(X(t− τ2)− X̄)− b(X(t− τ2 − r)− X̄), (6)

represents a single connection between a communication source controlled by
an access regulator and a distant node with a constant transmission capacity
µ, where X(t) denotes the buffer contents, Z(t) is the current input rate, and
X̄ is the buffer target value. This model involves multiple delays, namely,
τ1, τ2, and r, where the delay τ = τ1 + τ2 is the round-trip time, and the
delay r denotes the control-time interval, which can be manipulated in the
network [73,74].

2.0.2 Variable-Pitch Milling Dynamics

In the milling process shown schematically in Figure 5, the clamped metal
workpiece is machined by a rotating cutting tool with several teeth. Since
both the cutting tool and workpiece are deformable, each tooth leaves some
uncut material, which then acts as an additional force on the following
tooth. That is, a past event affects the evolution of the cutting dynamics.
The delay in this context is defined by the tooth-passing period τ , which
is proportional to the pitch angle between two consecutive teeth, and is
inversely proportional to the rotational speed ωspindle of the cutting tool.

A regular-pitch cutting tool with four flutes has four identical pitch angles
at 90◦, as shown in Figure 5(a). Under some cutting conditions and at some
specific settings of ωspindle, regenerative-chatter instability occurs with the
use of this cutting tool [10]. A tool with variable-pitch, which has unevenly
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distributed pitch angles at 110◦, 70◦, 110◦, 70◦ as shown in Figure 5(b), can
remove this instability under the same conditions [10]. This design changes
the tooth-passing periods between the teeth, that is, the delays. To extend
the design, the pitch angles θ1 and θ2 can be considered as variables as shown
in Figure 5(b), and the stability of the cutting dynamics can be investigated
as a function of τ1 = θ1/ωspindle and τ2 = θ2/ωspindle.

The characteristic equation of the variable-pitch milling dynamics with
τ1 and τ2 is given by

f(s; τ1, τ2) = det

[
I − 1

4π
Kt a(4− 2(e−τ1s − e−τ2s))Φ0(s)

]
= 0, (7)

whereKt is a cutting-force coefficient, a is the axial depth-of-cut, the transfer
matrix Φ0(s) relates the forces on the tool to the displacement of the tool,
and the exponential terms carry the effects of the tooth-passing periods τ1

and τ2 [75].
The model in (7) contains two independent delays, similar to the congestion-

control dynamics. If the stability of the cutting dynamics is considered for
a cutting tool with a fixed-pitch ratio n/m, then we can define a triplet
(τ0,m, n), such that τ1 = mτ0 and τ2 = nτ0. In this case, analysis of (7)
reduces to a single-delay problem with respect to τ0, resembling the stabil-
ity analysis of the single integrator example presented in the section “Delay
Differential Equations and the Characteristic Equation”. It is, however,
computationally overwhelming to solve (7) repeatedly for all pitch-ratios
n/m. Determining the stability of multiple delay systems therefore requires
different frameworks. Stability results for this variable-pitch milling example
are given in the section “Multiple-Delay Case”.

3 Destabilizing and Stabilizing Effects of Delays

We now explore the destabilizing and stabilizing effects of delays on the
stability and control of DDEs. Single-delay systems with feedback laws are
used to illustrate these concepts.

3.1 Destabilizing Effects of Delays

Consider the transfer function of a single integrator H(s) = 1/s subject to
the delayed controller C(s) = −ke−τs with k > 0. In order to determine the
stability of the closed-loop system, we need to first find the roots s = ω of
the closed-loop characteristic equation

s+ ke−sτ = 0 (8)
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for all τ , that is,

cos(ωτ) = 0, (9)

k sin(ωτ) = ω. (10)

Due to the periodicity in (9)-(10), there exist infinitely many delays τc,` =
π/(2k) + (2π`)/ωc, ` = 0, 1, 2, . . ., all of which yield the crossing frequency
ωc = k, that is, (8) has roots on the imaginary axis at s = ±k. By
continuity, it follows that closed-loop stability is guaranteed for all delays
satisfying τ ∈ [0, τc), where τc = π

2k . In this example, the system is unstable
for τ ≥ τc, and thus τc is the delay margin of the system.

We now consider the movement of the rightmost root of (8) as τ changes.
As shown in Figure 6 for the controller gain k = 1, increasing the delay
from zero generates fast-moving characteristic roots, which enter from −∞
in C. Note that the root located at −k for τ = 0 moves to the left, as
the delay increases. Finally, at the value τc = π/2, a pair of roots entering
from −∞ crosses the imaginary axis toward C+. Larger values of k induce
smaller delay margins, since τc = π/(2k). These results are confirmed by
the Nyquist plot shown in Figure 7.

The number of unstable roots can be determined by studying the cross-
ing direction of an imaginary root as a function of the delay parameter τ
evaluated at the corresponding crossing frequency ωc. Since the quantity
<
{
ds
dτ

}
|s= ωc = ω2

c is positive in this example, an increase of the delay be-
yond each critical delay value τ = τc,` corresponds to the crossing of the
imaginary axis by a pair of characteristic roots toward C+. The number
NU of unstable roots can then be tracked as a function of delays. In this
case, for a fixed value of k, NU increases by two each time the delay value
increases past the critical delay value τ = τc,`. This analysis can be extended
by considering different values of k and identifying the stability character-
istics in the plane of τ versus k, as shown in Figure 8. The behavior of
the characteristic roots can also be explained by using perturbation-based
analysis [31,76].

An alternative approach to handling more complicated multi-input, multi-
output systems uses using matrix pencil techniques [31,33,40]. Yet another
approach, which leads to the same conclusion, uses an algebraic transfor-
mation to reformulate the closed-loop characteristic polynomial as a one-
parameter algebraic polynomial [68, 70]. This polynomial, which has the
same imaginary roots as the original characteristic equation, can be ana-
lyzed using algebraic tools [16,68,77,78].
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3.2 Stabilizing Effects of Delays

Consider the second-order open-loop system H(s) = 1/(s2 +ω2
0) in feedback

with the delayed controller C(s) = ke−τs [79]. The closed-loop characteristic
equation is given by

s2 + ω2
0 − ke−sτ = 0. (11)

If τ = 0, then the system is unstable for all k. However, the system can be
made stable either by designing appropriate values of k and τ [79], or by
using a proportional-derivative controller without delay C(s) = kp + kds.

We now design (k, τ) so that the closed-loop system is stable. As in
(8), we can show that two distinct crossing frequencies exist for each k > 0,
where k ∈ (0, ω2

0), as given by ωc,1 =
√
ω2

0 − k and ωc,2 =
√
ω2

0 + k, which
lead to the critical delay values τc,1,` = (2`π)/

√
ω2

0 − k and τc,2,` = (2` +

1)π/
√
ω2

0 + k, for ` = 0, 1, 2, . . ., respectively. The sensitivity expression

<
{[

ds
dτ

]}
|s= ωc = − 2ω2

c

ω2
0−ω2

c
indicates that the characteristic roots crossing at

ωc = ωc,1 favor stability, that is, the roots move toward C−, whereas the
roots crossing at ωc,2 favor instability.

If τ = 0, then the closed-loop system has only a pair of poles of the
form s = ±ωc,1. As calculated above, these poles favor stability at the
delay values τc,1,`. That is, for sufficiently small τ = ε > 0, the closed-
loop system becomes stable since the poles s = ±ωc,1 move toward C−,
and no closed-loop poles are located in C+ or on the imaginary axis. In
this case, increasing the delay value has a stabilizing effect. Considering all
critical delays, we conclude that the system is stable if and only if, for some
nonnegative integer `, the delay τ satisfies

2`π√
ω2

0 − k
< τ <

(2`+ 1)π√
ω2

0 + k
.

We now study the behavior of the rightmost root of (11) as the delay
value is increased from zero. To graphically demonstrate how stability is
affected by the delay, we select k = 1.5 and ω0 = 3, and compute the
real part of the rightmost root of the closed-loop system [80]. As shown in
Figure 9, we see that the real part of the rightmost root changes its sign
as the delay parameter varies, indicating the existence of multiple stability
intervals along the delay axis. In this example, we have ωc,1 =

√
7.5, and

when the delay is perturbed from τ = 0, the characteristic roots start moving
from s = ±

√
7.5 toward C−. For 0 < τ < 0.9695, these roots wander in

C−, while, for τ = 0.9695, the roots cross into C+, where they remain for
0.9695 < τ < 2.2943. These roots return C− for several delay ranges as
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shown in Figure 9. While this pair of roots exhibits this movement, the
remaining characteristic roots do not cross the imaginary axis to C+, and
consequently a finite number of stability intervals arise. When the parameter
k is relaxed, we obtain the stability chart of the system shown in Figure 10.
The stability intervals presented here can be calculated by methods surveyed
in [81].

From a speed of response point-of-view, a comparison of the step re-
sponses in Figure 11 illustrates the possibility of a properly designed de-
layed proportional control C(s) = ke−τs matching the performance of the
PD control C(s) = kp + kds as measured by the step response.

3.2.1 Delays as Derivative Feedback

Consider the linear system

ẍ(t)− 0.1ẋ(t) + x(t) = u(t), (12)

which is unstable for u(t) = 0 due to the negative damping term. The
derivative feedback

u(t) = −kẋ(t), (13)

with k > 0.1 moves the unstable open-loop poles into the stable left-half
plane. Alternatively, we can use the delayed-feedback control law

u(t) = x(t− r)− x(t), (14)

which can be interpreted as a finite difference control law with a gain r,
that is, u(t) = −r x(t)−x(t−r)

r . For small values of the delay r, (14) approx-
imates the derivative control (13) with k = r. In fact, the system (12) is
stabilized by moving the two right-half plane poles to the left-half plane for
all r ∈ (0.1002, 1.7178) [40]. This example demonstrates that by designing
the controllers appropriately, closed-loop stability can be achieved by using
delays to approximate the derivatives of signals [82].

