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Abstract

We present a set of technical procedures to carry out experiments involving mobile robots. The hardware and
software configuration to access the sensors and actuators in the robots usually turn out to be a relatively complex
exercise. The intricacies of dealing with physical hardware connections and the lack of documentation related
to software and hardware interfaces may significantly delay the experimental process. The Robotic Operating
System (ROS), has become one of the main tools to interface a useful set of devices including several kinds of
commercial robots through an IP network. Using Pioneer 3-AT robots we provide a step-by-step explanation of
how to attach sensors such as GPS, IMUs, laser-range finders among others, to the robots as well as a couple of
sample codes in C++ to operate the robots using ROS libraries.
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1 Introduction

The current literature related to mobile robots reflects an increasing interest in the development of algorithms
to control teams of robots. The robots should work cooperatively to carry out tasks that would be inefficient or
even impossible to be carried out by a single robot. In reconfigurable sensor network applications each robot is
equipped with a set of sensors able to measure some phenomenon or concentration in the environment. Based on
the measurements, the sensors should position themselves or reconfigure the network such that a cost function or
a calculated error is minimized. Examples of these kind of applications are search and rescue operations [1],[2],
target detection [3],[4] and hazardous contamination [5] [6] among others.

Reconfigurable sensor networks have motivated the validation and verification of the developed theory through
experiments rather than simulations. Several robotic tesbeds have been developed in the past such as the experi-
mental testbed of the GRASP laboratory at the University of Pennsylvania [7], the team of SwarmBots presented
in [8] and the COMET testbed [9], [10]. Given the importance of experimental applications for teams of mobile
robots, we mean to provide a document whose main purpose is to deliver a comprehensive amount of technical
information that allows the reader to easily address several issues involving the hardware and software configu-
ration of a robotic testbed. This report specifically covers a testbed composed by a team of Pioneer 3-AT [11]
robots controlled by the Robotic Operating System (ROS) [12]. It is worth mentioning that the hardware and
software covered in this document are resources in the current state of the art.

The document is organized as follows, in section 2 we present a basic introduction to the main technical
features of the Pioneer 3-AT (P3-AT) robots. In section 3 we provide a very brief description of ROS and specify
the level of knowledge the reader should have to follow this report. We provide the web links to what we consider
are the required readings and tutorials to be able to understand some basic ideas presented in the following
sections. In section 4 we present the details of the hardware and software requirements in order to be able to
communicate with sensors and actuators to be used with the P3-AT robots. In section 5 we present a couple of
sample codes to use a GPS device and to control the speed of a P3-AT robot. Lastly, in section 6 we present the
conclusions.

2 The Pioneer 3-AT robots

The Pioneer 3 - AT robots (P3-AT) [11] are programmable intelligent platforms equipped with the basic devices
for navigation and sensing in the real world. They are part of an extense family of robots released in 1995 by the
company Mobile Robots [13](nowadays part of the Adept team [14]) with the Pioneer 1 which continued with
the Pioneer AT, Pioneer 2-DX, up to the most recent Pioneer 3-DX and 3-AT models.

The basic P3-AT robot is provided with high resolution motion encoders, reversible DC motors and motor
controllers, as well as the four-wheel skid steer which carries out the balanced drive system of the robot. The
power source consists of up to three 12 VDC lead-acid batteries and the control of all sensors and devices in the
robot is carried out using a client/server application. The robots are equipped with a radio ethernet board which
allows the wireless communication with the sensors and devices attached to the robots.

The P3-AT robot reaches speeds up to 0.7 m/s. Furthermore it can carry a payload of up to 40 kg and can
climb a traversable slope of up to 40%. In Table I we show some mechanical features of the robot [11].

Some of the accesories for the P3-AT available in the MARHES lab are shown in Fig. 1. As you can notice
some sensors such as the SICK laser and the Global Positioning System receiver (GPS) are aimed to carry out
outdoors experiments whereas some others such as the hokuyo laser are oriented to indoors experiments.

A special aluminum plate and mounting system was created to interface the environmental sensor suite. The
plate and mounting system allows for multiple sensor configurations as well as the ability to mount multiple
accessories on each robotic platform. Fig. 2 shows the custom built aluminum plate with four precision light
sensors and three magnetic sensors. Also shown is a Hokuyo UHG-08LX laser range finder. The addition of the
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Table I: General specifications of the P3-AT robots.

Length 50.1 cm
Width 49.3 cm
Height 27.7 cm
Weight 14 kg
Payload 40 kg
Translate speed max 0.7 m/s
Rotate Speed max 140◦/s

custom plate and mounting brackets allows for a quick swapping of sensors and accessories to address a variety
of experimental tests.

  

Robai Cyton Alpha 
7D 1G

Bumblebee2 
Camera Novatel 

GPS-702GG 
Propack-v3

Hokuyo UHG
Laser

Sick LMS 200
Laser

Phidgets USB
Interface

Robai Cyton Alpha 
7D 1G

Figure 1: Accesories available for the P3-AT robots at the MARHES lab at the University of New Mexico [15].
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Figure 2: One of the five P3-AT robots available in the MARHES lab. Notice the detailed pictures of three
different kinds of sensors, namely, Phidgets light precision sensors (top), Phidgets magnetic sensors (middle) and
a Hokuyo UHG-08LX laser range finder (bottom), mounted on a custom fixture attached to the robot [10].