A combination of m distinct delays can be used as a stabilizing strategy
[37]. Consider the plant

x(n)(t) = u(t), (15)

which consists of a chain of integrators, and let the controller be chosen as

u(t) = −
m∑
i=1

kix(t− τi). (16)
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For stabilizing (15), the delays can be arbitrarily large since we can scale
the time variable as t = t̂/ρ, where ρ > 0. That is, if (16) stabilizes (15),
then we can find the controller

u(t) = −
n∑
i=1

ki
ρ
x(t− ρτi), (17)

which also stabilizes (15). This result suggests an approach to designing the
controller (17) for systems with arbitrarily large delays ρτi [37]. We can first
design (16) with appropriate gains ki and sufficiently small delays τi. We
can then calculate ρ, and compute the gains ki/ρ of the controller (17).

An approximation of derivatives can be combined with a scaling of time
[37], leading to the controller

u(t) = −
(
εnq0

εn−1q1
(−1)

2!εn−2q2
(−1)2

· · · (n−1)!εqn−1

(−1)n−1

)
T−1(τ)


x(t− τ1)
x(t− τ2)

...
x(t− τn)

 ,

where ε > 0 is sufficiently small, τi, i = 1, 2, ..., n, satisfy 0 ≤ τ1 < τ2 <
· · · < τn, qi, i = 0, 1, ..., n − 1, are chosen such that the closed-loop system
with the derivative feedback control u(t) = −

∑n−1
i=0 qix

(i)(t) is stable, and
T (τ) is the Vandermonde matrix

T (τ) =


1 τ1 τ2

2 · · · τn−1
1

1 τ2 τ2
2 · · · τn−1

2
...

...
...

. . .
...

1 τn τ2
n · · · τn−1

n

 .

While the controller (16) can stabilize (15), stabilization is not possible if
m < n [83].

Finally, consider the system ẋ(t) = x(t) + u(t). The derivative feedback
u(t) = 2ẋ(t) stabilizes the system, but the closed-loop system is fragile to
changes in the derivative feedback, where fragility is defined in the sense
that stability is lost with the derivative approximation using finite differ-
ences, no matter how small the discretization step size is. Furthermore, it
can be shown that no controller of the form u(t) = H(x(t) − x(t − T )),
where the function H(·) is real, is able to stabilize the given system [84].
This conclusion demonstrates that, in some cases, using finite differences to
approximate derivatives may not be valid [85].
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3.2.2 Delays as Phase Synchronizers

The oscillator 1
s2+w2 can be stabilized using the low-gain delayed feedback

controller C(s) = −εe−sτ , which provides the appropriate phase in the feed-
back loop. This approach is used to stabilize laser dynamics [86]. For
multiple oscillators with the characteristic equation

ν∏
i=1

(s2 + ω2
i ) + εe−sτ = 0, (18)

where ωi > 0, i = 1, . . . , ν, the stabilization mechanism reduces to a phase-
synchronization requirement using the delay parameter as explained next.

Consider the roots of the characteristic equation H(s; τ, ε) := f(s) +
εg(s)e−sτ = 0 as a function of the gain ε ∈ R and the delay τ ≥ 0. Here,
f : C→ C and g : C 7→ C are entire functions. Then we have the following
results [87].

Proposition 1 Let ŝ be a simple zero of f that is not a zero of g. Let
Q ⊂ C be a compact set that does not contain the zeros of f except ŝ, and
such that the boundary of Q is a closed simple contour not containing ŝ.
Then, for all τ̂ > 0, there exists ε̂ > 0 such that H(s; τ, ε) has exactly one
zero in Q for all (τ, ε) ∈ [0, τ̂ ]× [−ε̂, ε̂]. Furthermore, there exists a unique
function r : [0, τ̂ ]× [−ε̂, ε̂]→ Q, (τ, ε) 7→ r(τ, ε) that satisfies r(0, 0) = ŝ as
well as H(r(τ, ε); τ, ε) = 0 for all (τ, ε) ∈ [0, τ̂ ] × [−ε̂, ε̂]. The function r
can be decomposed as

r(τ, ε) = ŝ+ ε µ(τ, ε), (19)

where

lim
|ε|→0+

max
τ∈[0,τ̂ ]

∣∣∣∣µ(τ, ε) +
g(ŝ)

f ′(ŝ)
e−ŝτ

∣∣∣∣ = 0, (20)

which denotes uniform convergence on compact delay intervals as |ε| → 0.

Expressions (19)-(20) imply that, for small values of the gain parameter
ε, the isolated zero ŝ behaves as the function

τ 7→ ŝ− ε g(ŝ)

f ′(ŝ)
e−ŝτ . (21)

If the rightmost zeros of f are simple and lie on the imaginary axis, then
the corresponding function (21) for each zero has a sinusoidal real part. As
a consequence, stability for small values of ε depends on having an appro-
priate phase of these sinusoidal functions, which depends on only the delay
parameter.
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Proposition 2 Assume that f(s̄) = f(s), g(s̄) = g(s) for all s ∈ C. Let
γ > 0, and assume that

lim
R→∞

sup

{∣∣∣∣ g(s)

f(s)

∣∣∣∣ : <(s) ≥ −γ, |s| ≥ R
}

= 0. (22)

Assume further that all zeros of f are in the closed left-half plane. Denote
by ωi, ı = 1, . . . , ν, the zeros of f on the positive imaginary axis, each of
which has multiplicity one. If the delay parameter τ is such that

<
(
g( ωi)

f ′( ωi)
e− ωiτ

)
> 0, (23)

for all i = 1, . . . , ν, then all zeros of H(s; τ, ε) are in C− for sufficiently
small ε > 0. Finally, if the inequality in (23) is reversed, then the same
claims hold for ε < 0.

Example 1 We consider the effects of time delays on the stability of a
mechanical system [88]. The characteristic equation is given by

H(s; τ, ε) := f(s) + εg(s)e−sτ := (s2 + ω2
1)(s2 + ω2

2) + εs2e−sτ = 0. (24)

For ω1 = 2 and ω2 = 4, the functions υi : R+ → R given by

τ 7→ υi(τ) = −<
(
g( ωi)

f ′( ωi)
e− ωiτ

)
, i = 1, 2, (25)

are depicted in Figure 12. Since deg(f(s)) > deg(g(s)), assumption (22) of
Proposition 2 is satisfied. According to Proposition 2, stability is achieved
for sufficiently small positive values of ε when υ1(τ) < 0 and υ2(τ) < 0, that
is, the delay τ satisfies

τ ∈
⋃{(π

4
+ kπ,

π

2
+ kπ

)
: k ∈ N

}
. (26)

Similarly, stability is achieved for sufficiently small negative values of ε if
either υ1(τ) > 0 and υ2(τ) > 0, or the delay τ satisfies

τ ∈
⋃{(

π

2
+ kπ,

3π

4
+ kπ

)
: k ∈ N

}
. (27)

The intervals (26) and (27) are given in Figure 12. To illustrate the relation
between the functions (25) and the behavior of the roots of (24) described by
Proposition 1, we use the package DDE-BIFTOOL [80]. DDE-BIFTOOL
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is a numerical stability and bifurcation analysis toolbox for DDEs that can
compute the rightmost roots of their characteristic equations with respect to
the delay parameter τ . We select two cases, namely, ω1 = 2 and ω2 = 4,
where ε = 1 for both cases. This setting corresponds to [88, Example 5.1]
with ε = 1/4. The plot of (25) with ε = 1/4 is provided in Figure 12, and the
real part of the rightmost roots of (24) for ε = 1 is presented in Figure 13.
Comparing these figures shows that the results are in agreement with the
functions (25) depicted in Figure 12. Further details about DDE-BIFTOOL
and similar packages are given in “Numerical Stability and Bifurcation Anal-
ysis”. �

We conclude this subsection by stating that proper tuning of the system
parameters can lead to stability or improved behavior of a DDE. Beneficial
effects of delays with different stabilizing mechanisms are found in designing
predictors as explained in “Stabilizing Predictors”, while the effects of delays
on chaos prediction are discussed in “Stabilizing Unstable Periodic Orbits
in Chaotic Systems”.

4 Limitations in Control Design

4.1 Fundamental Limitations

Consider the stabilization of a strictly proper single-input single-output sys-
tem described by the transfer function

H(s) := c(sI −A)−1b =
P (s)

Q(s)
, (28)

where (A, b, c) is a minimal state-space representation, Q is a polynomial of
degree n, and P is a polynomial of degree m < n.

Let C(s) be the transfer function of a possibly infinite-dimensional con-
troller that stabilizes (28), and define the corresponding delay marginD(P,C)
by

D(P,C) := sup
{
τ̂ ≥ 0 : C stabilizes H(s)e−sτ for all τ ∈ [0, τ̂)

}
.

The maximal allowable delay margin is defined as

DM(P ) := sup {D(P,C) : C stabilizes P} .

The following result is based on [89, Theorems 7, 8, 14].
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Theorem 1 The maximal achievable delay margin of the plant (28) with a
linear time-invariant controller is finite if and only if (28) has a pole in C̄+

that is different from zero. Furthermore, if the plant has the unstable pole
s = re φ with r > 0 and φ ∈

[
0, π

2

)
, then

DM(P ) ≤ π

r
sinφ+ max

(
2

r
cosφ,

2

r
φ sinφ

)
.

Example 2 Consider the plant H(s) = 1/(s+a) and the controller C(s) =
−ke−τs, where a > 0. The characteristic equation of the closed-loop system
is given by s + a + ke−sτ = 0. By inspecting the stability of this system in
(a, k), it follows that the system is stabilizable if and only if aτ < 1 [31,
Chapter 4]. According to Theorem 1, the maximal achievable delay margin
over all stabilizing controllers is bounded by 2/a. This result is obtained
by explicitly constructing controllers that achieve a delay margin arbitrarily
close to 2/a [89]. �

Example 3 For the multiple integrator H(s) = 1/sn, the maximal achiev-
able delay margin is infinite [90]. �

4.2 Limitations of Controllers Based on Delayed Output Feed-
back

We now consider controllers based on the delayed output feedback

U(s) = −ke−sτY (s), (29)

where k ∈ R, τ ≥ 0, and the controller C(s) is given by C(s) = −ke−τs. We
seek conditions on the pair (k, τ) such that the controller (29) stabilizes the
system (28).