3 The Robotic Operating System

ROS is a meta-operating system [12] created by Willow Garage [16], which provides not only an interface to
the sensors and actuators attached to a robot, but allows the implementation of commonly used functionalities
such as message passing between processes and package management. The communication with the sensors
and actuators is carried out through an IP network. There is a growing number of packages with drivers and
applications being developed to interface several types of devices with ROS. The latest list of ROS packages is
available at http://www.ros.org/browse/list.php.

ROS works under a client/server architecture, where one or more robots, with a set of attached sensors and
actuators, upload a service to enable a communication channel between a remote client and the sensors. The
client program can run on any computer that has a network connection to the robot or team of robots. At the best
of our knowledge most of the ROS libraries are currently compatible with C, C++ and Python.

This technical report assumes that the reader has a basic knowledge of ROS, including

1. Commands for navigating the filesystem.

3

http://www.ros.org/browse/list.php


UNM Technical Report: EECE-TR-10-0004

2. Creation and compilation of packages for ROS.

3. Creation and handling messages and services between applications.

4. Creation and configuration of nodes and topics.

5. Creation and configuration of publishers and subscribers.

6. Creation and configuration of services and clients.

Since this is a technical report aimed to ROS programmers at the intermediate level, we encourage the be-
ginner reader to work on the tutorials for the beginner level available at http://www.ros.org/wiki/ROS/Tutorials
before continuing with the reading of this document. Furthermore, we will limit the discussion to applications
developed using C++. All the applications presented in this report have been implemented on the 32 bits versions
of Linux Ubuntu 9.10 and 10.04.

3.1 ROS Installation

A very good documentation related to the installation and configuration of ROS is available at
http://www.ros.org/wiki/ROS/Installation
We strongly encourage the reader to carry out the installation of the ros-[ros version]-base1 package to follow
the instructions given in this report without additional difficulties.

4 Installation and Configuration of Sensors with ROS

In this section we provide a detailed description of the configuration process of some of the sensors and actuators
currently available for the P3-AT robots in the MARHES lab at the University of New Mexico. All the material
presented in this section aims to be a quick start for setting up basic sensors and actuators commonly used in
mobile sensor network applications using ROS. From now on, every subsection is dedicated to a different device.
We highlight the main steps to follow in order to get all the devices properly working with ROS.

4.1 Hokuyo UHG Laser Range Finder

Working with the hokuyo laser range finder is rather straighforward using ROS. As explained in [17] and [18],
nodes are executable files that provide the communication with different devices through connections called
topics. We will see that for one or several sensors and actuators attached to the robots, we need at least a node
running in the background to get or provide data from or to the sensors and actuators.

The Hokuyo UHG-08LX Laser [19] is an indoor range sensor which applies phase difference to get its dis-
tance measurements, minimizing the effect of the color and reflectance of the detected objects. The laser has a
scan angle of 270◦ and a pitch of 0.36◦. The maximum range of the sensor is 8 m with a divergence of 80 mm at
that distance. The main features of the laser are illustrated in Table II. The laser device is shown in Fig. 3.

Hardware Connections

Depending on the Hokuyo laser model (UHG or URG) [20] we may need or not a power connector besides the
data wire. In the case of the UHG laser, we need to identify the wires based on the sticker attached to the laser,
indicated by the green rectangle shown Fig. 3. A Tamiya connector can be adapted to power the laser range finder

1Up to this point ROS has released two versions namely, boxturle and cturtle which is the latest one.
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Table II: General specifications of the Hokuyo UHG-08LX laser

Power source 12 VDC ±10%
Current consumption 0.3 A
Detection Range 0.03 ∼ 11 m (Accuracy not guaranteed beyond 8 m)
Accuracy 0.1 ∼ 1 m : ±30mm

1 ∼ 8 m : 3% of the distance
Resolution 1 mm
Scan Angle 270◦

Angular resolution 0.36◦

Scan time 67 ms/scan
Ambient light resistance Halogen/Mercury: 10000 lx or less

Florescent: 6000 lx or less
May cause measurement errors
under strong light e.g. sunlight.

Weight Approx 500 g
External dimensions 88×83×83 mm

as shown in Fig. 5(a). In the case of the URG model, the operation power is delivered through the USB port.
Both laser models (UHG and URG) are USB compatible.

Once we make sure that the laser is properly connected to the power source and the USB port, we should
verify that the laser has been properly identified by the system. Let us type the following command on a Linux
terminal after connecting the laser,

$ dmesg | tail

The information about the USB devices recently connected to the embedded computer should appear on the
terminal as follows,

[16282.420179] usb 5-1: new full speed USB device using uhci_hcd and address 3
[16282.751265] usb 5-1: configuration #1 chosen from 1 choice
[16282.756271] cdc_acm 5-1:1.0: ttyACM0: USB ACM device

if this information does not show up on the terminal, it is because the system is not recognizing the device. In
that case, check the physical connections one more time and reconnect the device if necessary.

Software Configuration

The hokuyo node package [21] comes already in the ros-[ros version]-base installation of ROS, but it may require
to be compiled. If that is the case, proceed to compile it by executing the following commands on the Linux
terminal,

$ rosdep install hokuyo_node
$ rosmake hokuyo_node

Now, verify the USB port the laser is currently connected to, by using dmesg — tail, and specify the current
USB port by executing the following command on the Linux terminal,

$ rosparam set hokuyo_node/port /dev/ttyACM1

5
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Figure 3: Hokuyo UHG-08LX laser range finder. The green frame encloses the sticker with the color of the wires
and their functionality.

In this example the laser is plugged to the port /dev/ttyACM1.

Now, we are ready to run the MASTER node,

$ roscore

and run the hokuyo node in a new terminal. This node allows us to get data from the laser,

$ rosrun hokuyo_node hokuyo_node

Now, type the following command to visualize the data sent by the laser through the topic /scan on the
terminal,

$ rostopic echo /scan

then, we should be able to see the distance measurements from the laser on the screen.

6
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Figure 4: Garmin 18 5 hz GPS.

4.2 Garmin 18-18x 5 hz GPS

A Garmin Global Positioning system (GPS) is available to be mounted in our testbed for outdoor applications.
We have the Garmin 18 and 18x models [22], [23] available which work at a frequency of 5 hz. This rather
economical solution is part of the mainstream tools used for outdoors location of autonomous vehicles. The
Garmin 18 is shown in Fig. 4 . The possibility of connecting up to 12 satellites at once, the compatibility with
real-time WAAS corrections with position errors of less than 3 meters, and its lightness and compactness make
these devices a suitable solution for robotic platforms. The main features of the Garmin 18-18x 5 hz GPS are
illustrated in Table III.

Hardware Connection

The Garmin GPS 18-18x 5 hz comes with either USB or RS-232 compatibility. The USB version is powered by
the USB port while the RS-232 comes with a set of wires to be connected to a power source of 5 V and another
set to send and receive the data through a RS-232 connector. In order to adapt the laser to a P3-AT robot, we can
adapt a Tamiya connector for the power source and a female DE-9 serial connector to get the GPS data as shown
in Fig 5.

7
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Table III: General specifications of the Garmin 18-18x 5 hz GPS

Weight 5.7 oz
Case Material Polycarbonate thermoplastic
Cable length 5 m
Input Voltage 4.0–5.5 V
Input Current 65 mA @ 5.0 V
CMOS Serial Output Levels 0 – 5.0 V
Operating temperature −30◦C+90◦C
Update Rate 1 record per second (GPS 18–18x)

5 record per second (GPS 18–18x 5 hz)
Accuracy Position: < 15 m, 95 % typ (Standard Positioning Service)

Position: < 3 m, 95 % typ (WAAS)
Velocity: 0.1 knot RMS steady state

Size 61 mm in diameter and 19.5 mm in height
Interface GPS 18–18x: TIA-232-F (RS-232) async receiver. Def 4800 baud

GPS 18–18x: 5hz TIA-232-F (RS-232) async receiver. Def 19200 baud

To check the actual data transmitted by the GPS you can use the command gpscat which is part of the appli-
cations included in the package python-gps. To install the python-gps package execute the following command
in Linux Ubuntu,

$ sudo apt-get install python-gps

Now, we are ready to check the NMEA messages delivered by the GPS by typing the following command on
the terminal,

$ gpscat -s [baudrate] [serial_port]

    

(a) Tamiya connector (b) DE-9 connector

Figure 5: The Tamiya connector and a DE-9 connector can be adapted in several devices to plug the power wires
and data wires respectively.

8
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The baudrate changes depending on the GPS model we use, and we suggest to try different values (e.g. 1200,
4800, 9600, 19200) if necessary. Based on Table III for a Garmin 18 (5 hz) GPS, the baudrate is 19200 baud/s,
then to show the NMEA data on the terminal execute the following command assuming that the GPS is connected
to the port /dev/ttyS1.

$ gpscat -s 19200 /dev/ttyS1

The NMEA messages should appear on the terminal as follows,

$GPRMC,002454,A,3553.5295,N,13938.6570,E,0.0,43.1,180700,7.1,W,A*3F
$GPRMB,A,,,,,,,,,,,,A,A*0B
$GPGGA,002454,3553.5295,N,13938.6570,E,1,05,2.2,18.3,M,39.0,M,,*7F
$GPGSA,A,3,01,04,07,16,20,,,,,,,,3.6,2.2,2.7*35
$GPGSV,3,1,09,01,38,103,37,02,23,215,00,04,38,297,37,05,00,328,00*70
$GPGSV,3,2,09,07,77,299,47,11,07,087,00,16,74,041,47,20,38,044,43*73
$GPGSV,3,3,09,24,12,282,00*4D
$GPGLL,3553.5295,N,13938.6570,E,002454,A,A*4F
$GPBOD,,T,,M,,*47
$PGRME,8.6,M,9.6,M,12.9,M*15
$PGRMZ,51,f*30
$HCHDG,101.1,,,7.1,W*3C
$GPRTE,1,1,c,*37
$GPRMC,002456,A,3553.5295,N,13938.6570,E,0.0,43.1,180700,7.1,W,A*3D

and now, we are ready to install the ROS libraries to access the GPS data.