The following result is based on [83, Proposition III.3] and an extension
of Lucas’s theorem to classes of entire functions [91].

Proposition 3 Let m be the degree of the polynomial P (s) in (28). If (28)
is stable with the control law (29), then the polynomial

γ(s; τ) :=
m+1∑
k=0

(
m+ 1

k

)
dkQ(s)

dsk
τm+1−k, (30)

is Hurwitz.
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Although the polynomial γ(s; τ) depends explicitly on the delay param-
eter τ , Proposition 3 provides conditions that do not depend on τ and k as
demonstrated in the next example.

Example 4 Consider the second-order system

H(s) =
1

s2 + a1s+ a2
. (31)

In the notation of Proposition 3, m = 0 and γ(s; τ) = τs2 + (a1τ + 2)s +
(a2τ + a1). The polynomial γ(s; τ) is Hurwitz if and only if a1τ + 2 > 0 and
a2τ + a1 > 0. These last two conditions are necessary for stabilizing (31)
using (29) with k and τ as controller parameters. If these conditions are
violated, that is, a1 ≤ 0 and a2 ≤ a2

1/2, then (31) cannot be stabilized with
the control law (29). �

Corollary 1 If the polynomial Q(s) has at least one zero s0 in C̄+ with
multiplicity at least m+2, then s0 is a factor of γ(s; τ). In this case, γ(s; τ)
is not Hurwitz stable and thus the plant (28) cannot be stabilized by the
control law (29).

Example 5 The multiple integrator H(s) = 1/sn cannot be stabilized by the
controller (29) for all n ≥ 2, since in this case the degree m in P is equal to
zero.

If the control law includes n delays, that is, U(s) =
∑n

i=1 kie
−sτiY (s),

then the plant can be stabilized, as demonstrated in the subsection “Delays
as Derivative Feedback”. �

4.2.1 Limitations of Controllers that Use Delays

For a given value of the gain k, we investigate whether or not the plant (28)
with the control law (29) can be stabilized. In other words, we characterize
the stability of the closed-loop system with the characteristic equationQ(s)+
ke−τsP (s) = 0, where the delay parameter τ is the only tunable parameter.
We refer to this problem as the delay stabilization problem, and define two
quantities that play a role in the solution of this problem, namely, card(U+)
and card(S+), where card(X ) denotes the cardinality of X . Here U+ is the
set of the roots of Q(s) + kP (s) = 0 located in the closed right-half plane,
and S+ is the set of strictly positive roots ω of the polynomial

F (ω; k) =| Q( ω) |2 −k2 | P ( ω) |2= 0. (32)

For the delay stabilization problem, we invoke the following assumption [31,
Chapter 11].
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Assumption 1 The gain k ∈ R satisfies the following conditions:

1. All roots of F are simple.

2. 0 6∈ U+.

3. card(U+) 6= 0.

Assumption 1 is used in Proposition 4 below. The derivation of Propo-
sition 4 is based on sweeping the delay parameter from zero to infinity,
combined with a continuity argument of the rightmost roots. The delay-
stabilization problem is solvable if and only if there exists a delay τ̂ > 0
such that the number of closed-loop characteristic roots in C̄+ for τ = 0,
that is, card(U+), minus the net number of roots crossing the imaginary axis
from C+ to C− when the delay is varied over the interval (0, τ̂ ] is equal to
zero [31]. Note that card(S+) reflects imaginary-axis crossings of the roots.
The crossing direction of these roots across the imaginary axis is indepen-
dent of the delay values, that is, the crossing direction of each element of S+

is invariant. Furthermore, the crossing direction alternates over the ordered
elements of S+ [62, Theorem 7].

For τ > 0, define

n+(τ) =
∑

ω∈S+, F ′(ω)>0

card {Tω ∩ (0, τ ]} , (33)

n−(τ) =
∑

ω∈S+, F ′(ω)<0

card {Tω ∩ [0, τ ]} , (34)

where Tω is the set of delay values corresponding to each ω ∈ S+. That is,
the set T =

⋃
ω∈S+ Tω partitions the nonnegative delay space into intervals,

where the number of roots in C+ is the same for each interval. Furthermore,
let the sets T + and T − represent a partition of T as a function of the sign
of the derivative F ′ evaluated at the corresponding crossing frequency, that
is,

T + =
⋃

ω∈S+, F ′(ω)>0

Tω \ {0} , T − =
⋃

ω∈S+, F ′(ω)<0

Tω.

The following result characterizes stability with respect to the delay axis
[31, Propositions 11.14, 11.18].

Proposition 4 Let k satisfy Assumption 1. Then the delay-stabilization
problem has a solution of the form (29) if and only if the following conditions
hold:
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(i) card(U+(k)) is a positive even integer, which satisfies the inequality
card(U+(k)) ≤ card(S+(k)).

(ii) At least one delay value τ̂ ∈ T exists, such that

2n−(τ̂) = 2n+(τ̂) + card(U+(k)). (35)

In this case, for all delay values τ ∈ (τ̂ , τ̂+), where

τ̂+ = min
(
T + ∩ (τ̂ ,∞)

)
, (36)

the closed-loop system is stable. Finally, if S+ = {ω+, ω−}, where ω+ > ω−,
then all stabilizing delay values are given by

τ ∈ (τl, τl), l = 0, 1, 2, . . . , lm, (37)

where τl = τ− + 2πl
ω−
, τl = τ+ + 2πl

ω+
, and lm =

⌊{
ω+ω−(τ+−τ−)

2π(ω+−ω−)

}⌋
.

Following Proposition 4, the limitations of using a delay as a controller
parameter are displayed in Table 1.

5 The Multiple-Delay Case

In the case of multiple delays, the characteristic equation (2) becomes

f(s; τ1, . . . , τN ) =
K∑
i=0

Pi(s) e
−s

∑N
`=1 zk` τ` = 0 , (38)

where Pi are polynomials in s with real coefficients, K ∈ Z+, and zi` ∈ Z0,+.
Similar to the single delay case, in order to analyze stability transitions of
the time-delayed dynamics, we study the imaginary roots s =  ω of (38),
where ω is nonnegative without loss of generality.

The set of frequencies ω such that s =  ω is a root of (38) is the crossing
frequency set, which is defined by

Ω = {ω ≥ 0 | f( ω; τ1, . . . , τN ) = 0 for some (τ1, . . . , τN ) ∈ RN+}. (39)

For each ω̃ ∈ Ω, there are infinitely many nonnegative delays of the form

(τ̃1, τ̃2, . . . , τ̃N ) + (p1, p2, . . . , pN )
2π

ω̃
, (40)
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satisfying (38) with s = ω̃, where p` ∈ Z, and (τ̃1, . . . , τ̃N ) are the minimal
positive delays. The periodicity 2π/ω̃ is due to the exponential terms in (38)
at s =  ω̃. Considering all ω ∈ Ω, the solutions in (40) lie on N -dimensional
stability-switching hypersurfaces denoted by SSH.

As in the single-delay case, where the delay axis is decomposed into
stability and instability intervals, in the multiple-delay case, the delay space
is decomposed into stability and instability regions whose boundaries are
determined by SSH. Nevertheless, SSH is not sufficient to determine the
stability regions. A method for assessing the number of unstable roots of
the system in the delay-parameter space is needed. Similar to the single-
delay cases, sensitivity analysis on the SSH with respect to delays is needed,
which is based on how imaginary roots s = ± ω move across the imaginary
axis. Keeping τ1, . . . , τ`−1, τ`+1, . . . , τN fixed, the sensitivity of s = ± ω̃
with respect to τ` is defined as

S(τ`) = <

(
ds

dτ`

∣∣∣∣
s= ω̃,τ̃1,...,τ̃N

)
. (41)

As the delay τ` = τ̃` increases, the roots s = ± ω̃ move toward C+ if
S(τ`) > 0, and toward C− if S(τ`) < 0.

The sign of the sensitivity expression (41) is the same for all values
of τ` in (40). That is, for a given s = ± ω̃ and τ1, . . . , τ`−1, τ`+1, . . . , τN ,
the sensitivity expression (41) is invariant at infinitely many delay values
τ̃` + p`

2π
ω̃ [62, 78,92].

5.1 The Two-Delay Case

We now present techniques that can be used to analyze the stability of DDEs
with two delays. These are based on the discussions in the section “Delay
Differential Equations and the Characteristic Equation”.

5.1.1 Geometric Characterization

Consider the special case of (2) given by

f(s; τ1, τ2) = P0(s) + P1(s)e−τ1s + P2(s)e−τ2s = 0, (42)

where Pi(s), i = 0, 1, 2, are polynomials. In this example case, SSH become
curves C in the τ1-τ2 plane. While a complete characterization of these
curves is not always possible, the characteristics of C may be revealed in the
case of (42) [92].
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We rewrite (42) as

a(s; τ1, τ2) = 1 + a1(s)e−τ1s + a2(s)e−τ2s = 0, (43)

where ai(s) = Pi(s)/P0(s), i = 1, 2. For s =  ω, the three terms in (43) are
vectors in the complex plane, the magnitudes of which are independent of τ1

and τ2. If (43) holds, then these vectors sum to zero, as shown in Figure 14.
Furthermore, the last two terms in (43) can assume all possible orientations
by adjusting the values of τ1 and τ2. Since the length of an edge of a triangle
cannot exceed the sum of the two remaining edges, (43) is valid if and only
if

|a1( ω)|+ |a2( ω)| ≥ 1 (44)

and
−1 ≤ |a1( ω)| − |a2( ω)| ≤ 1. (45)

The crossing frequency set Ω can be identified as the set of ω that satisfy
(44) and (45).