Software Configuration

Let us start by installing the gpsd package [24],

$ sudo apt-get install gpsd

Now, in order to install the gpsd client for ROS you should install the revision control tool for linux git [25],

$ sudo apt-get install git-core

To install the stack containing the gpsd client package we suggest the path given by /opt/ros/boxturtle/stacks,
but this is left to the preferences of the user. Once we are located in your chosen folder type,

$ sudo git clone git://ram.umd.edu/umd-ros-pkg.git

and it will download all the stack to the designated folder. Once this is done move to the directory where the
gpsd client package is located,

$ roscd gpsd_client

If for some reason this does not work, move to the gpsd client folder through the following path,
/[your chosen folder]/umd-ros-pkg/gps umd/gpsd client, and proceed to compile the package,

9
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$ sudo rosmake --rosdep-install

Now, the gpsd client node should be ready to be used. If you get some error messages while compiling the
package, make sure that the dependencies were compiled before, especially the gps common package.

As mentioned at the gpsd client web site [26], the gpsd daemon should be running before the gpsd client
node is running. To run the gpsd daemon type,

$ gpsd -S [TCP_port] [serial_port]

The default TCP port is 2947 but in this particular example we will use the TCP port 4000 and the serial port
/dev/ttyS1 as before, then,

$ gpsd -S 4000 /dev/ttyS1

We can check that the data from the GPS is now going through the TCP port 4000 by running the following
command,

$ telnet localhost 4000

Now, press any key and you should start visualizing NMEA data on the screen. At this point we are ready to
run the MASTER node,,

$ roscore

Then run the gpsd client node,

$ rosrun gpsd_client gpsd_client _host:=localhost _port:=4000

Now, we are ready to test the node showing the actual data on the terminal by typing the following command,

$ rostopic echo /fix

and all the NMEA messages from the GPS should start appearing on the terminal right away.

4.3 Microstrain 3DM-GX2

The Microstrain 3DM-GX2 is described as an enhanced Inertial Measurements Unit (IMU) which combines a
triaxial accelerometer, gyroscope, magnetometer and temperature sensors in order to compensate and correct
typical sensor errors such as hysteresis and supply voltage variations [27]. Its small size and light weight make it
suitable for authonomous vehicle implementations. The main features of the Microstrain 3DM-GX2 are shown
in Table IV and the sensor is shown in Fig. 6.

Hardware Connection

The Microstrain 3DM-GX2 IMUs are USB devices whose power is obtained through the USB port. As before,
type the following command on the terminal after the IMU has been connected.

$ dmesg | tail

10
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Table IV: General specifications of the Garmin 18-18x 5 hz GPS

Orientation range 360◦ about all axes
Accelerometer range ± 5 g (standard)
Accelerometer bias stability ±0.005 g
Gyro range ±300◦/s (standard)
Gyro bias stability ±0.2◦/s
Magnetometer range ±1.2 Gauss
Magnetometer bias stability 0.01 Gauss
A/D resolution 16 bits
Orientation Accuracy ±0.5◦ typ static test conditions

±2.0◦ typ dynamic test conditions
Orientation Resolution < 0.1◦ minimum
Interface USB 2.0
Digital output rate 1–250 hz
Serial data rate 115,200 bps
Supply voltage 5.2–9 V
Power Compsumption 90 mA
Operating Temperature −40to70◦C
Dimensions 41×63×32mm
Weight 39 g

It will show the information about the USB port which has been assigned to the IMU as shown below. If
this information does not show up check the physical connections one more time and reconnect the device if
necessary.

[14008.314512] usb 2-1: new full speed USB device using uhci_hcd and address 2
[14008.478574] usb 2-1: configuration #1 chosen from 1 choice
[14008.484438] cp210x 2-1:1.0: cp210x converter detected
[14008.594470] usb 2-1: reset full speed USB device using uhci_hcd and address 2
[14008.742441] usb 2-1: cp210x converter now attached to ttyUSB0

Software Configuration

Usually when the ros-[ros version]-base package is installed, it already includes the imu drivers stack which
includes the package microstrain 3dmgx2 imu. You can check if the package is installed by executing the com-
mand,

$ rospack find microstrain_3dmgx2_imu

It should show the path of the package in the system. If it does not return any output go then to the folder
of your preference and make sure you have administrative permissions to install the package; then execute the
following subversion [28] command on the terminal,

$ svn co ‘roslocate svn microstrain_3dmgx2_imu‘

This will download the whole microstrain 3dmgx2 imu package to the actual folder. Then install the depen-
dencies and compile the package by executing the following commands on the terminal,

11
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Figure 6: The Microstrain 3DM-GX2 IMU.

$ rosdep install microstrain_3dmgx2_imu
$ rosmake microstrain_3dmgx2_imu

After you make sure that the microstrain 3dmgx2 imu package is installed on your system, please connect the
IMU to the USB port and check the name and path of the current port the IMU is using by using the dmesg —
tail command. Then run the MASTER node,

$ roscore

Now, run the imu node node to get the data from the IMU,

$ rosrun microstrain_3dmgx2_imu imu_node

This node assumes that the IMU is plugged to the port /dev/ttyUSB0 by default. In case you have the IMU
connected to a different port e.g. /dev/ttyUSB1 then we should specify it by typing,

$ rosrun microstrain_3dmgx2_imu imu_node _port:=/dev/ttyUSB1

12
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Some messages will start showing up on the terminal indicating that the IMU is calibrating. Then, there
should be an indication that the IMU is working. At this point we are ready to show the IMU messages on the
terminal by checking the information of the /imu/data topic,

$ rostopic echo /imu/data

and we should be able to see the IMU data as shown below,

header:
seq: 1951
stamp: 1281648062918698527
frame_id: imu

orientation:
x: 0.745911226365
y: -0.659430505519
z: -0.0608342600388
w: 0.0711829027672

orientation_covariance: [0.001, 0.0, 0.0, 0.0, 0.001, 0.0, 0.0, 0.0, 0.001]
angular_velocity:

x: -0.00512957340106
y: -0.000760086695664
z: 0.000855371588841

angular_velocity_covariance: [0.000, 0.0, 0.0, 0.0, 0.000, 0.0, 0.0, 0.0, 0.000]
linear_acceleration:

x: 0.0427974506538
y: 1.85255225912
z: -9.62984849498

linear_acceleration_covariance: [0.009, 0.0, 0.0, 0.0, 0.009, 0.0, 0.0, 0.0, 0.009]

Notice that the IMU data is given in quaternions by the ROS node. The programmer should carry out the
respective conversion to degrees or radians if required.

4.4 Phidgets Environmental Sensor Suite

The environmental sensor suite consists of a Phidgets USB interface I/O board [29] capable of measuring eight
digital and analog inputs, and capable of driving eight digital outputs. The Phidgets I/O board can accommodate
pressure, temperature, humidity, light intensity, and magnetic field sensors among others. Furthermore, it is
equipped with a digital input hardware filter to eliminate false triggering at the digital inputs. A detailed view of
a Phidgets USB interface with an attached light precision sensor is shown in Fig 7.

Light Precision Sensors

The 1127 precision light sensor [30] is a 5 VDC device able to measure from 1 lx to 1000 lx with a typical
accuracy of 95%. The formula to convert the sensor data to luminosity units is

Luminosity (lx) = SensorValue

The main features of the device are given in Table V, and a picture of the sensor is shown in Fig. 7.

13
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Figure 7: A Phidgets USB interface I/O board with an attached precision light sensor. Notice the USB port at the
bottom of the image and the digital input outputs at the right and left edges respectively. The analog inputs are
located at the top edge of the board where the light sensor is connected.

Magnetic Sensors

The 1108 magnetic sensor [31] is a temperature stable sensor with a sensivity of 1 Gauss/SensorValue. The
formula to convert the sensor value to Gauss units is

Φ (Gauss) = 500−SensorValue.

Table V: General specifications of the Phidgets 1127 light precision sensor

Current consumption 2 mA
Bandwidth 50 Hz
Minimum Voltage 3.3 VDC
Maximum Voltage 5 VDC
Minimum light level 1 lx
Maximum light level 1000 lx
Error 5%

14
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Table VI: General specifications of the Phidgets 1108 magnetic sensor

Current consumption 2 mA
Voltage output range 0.2 - 4.7 VDC
Device supply operating range 4.5 - 5.5 VDC
Typical error (@25◦C) ±0.5%
Sensivity 1 G/SensorValue

We illustrate the main features of this sensor in Table VI. The sensor is shown in Fig. 2.

4.5 Hardware Connection

As mentioned before, the Phidgets interface kit comes with a USB type A port that powers the device as well. In
order to get data from the device it is necessary to install the Phidgets drivers available at http://www.phidgets.com/drivers.php.
In this report we limit the description of the installation of the Phidgets drivers in Linux Ubuntu only.

4.6 Software Configuration

First, download the Phidgets drivers for Linux available at
http://www.phidgets.com/downloads/libraries/libphidget 2.1.7.20100621.tar.gz.

Save the compressed file libphidget 2.1.7.20100621.tar.gz in the folder of your preference. Please be sure
you have administratives rights over the folder and go to the chosen folder,

$ cd /[path to your chosen folder]

Now, uncompress the file libphidget 2.1.7.20100621.tar.gz by typing,

$ tar -xzvf libphidget_2.1.7.20100621.tar.gz

and go to the uncompressed folder,

$ cd libphidget-2.1.7.20100621/

Then configure the compilation of the drivers by typing,

$ ./configure --enable-shared

where the parameter enable-shared is just a precaution to avoid future errors related to shared libraries. After-
wards, compile and install the drivers,

$ make
$ sudo make install

Once we are done with the installation of the drivers we proceed to install the necessary ROS packages
to interface the Phidgets interface kit. If you installed the ros-[ros version]-base package, as suggested at the
beginning, you may only need the additional packages phidgets py api and phidgets ros. To install them, just go
to the folder of your preference and be sure you have administrative rights over the folder. Then go to the chosen
folder and type on the terminal,
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$ svn co ‘roslocate svn phidgets_py_api‘