Example 6 Consider the system

a1(s) =
2.5

s2 + 2ζ1s+ 1
, (46)

a2(s) =
1

3s2 + 6ζ2s+ 1
, (47)

where ζ1 = 1/
√

2 and ζ2 = 0.1. Figure 15 shows the plots of |a1( ω)| +
|a2( ω)| and |a1( ω)| − |a2( ω)| with respect to ω. The crossing frequency
set Ω is identified from Figure 15 as Ω = Ω1 ∪Ω2, where Ω1 = [0.346, 0.758]
and Ω2 = [1.333, 1.650]. �

Note that C may consist of closed curves, spiral-like curves, and open-
ended curves. In Example 6, the curves C1 corresponding to the set Ω1 =
[0.346, 0.758] give rise to closed-curves as shown in Figure 16. In the same
example, the set Ω2 leads to spiral-like curves C2, which may also run in
different directions on the plane of delays, see Figure 17.

Example 7 Consider the system

a1(s) =
2

s2 + 2s+ 1
, (48)

a2(s) =
1.5

16s2 + 8s+ 1
. (49)
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Figure 18 shows the plots of |a1( ω)|+ |a2( ω)| and |a1( ω)|− |a2( ω)| with
respect to ω. In this case, Ω contains two intervals, namely, Ω1 = (0, 0.197]
and Ω2 = [0.898, 1.079], with the corresponding C1 in the form of open-
ended curves as shown in Figure 19. Additional characteristics, such as
smoothness of the curves C and the direction of imaginary-axis crossings of
the characteristic roots, are discussed in [92]. �

5.1.2 Stability of the Congestion-Control Dynamics

In the congestion control dynamics (5)-(6), the dynamics of the error variable
Y (t) = X(t)− X̄ are expressed by

d2

dt2
Y (t) + aY (t− τ) + bY (t− τ − r) = 0. (50)

We next investigate the stability of (50) in r-τ plane. The characteristic
equation of (50) is given by

f(s; τ, r) = s2 + ae−τs + be−(τ+r)s = 0. (51)

Equation (51) is a special case of (42), where P0(s) = s2, P1(s) = a, and
P2(s) = b with τ1 = τ and τ2 = τ + r. Using the geometric approach based
on triangle inequalities illustrated above leads to the boundaries shown in r-
τ plane in Figure 20. Sensitivity analysis reveals that the shaded parametric
region determines where the congestion dynamics are stable. This example
demonstrates how feedback with multiple delays can render an oscillatory
open-loop system stable. The shape of the stability regions in the delay-
parameter space (r, τ) is useful in choosing a wait-and-act strategy [74],
which provides stability robustness with respect to the round-trip time τ .

5.1.3 An Approach Based on the Bilinear Transformation

In order to compute the characteristic roots on the imaginary axis, we re-
place the exponential terms in (38) with the bilinear transformation

e−τ` s → 1− T` s
1 + T` s

. (52)

The right-hand side of (52) is different from a first-order Padé approxima-
tion, which is restricted to T` = τ`/2. In (52), we have s =  ω and T` ∈ R,
` = 1, 2. The transformation (52) is exact when the complex expressions on
both sides of (52) agree in magnitude and phase [38,77,78,81]. Notice that,
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if s =  ω, then the magnitudes agree for all τ` and T`. For the phases to
agree, it is necessary that

(τ1, τ2) =

(
2 tan−1(ωT1)

ω
,
2 tan−1(ωT2)

ω

)
+ (p1, p2)

2π

ω
, (53)

is satisfied, where 0 ≤ tan−1(·) < π and ω ∈ Ω. In other words, the
transformation (52) becomes exact for s =  ω, so long as (53) holds. Since
the transformation (52) is exact, the imaginary roots of (38) can be studied
using (52). Substituting (52) into (38) yields

g(s;T1, T2) =

M∑
m=0

Qm(T1, T2) sm = 0, (54)

where Qm(T1, T2) are multinomials in terms of the parameters T1 and T2,
and M is finite.

For N = 2 delays, we define the set

Ω = {ω ≥ 0 | g(ω;T1, T2) = 0 for some (T1, T2) ∈ R2}, (55)

which is analogous to (39).

Corollary 2 ( [78]) The set Ω is identical to the set Ω.

Corollary 2 indicates that finding Ω from the transcendental equation
(38) is equivalent to finding Ω from the algebraic equation (54). To find Ω,
a Routh array is built using the coefficients Q1(T1, T2), . . . , QM (T1, T2). The
entries of this array are in terms of T1 and T2, and the roots s = ω of (54)
can be expressed in terms of T1 and T2 by exploiting the rules of the array.
Once all admissible (ω, T1, T2) solutions are identified numerically, obtaining
(ω, τ1, τ2) is straightforward using (53).

Example 8 Consider the characteristic equation

f(s; τ1, τ2) = s2 +s+20+(2 s+3)e−τ1 s+(s+4)e−τ2 s+e−(τ1+τ2)s = 0, (56)

in the parameter space of the delays (τ1, τ2). The equation corresponding to
(54) is given by

g(s;T1, T2) = T1 T2 s
4 + (T2 + T1 − 2T1 T2)s3 + (1 + 14T1 T2 + 2T2)s2

+(18T2 + 4 + 20T1)s+ 28 = 0,
(57)
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for which a Routh array is implemented to identify admissible (ω, T1, T2)
triplets. The points (T1, T2) are depicted in Figure 21(a). The third di-
mension in Figure 21(a) is the set ω ∈ Ω, which is suppressed for clarity.
With knowledge of (ω, T1, T2), mapping back to the delay space is achieved
using (53), as depicted in Figure 21(b). In Figure 21(b), the number NU of
unstable roots is found with the help of (41). �

The periodicity 2π/ω in (40) is the same as in (53), and suggests a
classification of the curves in Figure 21(b). The minimum positive delay
points mapped in this figure without 2π/ω shifting are the generators of the
remaining curves. These generators are called the kernel curves, while the
remaining curves are called the offspring, which are identified by shifting
the kernel curves on the τ1-τ2 plane with periodicity 2π/ω for each ω ∈ Ω.
This classification is called clustering [78].

The presence of kernel and offspring curves formalizes the identification
of stability transitions in multiple-delay systems. Stability transitions are
captured with sole knowledge of the kernel curves and Ω. Stability transi-
tions on the kernel curves map directly to the offspring curves. This mapping
is due the invariance of the sensitivity expression in (41). With this simpli-
fication, the number of unstable roots in the plane of delays is identified.

To detect kernel and offspring curves, the Kronecker summation proce-
dure [93, 94] and the building block procedure [77] can also be utilized. In
the case of more than two delays, the kernel and offspring concepts remain
the same, since these concepts are inherent to DDEs. In higher dimensional
delay-parameter spaces, however, the kernel and offspring hypersurfaces be-
come difficult to compute and characterize.

5.1.4 Stability of Variable-Pitch Milling Dynamics

Using the bilinear transformation, we determine the stability chart of the
cutting dynamics with the characteristic equation (7) at one of the operating
conditions. The stability chart is shown in Figure 22, where stable cutting
options are in the shaded regions. In this figure, the positive slope of each
line represents a pitch ratio of the cutting tool used in the machining process,
and each line with a negative slope corresponds to a fixed speed of the cutting
tool in revolutions per minute. Similar to Figure 21(b), the kernel and
offspring curves are color coded in Figure 22. In this example, it suffices
to capture the four disjoint kernel curves in order to generate all of the
remaining curves in Figure 22. Each delay pair on the curves separating
stability and instability renders the cutting dynamics a perfect oscillator at
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the corresponding regenerative-chatter frequency ωc, where s = ωc is a root
of (7). Modeling and stability analysis of regenerative-chatter dynamics are
discussed in [10,11,95,96].

5.2 Interference Phenomena

Interference among multiple delays affects stability. An example of construc-
tive interference is when two delays do not destabilize a system even though
each delay alone does [36]. This stability phenomenon with respect to one
of the rays in the delay-parameter space is called the delay interference phe-
nomenon [31,97,98]. Delay interference models capture the fragility, that is,
the sensitivity, of the delay-independent stability property along a particular
ray against arbitrary small perturbations of the direction of the ray [69,99].

To illustrate delay interference, consider the system

ẋ(t) = −x(t)− x(t− τ1)− 1

2
x(t− τ2). (58)

The rays for which delay-independent stability property holds are repre-
sented by the axes τ1 = 0 and τ2 = 0 of the delay-parameter space, and
by the particular ray τ2 = 2τ1. Consider first the case τ2 = 0 and τ1 = τ ,
leading to the characteristic equation s + 3/2 + e−sτ = 0. Note that the
delay-free system is stable since the characteristic root is located at −5/2.
Moreover, the plot of H( ω) = −1/( ω+3/2) lies inside the unit circle, and
therefore |H( ω)| 6= 1 for all ω > 0, and 1−H( ω)e− ωτ 6= 0 for all ω ∈ R
and all τ > 0. In other words, the characteristic equation has no roots on
the imaginary axis independent of the delay value τ , hence the correspond-
ing DDE is delay-independent stable. A similar property holds when τ1 = 0
and τ2 6= 0.

The analysis of (58) given in [33, 100] uses the Tsypkin frequency-
sweeping criterion, which guarantees the robust stability of a closed-loop
system with a stable single-input, single-output plant and a delayed unity
feedback.