It is worth mentioning that the package phidgets py api should be installed at first since it is a dependency of
the phidgets ros package. Then move inside the phidgets py api folder and compile it,

$ sudo rosmake --rosdep-install

Now, go to the folder of your preference and proceed to download the phidgets ros package by typing,

$ svn co ‘roslocate svn phidgets_ros‘

In a similar way, go inside the folder phidgets ros and type,

$ sudo rosmake --rosdep-install

Now, you should be ready to use your phidgets sensors. Please connect your 1018-PhidgetsInterfaceKit to
any USB available on your computer and execute the following command on the terminal,

$ dmesg | tail

In the last two lines of the output in the terminal, we should read someting similar to,

[17596.120134] usb 5-1: new low speed USB device using uhci_hcd and address 4
[17596.305435] usb 5-1: configuration #1 chosen from 1 choice

which indicates that the device has been detected. Then run the MASTER node,

$ roscore

and the interface kit.py node,

$ rosrun phidgets_ros interface_kit.py

We should be able to check the data given by any sensor attached to the interface board. As an example let us
suppose that we have a magnetic sensor connected to the analog port whose index is 0, then the command,

$ rostopic echo /interface_kit/95135/sensor/0

will show the data delivered by that sensor. Notice that the digit at the end of the stream indicates the index of the
analog port, then it can be any integer from 0 to 7.

4.7 Odometry and Sonar Ring

In the MARHES lab the available P3-AT robots came with wheel encoders and a front sonar ring already set up.
However there are some additional sensors that can be attached to the P3-AT robots such as, grippers and pant-tilt
units that can be controlled or accessed using ROS. Unfortunately, since we have not implemented anything using
those resources in the MARHES lab we limit the discussion to the odometry and sonar ring in this section.
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Table VII: General specifications of the motion encoders of the P3-AT robots

Counts/rev 34,000
Counts/mm 49
Counts/rotation 22,500

Sonar Front Array

This low cost sensor is a classroom oriented tool to give the students experience with obstacle detection sensors
[11]. As shown in Fig. 2, the circular sensors at the front of the robot forms an array of sonars, with 2 sonars on
each side and 6 more forward covering interval angles of 20◦.

Motion Enconders

The P3-AT comes with 4 motion encoders [11] ready to use with the features shown in Table VII.

4.8 Hardware Connection

As we mentioned before, all these accessories already came with the P3-AT robots so we do not cover their
physical installation in this document.

4.9 Software Configuration

In order to access the odometry and the sonar ring we need the p2os driver package [32]. To download the
package, please locate a folder of your preference where you have administrative rights. Then go to the chosen
folder and type,

$ svn co ‘roslocate svn p2os_driver‘

then the latest version of the driver will be downloaded to the chosen folder. Then, navigate to the folder src
inside the p2os driver folder that you just downloaded,

$ cd /[your chosen path]/p2os_driver/src

and using your favorite text editor go to the line 37 which contains the text,

n_private.param("use_sonar", use_sonar_, false);

and replace it by,

n_private.param("use_sonar", use_sonar_, true);

this will allow ROS to access the data given by the sonar ring.

Now, we should be ready to test the delivered data from the sonars and from the odometry by checking the
topics called /pose and /sonar by running the MASTER node,
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$ roscore

then running the p2os node,

$ rosrun p2os_driver p2os

Now, we can check the topic /pose

$ rostopic echo /pose

and the following information should start appearing on the terminal,

header:
seq: 2844
stamp: 1281647684650540000
frame_id: odom

child_frame_id: base_link
pose:

pose:
position:
x: 0.051
y: -0.001
z: 0.0

orientation:
x: -0.0
y: 0.0
z: 0.0174524064373
w: -0.999847695156

covariance: [0.0, 0.0, ... ,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
twist:
twist:

linear:
x: 0.0
y: 0.0
z: 0.0

angular:
x: 0.0
y: 0.0
z: 0.0

covariance: [0.0, 0.0, ... ,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Do not be alarmed by the beeping of the robot. This node not only allows the reception of the data from the
sensors but it allows us to control the angular and linear speed of the robot as well as to enable or disable the
motors of the robots. Then, the beep is an indicator that the robot is not receiving any angular nor linear speed
values at the node inputs.

5 Sample Codes for ROS in C++

Up to this point, we have been able to communicate with several devices using ROS commands. In this section
we illustrate the utilization of the ROS libraries in C++ to receive data from a Garmin 18-18x 5 hz GPS and to
send speed commands to a P3-AT robot.
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5.1 Sample Code for GPS Data Acquisition

This code captures data from the GPS and shows it on the terminal. Let us start creating a new package for our
application called gps test pkg which should depend on the package gpsd client,

$ sudo roscreate-pkg gps_test_pkg gpsd_client

Now, go to the main folder of the gps test pkg package,

$ roscd gps_test_pkg

and create the src folder,

$ mkdir src

Use your favorite text editor to create a file named gpsTest.cpp and copy and paste the following C++ code on
it,