Consider next the case τ2 = 2τ1 = 2τ . The corresponding characteristic
equation becomes s + 1 + e−sτ + 1/2e−2sτ = 0. As in the previous case,
we need to find the roots of  ω + 1 + e− ωτ + 1/2e−2 ωτ = 0. In other
words, we search for the solutions z ∈ [−1, 1], z = cos(ωτ), to the equation
1/2z2+z+1 = 0 corresponding to the real part of the characteristic equation
on the imaginary axis. It thus follows that  ω+1+e− ωτ+1/2e−2 ωτ 6= 0 for
all ω ∈ R and for all τ > 0. In conclusion, the delay-independent stability
arises for the ray τ2 = 2τ1 in the delay-parameter space.
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Next, let the ray τ2 = 2τ1 be perturbed as τ2 = (2 + ε)τ1 for ε > 0. We
know that (58) is not stable for all positive delays τ1 and τ2. For instance,
s =  /2 is an eigenvalue of (58) when τ1 = 2π and τ2 = 3π. The question
then becomes whether the ray τ2 = (2 + ε)τ1 is stable or not, or whether
or not this ray intersects some boundaries separating stable and unstable
regions. To answer this question, the limit of a sequence {εn}n≥1 → 0 can
be shown to exist, where εn = 1/(2(2n+ 1)), such that the ray with ε = εn
causes instability [31]. More precisely, for some delay values τ1 > 2(2n+1)π,
the system becomes unstable on the ray corresponding to ε = εn. This
instability is confirmed with the solution s =  /2 with τ1 = 2(2n+ 1)π [99].

Consider now the system

ẋ(t) = −ax(t)− x(t− τ1)− 1

2
x(t− τ2), (59)

which recovers (58) when a = 1. Here we consider a as a positive parameter,
and find that the delay-independent stability of (59) is confirmed for all
a ≥ 3/2 [31]. In particular, for all a ≥ 3/2, | H1( ω) | + | H2( ω) |< 1 for
all ω > 0, where H1 = 1/(a +  ω) and H2( ω) = 1/2(a +  ω). Therefore,
1+H1( ω)e− ωτ1+H2( ω)e− ωτ2 6= 0 for all ω ∈ R, τ1 > 0, and τ2 > 0. Since
the delay-free system is stable, the last assertion allows concluding delay-
independent stability for all τ1 > 0 and all τ2 > 0 by extending Tsypkin’s
criterion to the multiple-delay case [40,60,100,101].

For a = 1, only three stable rays exist. These rays are the axis Oτ1 with
τ2 = 0, the axis Oτ2 with τ1 = 0, and the ray τ2 = 2τ1. In Figure 23, stability
and instability regions of (59) in the delay-parameter space are presented
for both a = 1 and a = 1.3. The solid lines, which are SSHs, correspond to
delay values for which characteristic roots are on the imaginary axis. The
dashed lines indicate the stable rays. Notice that small perturbations in the
slope of stable rays lead to intersections with SSH, which is a consequence of
the delay-interference phenomenon. As a→ 3/2, the number of stable rays
increases and becomes arbitrarily large. For a = 3/2, the system becomes
delay-independent stable [98].

5.2.1 Interference Mechanism in the Smith Predictor

In light of the results presented above, we consider the standard Smith
predictor [32, 102, 103] for the transfer function H(s) = H0(s)e−sτ , where
H0(s) is a strictly proper stable transfer function and the delay τ is not
exactly known. Assume that the delay-modeling error is bounded by some
δ > 0, that is, |τ−τn| ≤ δ, where τn is the nominal-delay value, and let C0(s)
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be a stabilizing controller for H0(s). The Smith controller computed for the
nominal delay case τ = τn, by assuming that the system H0(s) contains no
modeling errors and uncertainties, has the form

C(s) =
C0(s)

C0(s)H0(s)(1− e−sτn)
.

Let Hcl,0(s) = C0(s)H0(s)/(1 + C0(s)H0(s)) be the transfer function of the
delay-free closed-loop system. For the uncertain delay case, the transfer
function of the closed-loop system is

Hcl(s) =
Hcl,0(s)e−sτ

1−Hcl,0e−sτn(1− e−s(τ−τn))
.

The stability of Hcl(s) is determined from the zero locations of the mero-
morphic function 1−Hcl,0(s)e−sτ1 +Hcl,0(s)e−τ2 , where τ2 = τ and τ1 = τn.
Note that, if the closed-loop system is not practically stable, that is, if there
exists a frequency ω0 > 0 such that |Hcl,0( ω0)| > 1/2, then the ray τ2 = τ1

is subject to interference phenomena [104]. Extensions of the Smith predic-
tor are given in [105].

5.3 Extension to Large Number of Delays

Stability studies of three-delay and four-delay DDEs are given in [56,93,94,
106–108]. Furthermore, the stability of a special case of (38) of the form

f(s; τ1, . . . , τN ) = P0(s) +

N∑
i=1

Pi(s)e
−sτi = 0, (60)

where N is arbitrarily large, can be analyzed using geometric methods [109].
If N = 3, then one way to analyze stability is to follow the ideas of the
geometric characterization discussed above using triangle inequalities for
two-delay cases [107]. The 3D geometries of the SSH that arise from this
characterization are in the form of pipes with holes, connectors, caps, and
semi-open pipes. Direct extensions of the existing methods to analyzing
stability of systems with a large number of delays is not straightforward
[33, 109], and existing results remain inconclusive in addressing stability in
multiple-delay-parameter space.

6 Concluding Remarks

In this article, we analyzed the effects of delays in various dynamical systems
modeled by linear time-invariant delay differential equations. The presenta-
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tion focused on eigenvalue locations and parametric techniques rather than
Lyapunov-based approaches. Examples from biology, networks, manufactur-
ing systems, supply chains, and vehicular traffic flow are used to illustrate
the limitations and potential advantages of delays. The beneficial effects of
delays are explained by interpreting delays as phase synchronizers and as
approximate derivatives. While we limit the article to the effects of delays
on stability, results on improving tracking performance using delays also
exist [110]. Delays are also discussed in the context of designing predictors
as well as controllers for nonlinear systems. We feel that this area deserves
further research. As an example, an approach to obtaining predictive dy-
namical systems models using time-delay embedding is provided [111]. The
impact of delays continue to grow in many fields, including the control of
distributed systems such as energy and computing grids [112–114].
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Figure 1: Delays in a feedback system. Feedback control systems often
function in the presence of delays, primarily due to the time it takes to
acquire the information needed for decision-making, to create the control
decisions, and to execute these decisions.
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Figure 2: Network control systems. Controlling across a shared communi-
cation network is a challenging task due to the delays arising in the commu-
nication medium. Delays can manifest themselves in the control signals, in
the measured signals, and in external inputs traveling from their source to
their destination through the links of the network.
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Figure 3: Constant delay model. Delay can be modeled as a buffer that
holds the inflow signal for a length of time, then releases the signal without
distortion. This type of delay represents a first-in-first-out-type model found
in sensing, information transmission, and mass transport.
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Figure 4: Stability chart. This chart is obtained for a closed-loop system
with the plant transfer function e−τsb/(s+ a) and the controller C(s) = k.
This stability chart is partitioned into three regions, namely, the delay-
independent stable region, the delay-dependent stability region, and the un-
stable region. This chart reveals the effect of a delay parameter on stability,
and how the controller gain k can be tuned to avoid instability.
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(a) Milling operation.
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(b) Four-flute variable-pitch
cutting tool.

Figure 5: Variable-pitch milling. A four-flute cutting tool with pitch angles
θ1 and θ2 is used to machine a metal workpiece. Due to the flexibility of
the tool, each tooth leaves some uncut material that is encountered by the
next tooth as an additional force. That is, a past event affects the evolution
of the cutting dynamics. The delays that arise from this mechanism are
proportional to the tooth-passing period.
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Figure 6: Rightmost characteristic roots on the complex plane. Location of
the rightmost characteristic roots of the closed-loop system with the charac-
teristic equation s+ke−sτ = 0 for various values of τ ∈ [0, 2] with k = 1. For
τ = π/(2k), the rightmost root crosses toward the right-half plane causing
instability. The rightmost roots are computed using DDE-BIFTOOL, which
is a numerical bifurcation tool developed for delay differential equations [80].
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Figure 7: Nyquist plot for several controller gains k. The plot depicts
the Nyquist plot of a closed-loop control system with the transfer func-
tion H(s) = 1/s and the proportional feedback control law C(s) = −ke−τs
with delay τ = 0.01 s.
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Figure 8: Stability chart with respect to the delay τ and controller gain k.
The plot depicts the stability chart of a closed-loop system with the transfer
function H(s) = 1/s and the control law C(s) = −ke−τs, where 0 ≤ k ≤ 5.
Each pair (τ , k) selected from the shaded region leads to stability of the
control system. If, for a given pair (τ , k), the system is stable, then the
number NU of unstable roots is zero.
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Figure 9: Behavior of the real part of the rightmost root. For a closed-loop
system with the characteristic equation f(s; τ) = s2 + 9− 1.5 e−τs = 0, this
plot depicts how the real part of the rightmost characteristic root behaves
with respect to the delay parameter τ . The sign change of the real part
indicates how the closed-loop system switches from stability to instability
several times.
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Figure 10: Stability chart with respect to the delay τ and controller gain
k. This plot depicts the stability chart of a closed-loop control system with
the transfer function H(s) = 1/(s2 +ω2

0) and the control law C(s) = ke−τs,
where ω0 = 3 and 0 < k < 9. Each pair (τ , k) selected from the shaded
regions leads to stability of the control system, that is, the number NU of
unstable roots is zero.
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Figure 11: Unit step response. The positive feedback control loop consists
of the open-loop transfer function H(s) = 1/(s2 + 9) and the controller
C(s) = (kpe

−τs+kds). The aim is to compare the speed of response between
a delay-free proportional-derivative controller (kp 6= 0, kd 6= 0, τ = 0) and
a delayed proportional controller (k 6= 0, τ 6= 0). Curve 1 denotes the case
where there is no delay in the closed-loop system with the controller gains
kp = 7 and kd = −2. Curve 2 corresponds to the output of the system with
τ = 0.3 s and the proportional controller gain k = 7. Curve 3 represents the
output of the system where there is no delay, and the controller gains are
selected as kp = 7 and kd = −3. Finally, curve 4 denotes the output of the
system where the delay is τ = 0.6 s and the controller gain is k = 7.
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Figure 12: Verification of stable poles. Using the sinusoidal functions in
(25), the location of the poles in the complex plane can be determined. The
sign agreement between g1 and g2 indicates that the closed-loop system is
stable. This example shows that stability can be deduced from the phase
synchronization of two functions g1 and g2 derived from the characteristic
equation of the system.
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Figure 13: Rightmost root distributions of (24). The curves in both panels
show how the real part of the rightmost roots of the characteristic equation
(24) vary with respect to the delay τ , where ω1 = 2 and ω2 = 4. The left
and right panels correspond to ε = 1/4 and ε = 1 in the numerical example,
respectively.
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0 1 2 3 4 5 card(S+)

1 / / / / / /
2 / / Condition (37)
3 / / / / / /
4 / / / /
5 / / / / / /
6 / / / / / /

card(U+)

Table 1: Limitations of output feedback stabilizability when using the delay
as a controller parameter. Necessary and sufficient stabilizability conditions
are given by Proposition 4 in terms of two measures, namely, card(S+) and
card(U+), where card(S+) is the number of unstable closed-loop poles, and
card(U+) is the number of distinct crossing frequencies that the system’s
imaginary poles can create for some delay τ . The symbol ”/” means that
stabilization is not possible. For the case (card(U+), card(S+)) equal to
either (2, 2) or (2, 3), all stabilizing delay values are described by condition
(37).
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Figure 14: Geometric interpretation of (43). Equation (43) is represented
in the complex plane as the sum of three vectors. If these vectors create
a triangle in the complex domain, then the characteristic equation has a
solution at s = ω for some delays τ1 and τ2. For all delay values, since the
norms of the vectors are independent of the delays, we can write conditions,
called triangle inequalities, for a triangle to form on the complex plane.
Inequality conditions are in terms of only ω, and require that the length of
each edge of a triangle cannot exceed the sum of the lengths of the remaining
two edges. Once all ω satisfying these triangle conditions are detected, the
delays τ1 and τ2 can be calculated using ω and the orientation of the vectors.
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  [rad/s] 

Figure 15: Frequency-sweeping test. By sweeping the frequency ω, the norm
|a1( ω)| ± |a2( ω)| is visualized as a function of ω for the system (46) and
(47). This plot yields the range of frequencies for which the triangle con-
ditions (44)-(45) hold. These frequency ranges generate the delay solutions
τ1-τ2 in Figure 16 and Figure 17. Reprinted with permission from Elsevier.
See [92] for full citation.
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Figure 16: Delay solutions on closed curves. The curves C1 of the system
in Example 6 are the stability-switching curves, which represent the delay
values with which the characteristic equation has a pair of roots on the
imaginary axis. These curves decompose the delay plane into regions in
which all delays lead to the same numberNU of unstable roots of the system.
Reprinted with permission from Elsevier. See [92] for full citation.
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Figure 17: Delay solutions on open-ended spirals. The curves C2 of the
system in Example 6 are the stability-switching curves, which represent the
delay values with which the characteristic equation has a pair of roots on
the imaginary axis. These curves decompose the delay plane into regions in
which all delays lead to the same number NU of unstable roots. Reprinted
with permission from Elsevier. See [92] for full citation.
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Figure 18: Frequency-sweeping test. By sweeping the frequency ω, the norm
|a1( ω)| ± |a2( ω)| is visualized as a function of ω for the system (48) and
(49). This plot yields the range of frequencies for which the triangle con-
ditions (44)-(45) hold. These frequency ranges generate the delay solutions
τ1-τ2 in Figure 19. Reprinted with permission from Elsevier. See [92] for
full citation.
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Figure 19: Delay solutions on open-ended curves. The delay pairs in the
τ1-τ2 plane lead to either stability or instability. The boundaries separating
the stability and instability regions are determined by the stability-switching
curves of the system. In the example (48), (49), these curves are in the form
of open-ended forms. Reprinted with permission from Elsevier. See [92] for
full citation.
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Figure 20: Stability chart. The shaded regions in the delay-parameter space
(τ , r) represent the stability regions of the congestion control model (50).
The delay r 6= 0, which is the control-time interval, can be chosen to guar-
antee stability for a round-trip time as large as τ ≈ 1.3 s.
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(a) Parametric domain in (T1, T2).
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(b) Delay domain (τ1, τ2).

Figure 21: Mapping from the parametric domain (T1, T2) to the delay do-
main (τ1, τ2). The domain (T1, T2) is used to detect the stability-switching
curves (SSC) in the delay domain. These curves are essential for the sta-
bility analysis since they determine the boundaries that separate stability
from instability in the delay domain. To find SSC, the points (T1, T2) that
create imaginary roots s = ω in (54) are crucial. In panel (a), these points
are depicted for this numerical example. Next, using the triplets (ω, T1, T2),
SSC can be obtained from (53) as shown in panel (b). In panel (b), the sta-
bility regions in the delay domain are shaded, the number NU of unstable
roots is shown, and the kernel curve is marked. In this stability analysis, we
see that multiple disjoint stability regions arise, offering several choices to
select or schedule the delays in the closed-loop system in a way to stabilize
the system.
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Figure 22: Stability chart of the metal-cutting dynamics. The gray shaded
regions show the parametric selections corresponding to stability, which
refers to machining with vibration-free engagement of the cutting tool with
the workpiece. The ratio τ2/τ1 corresponds to the pitch ratio of the cutting
tool, while the lines with slopes −1 correspond to the rotational speed of
the spindle in revolutions per minute, which can be chosen appropriately to
render stable cutting dynamics, thereby avoiding undesirable vibration at
the interface between the cutting tool and the workpiece.
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(a) (b)

Figure 23: Investigation of delay interference. Stability and instability re-
gions of (59) are presented in the (τ1, τ2)-space for a = 1 (left) and a = 1.3
(right). For a = 1, three stable rays, two of which are the axes, exist. If
a = 1.3, then the number of rays including the axes is seven. These rays,
which are shown with dashed lines, define all combinations of multiple de-
lays for which the closed-loop system remains stable. That is, the system is
stable independently of the delays that lie on these rays. When constructing
controllers, the existence of such rays can be useful, but the control designer
needs to pay attention to avoid instability when the slopes of these rays are
perturbed due to uncertainty in the delays.
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7 Sidebar 1: Notation

In this article, we use s ∈ C for the Laplace variable; <(s) for the real and
=(s) for the imaginary part of s; R+, R−, Z+, and Z0,+ denote the set of
positive real numbers, negative real numbers, positive integers, and nonneg-
ative integers, respectively. The notation sup(·) stands for the supremum
of (·); b(·)c for the floor of (·); det for the determinant of a square matrix;
ẋ(t) = dx/dt for the time derivative of x;  for the imaginary number; R for
the imaginary axis; C− and C+ for the open left half and open right half of
the complex plane, respectively; C̄+ for the closed right half of the complex
plane; τ denotes a delay, and ~τ = {τ`}L`=1 is the set whose elements are the
scalar delays τ`.
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8 Sidebar 2: Delays in Microscopic Vehicular Traf-
fic Flow

Human drivers have reaction delays, that is, drivers need a minimal amount
of time to become aware of external events and make decisions. Vehicular
traffic is thus affected by delays [1,S1]. Reaction delays vary under physical
conditions and stimuli, and depends on the drivers’ cognitive and physiolog-
ical states. Experimental and simulator measurements indicate that these
delays range between 0.6 s and 2 s. Not only do delays invite collisions,
but delays can also cause traffic jams and stop-and-go waves, making traffic
prone to slinky-type instabilities. These effects contribute to casualties on
highways, increased emissions due to jams, and productivity losses due to
increased travel times [S1–S3].

Numerous approaches of varying complexity are used to model vehicular
traffic flow [1, S1]. One option is to assume that the vehicles follow each
other in a single lane as shown in Figure S1. The resulting models are at a
microscopic level, which allows the inclusion of human reaction delays.

We now present three models to explain the ideas behind deriving traffic-
flow models. The first model with delay is given by

ẍi(t) = κ (ẋi+1(t− τ)− ẋi(t− τ)) , (S1)

where i = 1, . . . , n, and n is the number of vehicles. In (S1), the terms
ẍi and ẋi are, respectively, the acceleration and velocity perturbations of
vehicle i around a constant vehicle velocity υ. In this model, κ is a positive
constant, and the delay τ is the driver reaction delay. The stability of
(S1) is studied in the delay-free case [S4, S5], as well as in the presence
of delay τ [S6]. Analytical predictions obtained from (S1) tend to match
experiments performed with human drivers [1]. Stability analysis of this
model can further be used to analyze the flow characteristics of traffic, how
traffic jams occur, and how human driving affects these jams. This analysis
is related to how traffic impacts the environment and the economy.

The second model is given by

ẍi(t) = κ [V (∆i(t− τ))− ẋi(t− τ)] , (S2)

where τ is the driver’s reaction delay, the headway ∆i(t) = xi+1(t)−xi(t) is
the distance between vehicles i and i+1, and V (∆i(t)) is the optimal velocity
function, which determines how a vehicle can cruise faster so long as it
maintains larger headway with respect to the preceding vehicle [S7]. Optimal
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velocity functions can be identified based on experimental measurements
[S7–S9].