#include <iostream>
#include <ros/ros.h>
#include <gps common/GPSFix.h>

class GpsTest
{
public:
// Type for GPS messages
gps common::GPSFix gpsMsg;

// Constructor
GpsTest(ros::NodeHandle nh ) : n(nh )
{
// Subscribing to the topic /fix
gps sub = n.subscribe("/fix", 100, &GpsTest::gpsCallback, this);

}

// Callback Function for the GPS
void gpsCallback(const gps common::GPSFixConstPtr &msg)
{

gpsMsg = ∗msg;
}

private:
// Nodehandle
ros::NodeHandle n;

// Subscriber
ros::Subscriber gps sub;

};

int main(int argc, char∗∗ argv)
{

// Variables to store the Latitude and Longitude from the GPS respectively
double gpsLat = 0;
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double gpsLong = 0;

// Initializing the node for the GPS
ros::init(argc, argv, "gps Subscriber");
ros::NodeHandle nh ;

GpsTest ∗p = new GpsTest(nh );

// Getting the data from the GPS
gpsLong = p->gpsMsg.longitude;
gpsLat = p->gpsMsg.latitude;

std::cout << "Current Latitude: " << gpsLat << std::endl;
std::cout << "Current Longitude " << gpsLong << std::endl;

ros::spin();
return 0;

}

5.2 Compiling and Running the Node

Now, go to the main folder of the package and use your favorite text editor to add the following line to the
CMakeList.txt file,

rosbuild_add_executable(gpsTest src/gpsTest.cpp)

Now, proceed to compile the package

$ sudo rosmake --rosdep-install

and you should be able to run the node,

$ rosrun gps_test_pkg gpsTest

and visualize the latitude and longitude coordinates given by the GPS on the terminal.

5.3 The Code Explained

Let us put the code in pieces to make it clear. The following section of the code is for including the necessary
C++ libraries and packages:

001 #include <iostream>
002 #include <ros/ros.h>
003 #include <gps common/GPSFix.h>

Then, we declare a class containing all the functions and variables we need to subscribe to the topic containing
the GPS data,

005 class GpsTest
006 {

Afterwards, we declare the public attributes of the class. The variable gpsMsg stores the GPS data so we can
access it from the main function,
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007 public:
008 // Type for GPS messages
009 gps common::GPSFix gpsMsg;

Now, we create the constructor of the class. In this case the constructor is the function which allows us to
encapsulate the subscriber gps sub. We subscribe the node to the /fix topic using a callback of type class method
(check section 2.3.2 at Publishers and Subscribers). Since we are encapsulating the nodehandle n we pass the
nodehandle nh from the main function via member initializers to the constructor. The colon (:) in the header
separates the input parameter from the member initializer.

011 // Constructor
012 GpsTest(ros::NodeHandle nh ) : n(nh )
013 {
014 // Subscribing to the topic /fix
015 gps sub = n.subscribe("/fix", 100, &GpsTest::gpsCallback, this);
016 }

Then, we write the callback signature (check section 2.2 at Publishers and Subscribers) for the callback
associated to the GPS. Notice that this callback puts the information data from the GPS in the public variable
gpsMsg.

018 // Callback Function for the GPS
019 void gpsCallback(const gps common::GPSFixConstPtr &msg)
020 {
021 gpsMsg = ∗msg;
022 }

Now, we encapsulate the nodehandle n and the subscriber gps sub by declaring them private variables in the
class,

024 private:
025 // Nodehandle
026 ros::NodeHandle n;
027
028 // Subscriber
029 ros::Subscriber gps sub;
030 };

Then, the main function starts,

032 int main(int argc, char∗∗ argv)
033 {

The following section initializes the node with the label gps Subscriber and declares the nodehandle nh .

039 // Initializing the node for the GPS
040 ros::init(argc, argv, "gps Subscriber");
041 ros::NodeHandle nh ;

In the following lines, the new operator assigns a storage of the proper size for the object p of type GpsTest.
We call the constructor to initialize the object and to return a pointer to the type GpsTest.

043 GpsTest ∗p = new GpsTest(nh );

Then, We use the arrow (−>) operator to access the member gpsMsg of the class GpsTest to get the latitude
and longitude values from the GPS. We proceed to show the data on the terminal by using the conventional
std::cout commands. Finally the ros::spin command waits for new messages from the GPS to run the callback.

045 // Getting the data from the GPS
046 gpsLong = p->gpsMsg.longitude;
047 gpsLat = p->gpsMsg.latitude;
048
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049 std::cout << "Current Latitude: " << gpsLat << std::endl;
050 std::cout << "Current Longitude " << gpsLong << std::endl;
051
052 ros::spin();
053 return 0;
054 }

For a list of the available data given by the gps common/GPSFix messages besides latitude and longitude,
check gps common/GPSFix.