The third model presented considers the case where drivers observe mul-
tiple vehicles ahead [4,S10]. This driving strategy modifies (S1) as

ẍi(t) =

Ni∑
p=1

κp,i (ẋi+p(t− τp,i)− ẋi(t− τp,i)) , (S3)

where κp,i is a constant penalizing the velocity perturbation differences be-
tween the ith and (i+ p)th vehicle sensed with delay τp,i, and Ni > 1 is the
number of vehicles that the ith vehicle is following. In this case, multiple
delays can represent a driver’s sensing time of different vehicles.
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Figure S1: Platoon of vehicles. One way to model traffic flow is to assume
that each driver follows a preceding vehicle without changing lanes. Human
decision-making adds reaction delay to the flow dynamics. These delays,
which are measured in the range of 0.6-2 s [2], affect the stability and flow
characteristics of traffic, which in turn determine the impact of traffic on
the environment and the economy.
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9 Sidebar 3: Delays in Biology

The effects of neuromusculoskeletal torque generation on the stability of
quiet standing, that is, maintaining the vertical configuration of the human
body, can be investigated by means of experiments and analytical tools
from control theory, see Figure S2 [19]. Quiet-standing experiments involve
analyzing muscle activity at the ankles. Quiet standing is considered as an
inverted pendulum controlled by the torque generated by muscles, and the
torque created by the neuromusculoskeletal system. The torque due to the
neuromusculoskeletal system is modeled by a critically damped system that
receives input from a neural controller that creates corrective actions after
the length of time τ .

A block diagram of the closed-loop quiet-standing system is shown in
Figure S3, where the neural controller comprises a proportional-derivative
controller with gains KP and KD, and where the mechanical controller is
based on a damper-spring system defined by constants K and B. The effect
of the torque created at the ankles on the deviation θ is felt after about 80-
ms delay [19,S11,S12]. This delay is a combination of three different delays,
namely, a delay of 40 ms for sensing the deviations θ, a delay of 27-37 ms in
the cortex, and a delay of 3-13 ms for processing a decision.

Following the standard block diagram simplifications in Figure S3, we
find the characteristic equation of quiet standing as

f(s;Kp,KD,K,B) = Q1(s,Kp,KD,K,B) + e−τsQ2(s,Kp,KD,K,B) = 0,
(S4)

where Q1 and Q2 are polynomials, and τ is the sensory delay of the human
model. One goal is to find combinations of (Kp,KD) such that the quiet-
standing model (S4) is stable for a given delay τ . Additional applications
at the intersection of neuroscience, control theory, and delay systems can be
found in [S13].

9.1 Regulatory Networks

Cyclic biochemical feedback in cell regulatory networks is affected by delays.
Consider the model

ẋ1(t) = −λ1x1(t) + c1x2(t− τ1), (S5)

ẋ2(t) = −λ2x2(t) + g(x1(t− τ2)), (S6)

where x1 denotes the concentration of the messenger RNA (mRNA), x2

denotes the concentration of the protein, which is the end product of the re-
action, and the rate ẋ(t) is defined by the balance between mRNA synthesis
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and the end product consumption [S14]. The delays τ1 and τ2, respectively,
define the lag from the initiation of the translation and from the initia-
tion of the transcription until the appearance of the mature protein mRNA,
c1 > 0 describes the translation effects, λ1 > 0 and λ2 > 0 are related to
degradation effects, and g is the feedback function.

System (S5)-(S6) is an example of a low-order biochemical oscillator
model, where delays describe chemical or biochemical kinetics [S15–S19].
Delays are also encountered in mitogen-activated protein kinase cascades,
which are reversible enzyme-activation-based mechanisms [S20]. These mech-
anisms are modeled as a series interconnections of compartments, which af-
fect each other after a transport time of length τk, as shown in Figure S4.
Circadian rhythm generators and dynamics of gene transcriptions are also
examples of feedback control affected by delays [S21,S22].

9.2 Epidemics

Understanding the underlying mechanisms of biological processes and epi-
demics represents a challenge for health workers engaged in designing clin-
ically relevant treatment strategies. These mechanisms can be revealed by
considering epidemics and diseases as dynamical processes.

Hematology dynamics can be modeled by

ẋ(t) = −λx(t) +G(x(t− τ)), (S7)

which formulates the circulating cell populations in one compartment, where
x represents the circulating cell population, λ is the cell-loss rate, and the
monotone function G, which describes a feedback mechanism, denotes the
flux of cells from the previous compartment [61]. The delay τ represents
the average length of time required to go through the compartment. The
model (S7) is also found in population dynamics, where the delay represents
a maturation period.

Models representing regulatory feedback mechanisms in the production
of blood cells are similar to (S7). An example is the characteristic equation
of the linearized system

f(s; τ, λ, λE , k) = (s+ λ)
[
(s+ λ)(s+ λE) + ke−sτ

]
= 0, (S8)

where λ > 0 is the death rate, λE > 0 is the decay constant of a hormone
at the equilibrium of the dynamics, and τ is the length of time needed for
the maturation of red-blood-cell precursors [S23].

Examples are also found in the dynamics of leukemia, that is, the dy-
namics describing the growth of a cancer of the blood cells characterized by
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an abnormal proliferation of leucocytes. In the case of chronic myelogenous
leukemia, some models have multiple delays [S24], where stability is affected
by both large delays (1 to 8 days) and small delays (1 to 5 minutes) [S25].
Additional examples with delays are encountered in epidemic models due to
incubation times [14,16].
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Figure S2: Quiet standing. Analysis of quiet standing offers insight on
how humans regulate their vertical posture and puts light on how humans
walk without falling. The laser-displacement sensor reads the angular dis-
placement θ of the human body from the vertical, the support device helps
support the body at the knees without affecting the natural ankle angle,
while the force plate is used to calculate the center of pressure and torques
applied by the ankle as the body sways around the vertical. Used with
permission of APS. See [19] for full citation information.
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Figure S3: Control diagram for quiet standing. The experimental setup in
Figure S2 and its control structure are depicted in this block diagram. An
active correction mechanism, which is typically considered as a proportional-
derivative controller, emanates from the neural controller and becomes ef-
fective after a length of time τ . The neuromusculoskeletal system models
the response of the muscles with critically damped second-order dynamics
whose natural frequency is ωn. The human body, which is modeled as an
inverted pendulum with inertia I, mass m, and center of mass at height h,
responds to the torques originating from the neuromusculoskeletal system
and the mechanical controller representing the mechanics of muscles. The
electromyography signals shown here are measured at the ankles. Used with
permission of APS. See [19] for full citation information.
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Figure S4: Block diagram of enzyme-activation mechanisms. A cascade of
systems is used in [S20] to model the enzyme-activation mechanisms with
delays. In this model, the production rate of the enzyme Ei depends on
the production rate of the enzyme Ei−1. The effect of Ei−1, however, takes
place after a length of time τi−1 elapses. In a biological system, the variable
xi may represent the amount of enzyme Ei available at time t, while Gi
and Hτi represent, respectively, nonlinear dynamics with outputs xi and yi.
Moreover, the action u on G1 can be inhibited by the final product xn. The
stability, oscillation characteristics, and chaos of the closed-loop system are
of interest.

76



10 Sidebar 4: Delays in Operations Research

The main components of a supply chain model are the inventories, the com-
munication medium, the decision-making dynamics associated with a human
in the loop, the production and supplies, and the transportation medium.
Among these components, the transportation, decision-making, and produc-
tion are primary sources of delay as shown in Figure S5 [6,7,S26,S27]. One of
the objectives in a supply chain system is to maintain a constant inventory as
a safety stock, while responding to dynamically changing customer demand,
and receiving additional supplies that are not instantaneously available due
to transportation delays. Delays can cause either excessive or insufficient in-
ventories, when a manager is unable to replenish the inventories in a timely
manner.

Consider the stock-acquisition model

d

dt
O(t) = −αSLO(t)− (αS − αSL)O(t− h) + r(t), (S9)

r(t) =
1

T
(αSLτ̂ + 1 + αST )L(t)− 1

T
(αSLτ̂ + 1)L(t− T ), (S10)

where O(t) is the manager’s ordering dynamics, the positive constants αSL
and αS are proportional controller gains regulating discrepancies in the sup-
ply line and in the inventory, respectively, h > 0 is the manufacturing lead-
time delay, r(t) is the nonhomogeneous part of (S9), and τ̂ is an estimate of
h [S27]. The customer demand forecaster L(t) tracks the customer demand,
and smoothes the demand over a period T .

The model (S9)-(S10), which is supported by experiments [S27], contains
the key components of a supply chain as shown in Figure S6. Equations
(S9)-(S10) can also express the inventory variations N(t) influenced by the
demand D(t) and products ordered at t− τ , that is, dN(t)/dt = O(t− τ)−
D(t). We can then determine controller gains such that N(t) behaves in a
desirable way, and calculate the delay values that do not destabilize N(t)
for a given controller.

The characteristic equation of the dynamics in (S9) is given by

f(s;h) = s+ αSL + (αS − αSL)e−τs = 0, (S11)

where τ is the manufacturing lead-time delay. Multiple delays can be con-
sidered to account for the decision-making delay h1, the manufacturing lead
time h2, and the transportation time h3 [S28]. In this case, the governing dy-
namics in (S9) can be reformulated, leading to the three-delay characteristic
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equation

f(s;h1, h2, h3) = s+αSL(e−h1s− e−(h1+h2)s) +αSe
−(h1+h2+h3)s = 0. (S12)

The characteristic equations (S11) and (S12) can be combined with the sta-
bility analysis technique presented in the section “Multiple-Delay Case” in
order to investigate the stability with respect to either the delays or system
parameters. Note that the models (S11) and (S12) represent the character-
istic equations of the ordering dynamics O(t) of the managers. The ordering

dynamics can be combined with Ñ(s) = 1
s

(
Õ(s)e−τs − D̃(s)

)
to study the

stability of the inventory dynamics N(t), where τ is the total amount of
delay between ordering new products and the arrival of these products in
the inventories, and Õ(s), D̃(s), and Ñ(s) are the Laplace transforms of
ordering, customer demand, and inventory levels, respectively.
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Figure S5: Supply chains and delays. Supply-chain systems are examples of
interconnected supply-demand points that share products and information
in order to regulate inventories and optimally respond to customer demands.
Various sources of delay in supply chains include decision-making delays,
transportation lines, and lead times in manufacturing facilities. Delays in
supply chains influence every stage of the supply-demand chain, causing
financial losses, inefficiencies, and reduced quality-of-service.

80



Acquisition rate 

Loss rate 

Supply line Inventory

Decision-making 

Desired inventory 

Desired supply line 

Desired loss rate 

Order rate 

Delay

Figure S6: Inventory acquisition model [S27]. This model represents the
flow of products in a supply chain, where decision-making adjusts the orders
needed to respond to each customer’s buying rate, that is, the loss rate. Due
to the presence of delays, the orders placed earlier by the decision maker
traverse the supply line first and then arrive at the inventory after a delay.
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11 Sidebar 5: Stabilizing Predictors

Delay terms may also arise when designing state predictors and observers.
To explain the main ideas, we consider the linear system

ẋ(t) = Ax(t), (S13)

y(t) = Cx(t). (S14)

Since (S13)-(S14) is time invariant, a prediction yp(t) of the output y(t)
over a time-delay interval of length τ can be generated from a model of the
system given by

ż(t) = Az(t),

yp(t) = Cz(t).

The observer design includes a control term in the predictor that depends
on the difference yp(t− τ)− y(t) between the outputs. We then obtain the
predictor

ż(t) = Az(t) +K(yp(t− τ)− y(t)), (S15)

yp(t) = Cz(t), (S16)

which can be combined with (S13)-(S14) to express the error dynamics as

ė(t) = Ae(t) +KCe(t− τ), (S17)

where e(t) = z(t − τ) − x(t) is the error, and the gain K is selected to
guarantee the stability of the error dynamics, for instance, by following
the stability analysis techniques explained in the section “Delay Differential
Equations and the Characteristic Equation”.

For control systems with delays, the detrimental effects of delays are
minimized by including predictors in the control feedback loop. The con-
troller then uses either the prediction of the plant state variable or output
for feedback, instead of the plant state variable and outputs. This type of
delay compensation is the basis for the Smith predictor [32, S29], as well
as schemes based on finite spectrum assignment [S30]. Prediction-based
schemes are applicable to unstable open-loop systems only if stabilization of
the predictor is addressed.
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12 Sidebar 6: Stabilizing Unstable Periodic Orbits
in Chaotic Systems

Delays can be used to stabilize unstable periodic orbits that appear in
chaotic systems. Questions of observability and reconstructibility in both
linear and nonlinear dynamical systems concern the availability of sufficient
information in the output space that can be used to reconstruct the behav-
ior of the system in state space. The following definitions are used to state
the main results in delay embedding, time-series prediction, and stabilizing
chaotic systems.

Definition 2 The topological spaces X and Y are topologically equivalent if
a continuous mapping f : X → Y exists with a continuous inverse f−1.

Definition 3 If f : X → Y , where X and Y are topological spaces, is a
continuous mapping with a continuous inverse f−1 : f(X) → X from its
range f(X) ⊂ Y to its domain X, then the function f is an embedding.

Consider the input-free dynamical system

ẋ(t) = f(x(t)), (S18)

y(t) = h(x(t)), (S19)

where x ∈M , M is an n-dimensional manifold, and the output y is a scalar.
Given only the output measurements, we are interested in determining in-
formation about the phase-space of system (S18)-(S19), in particular, the
geometric behavior of the state x. We assume that x is bounded, and even-
tually resides on an attractor A.

Definition 4 Let φ be a flow on M , let τ > 0, and let h : M → R
be a smooth measurement function. The delay coordinate map with em-
bedding delay τ , F (h, φ, τ) : M → Rm, is defined by x 7→ F (h, φ, τ) =(
h(x), h(φ−τ (x......h(φ−2τ (x)), . . . , h(φ−(m−1)τ (x))

)
.

Definition 5 The subset U ⊂ X of a topological space is residual if it
contains the intersection of a countable number of open dense subsets. A
property is called generic if it holds on a residual set.

Baire’s theorem guarantees that a residual set is not empty, but may
have arbitrarily small measure [S31]. Furthermore, we know that every
d-dimensional manifold can be embedded into R2d+1 [S32]. Takens’ em-
bedding theorem provides a particular embedding using delay mappings to
reconstruct the state space of the original dynamical system [S33].
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Theorem 6 (Takens [S33]) Let M be a compact manifold of dimension d,
and let τ > 0 be the embedding delay. For the nonlinear system (f, h, τ), if
f is a smooth vector field on M with flow φ and h : M → R is a smooth
measurement function, then the delay coordinate map F (h, φ, τ) : M →
R2d+1 is an embedding.

The output function y(t) = h(x(t)) is usually dictated by the avail-
able sensors, and may not be mathematically available. The measurement
function h(·) is piecewise constant, and the assumptions and conclusions
of Theorem 6 are not achieved in practice. Nevertheless, delay-embedding
approaches are used in order to predict the future outputs of nonlinear
systems [S34] and control chaotic systems [S35–S37]. The prediction of fu-
ture outputs is achieved as follows. Using the collection of delay mappings
F (t), F (t + 1), . . . , F (t + `), a model of a dynamical system whose state is
F (t) can be obtained by either a linear or nonlinear identification algorithm.
For example, we can obtain the matrix G such that F (t+ 1) = GF (t) [S34].
The delay-embedding and prediction algorithm are illustrated in Figure S7.

Chaotic systems, which are sensitive to initial conditions, can also be
characterized by attractor sets containing infinitely many unstable periodic
orbits. These properties can be exploited to design delayed feedback for
physical chaotic systems [86]. The discussion below is based on the OGY
methods [S38] used to suppress chaos in dynamical systems by driving the
trajectories to a limit cycle [S39].

Consider the dynamical system

ẋ(t) = f(x(t), u(t), t), (S20)

y(t) = h(x(t)), (S21)

where x(·) ∈ Rn, and u and y are scalars. Assume that, for u(t) = 0,
the system has an unstable periodic orbit x0(t) of period T that satisfies
ẋ0 = f(x0, 0, t) and x0(t+ T ) = x0(t) among its potentially infinitely many
periodic orbits. Let y0(t) = h(x0(t)), and let the feedback input with mul-
tiple delays be given by

u(t) = K

[
(1−R)

∞∑
n=1

Rn−1y(t− nT )− y(t)

]
,

where |R| < 1. To analyze the stability of the closed-loop system, we use
a perturbation approach by considering the small state perturbations δx =
x0(t) − x(t). Note that for chaotic systems, the trajectory x(t) becomes
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infinitesimally close to an unstable periodic orbit due to the presence of
infinitely many unstable periodic orbits, and since the attractor has a finite
dimension. The linearized closed-loop system is given by

δẋ = A(t)δx(t) +KB(t)

[
(1−R)

∞∑
n=1

Rn−1δx(t− nT )− δx(t)

]
,

where A(t) and B(t) are periodic matrices. Noting that

δx(t− nT ) = e−nΛT δx(t),

where Λ ∈ R is the Floquet exponent [S38], the stabilization problem is
reduced to that of studying the stability of the closed-loop system

δẋ = [A(t)δx(t) +KH(Λ)B(t)]δx(t),

where
H(Λ) = (1− e−ΛT )/(1−Re−ΛT ).

Finding Λ typically requires the solution of a transcendental equation, and
for some special orbits, Λ can be obtained [S38]. Finally, this approach
can be experimentally implemented to stabilize various physical systems
[S40,S41].

Example 9 This example illustrates the time-delay embedding application
of Theorem 6. Consider the Lorenz oscillator described by the equations

dx1

dt
= a(x2 − x1),

dx2

dt
= x1(b− x3)− x2,

dx3

dt
= x1x2 − cx3,

where a, b, and c are real constants. For the particular choice a = 10,
b = 28, and c = 8/3, we obtain the attractor shown in Figure S8. By
measuring y = h(x) = x1 and using a delay of τ = 1 s, the reconstructed
attractor is shown in Figure S9. While the reconstructed attractor with this
projection approach looks different from the actual attractor, the attractor
can be used to predict the trajectory of x1, x2, and x3. �
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Figure S7: The embedding and prediction algorithms. The mapping
F (h, φ, τ) provides delay embedding to reconstruct the vector z(t), which
can then be used to identify the mapping G and predict z(t+ 1). Note that
the first entry of z(t) is the output y(t).

88



Figure S8: The Lorentz attractor. This attractor, which is in R3, is com-
posed of an infinite number of unstable limit cycles. For the particular choice
of the parameters in Example 9, all trajectories converge to the chaotic at-
tractor. This attractor illustrates both the long-term unpredictability and
the boundedness of the trajectories.
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Figure S9: The reconstructed Lorentz attractor. The reconstruction is based
on the output measurement y = x1, which is projected onto R3 for the
embedding dimension n = 2d+ 1 = 7. While the reconstructed shape is not
identical to the attractor in Figure S8, the first three components of F (t)
shown in the reconstructed attractor comprise the signals y(t), y(t−1), and
y(t − 2). Theorem 6 is used to guarantee that the reconstructed attractor
using a sufficient number of delays is the image of an embedding mapping
of the original attractor. The delayed signals can be used to either stabilize
the Lorenz system or obtain a predictive model of the output y(t).
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13 Sidebar 7: Numerical Stability and Bifurcation
Analysis

The MATLAB package DDE-BIFTOOL provides numerical bifurcation and
stability analysis of delay differential equations with several fixed constant
or state-dependent delays [80]. This package contains routines for the com-
putation, continuation, and stability analysis of steady-state solutions, their
Hopf and fold bifurcations, periodic solutions, and connecting orbits. A
stability analysis of steady-state solutions is achieved through computing
approximations and corrections of the rightmost characteristic roots using
a linear multistep method. Periodic solutions, their Floquet multipliers,
and connecting orbits are computed using piecewise polynomial collocation
on adaptively refined meshes. An overview of DDE-BIFTOOL for stabi-
lization problems is presented in [S42]. Additional numerical methods that
can compute the rightmost roots of LTI DDEs include the quasi-polynomial
mapping-based rootfinder (QPmR) technique [S43] and pseudospectral dif-
ferencing methods [S44].
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