5.4 Sample Code for Speed Control

This very simple code moves the robot at a constant linear and angular speed. Let us create a new package called
robot driver pkg which depends on the package p2os driver,

$ sudo roscreate-pkg robot_driver_pkg p2os_driver

Now, go to the main folder of the robot driver pkg package,

$ roscd robot_driver_pkg

and create the src folder,

$ mkdir src

Use your favorite text editor to create a file named robotDriver.cpp and copy and paste the following C++
code on it,

#include <iostream>
#include <ros/ros.h>
#include <geometry msgs/Twist.h>
#include <p2os driver/p2os.h>

class RobotDriver
{
public:
// Constructor
RobotDriver(ros::NodeHandle &nh)
{
nh = nh;
// publishing to the topic cmd vel
cmd vel pub = nh .advertise<geometry msgs::Twist>("cmd vel", 1);
// publishing to the topic cmd motor state
cmd motor pub = nh .advertise<p2os driver::MotorState>("cmd motor state",1000);

}

bool drive()
{
// Commands of type "twist" for the linear and angular velocity
geometry msgs::Twist base cmd;
// Commands of type "p2os driver" for the motor state
p2os driver::MotorState motor cmd;
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motor cmd.state = 1;// enabling motors

base cmd.linear.x = base cmd.linear.y = base cmd.angular.z = 0; // Speed = 0 by default

ros::Rate loop rate(10); // message requency 10 hz
while(ros::ok()){

base cmd.linear.x = 0.1;

// publishing the speed command on topic cmd vel
cmd vel pub .publish(base cmd);
// publishing the motor command on topic cmd motor state

cmd motor pub .publish(motor cmd);

ros::spinOnce();
loop rate.sleep();

}
return true;

}
private:
// Nodehandle
ros::NodeHandle nh ;
// Publishers
ros::Publisher cmd vel pub ;
ros::Publisher cmd motor pub ;

};

int main(int argc, char∗∗ argv)
{
//init the ROS node
ros::init(argc, argv, "robot driver");
ros::NodeHandle nh;

RobotDriver driver(nh);
driver.drive();

}

5.5 Compiling and Running the Node

First of all, be sure that the robot is at the floor level in an obstacle-free area. Now, go to the main folder of the
package and use your favorite text editor to add the following line to the CMakeList.txt file,

rosbuild_add_executable(robotDriver src/robotDriver.cpp)

Now, proceed to compile the package

$ sudo rosmake --rosdep-install

and you should be able to run the node,

$ rosrun robot_driver_pkg robotDriver

and the robot should start moving straighforward at 0.1 m/s.
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5.6 The Code Explained

In order to make the code clear we put it in pieces. The following section includes the required libraries,

001 #include <iostream>
002 #include <ros/ros.h>
003 #include <geometry msgs/Twist.h>
004 #include <p2os driver/p2os.h>

Now, we declare the class which contains all the necessary functions and variables,

006 class RobotDriver
007 {

Then, we declare the public attributes. The constructor receives the nodehandle nh via member initializers.
We publish a message of type geometry msgs::Twist containing the linear and angular velocities to the topic
cmd vel (see geometry msgs/Twist Message). Furthermore we publish a message of type cmd motor state which
contains the enabled/disabled state of the motors of the robot.

008 public:
009 // Constructor
010 RobotDriver(ros::NodeHandle &nh)
011 {
012 nh = nh;
013 // publishing to the topic cmd vel
014 cmd vel pub = nh .advertise<geometry msgs::Twist>("cmd vel", 1);
015 // publishing to the topic cmd motor state
016 cmd motor pub = nh .advertise<p2os driver::MotorState>("cmd motor state",1000);
017 }

In the following section we declare the variables base cmd and motor cmd which store the messages of the
velocities and the motor state respectively. We enable the motors by setting the value motor cmd.state to any
integer value different than zero. Lastly, we set all the initial velocities (angular and linear) to zero.

019 bool drive()
020 {
021 // Commands of type "twist" for the linear and angular velocity
022 geometry msgs::Twist base cmd;
023 // Commands of type "p2os driver" for the motor state
024 p2os driver::MotorState motor cmd;
025
026 motor cmd.state = 1;// enabling motors
027
028 base cmd.linear.x = base cmd.linear.y = base cmd.angular.z = 0; // Speed = 0 by
default

Then, we set the frequency of the algorithm to 10 hz with the ros::Rate loop rate(10) command. At every
cycle we set the value of the linear speed at 0.1 m/s and proceed to publish the messages in the variables base cmd
and motor cmd to the topics cmd vel and cmd motor state respectively.

030 ros::Rate loop rate(10); // message requency 10 hz
031 while(ros::ok()){
032
033 base cmd.linear.x = 0.1;
034
035 // publishing the speed command on topic cmd vel
036 cmd vel pub .publish(base cmd);
037 // publishing the motor command on topic cmd motor state
038 cmd motor pub .publish(motor cmd);

24

http://www.ros.org/doc/api/geometry_msgs/html/msg/Twist.html


UNM Technical Report: EECE-TR-10-0004 References

The ros:spinOnce() command in the next section is not necessary in this algorithm since we are not receiving
callbacks from any topic. Recall that in section 5.1 every time the GPS sends a message a callback is executed
to store the message in a variable GPSMsg but this is not the case here. However, we encourage the reader to
get used adding this line as a good programming routine. The command loop rate.sleep() will guarantee that the
frequency of the while loop will be about 10 hz.

040 ros::spinOnce();
041 loop rate.sleep();
042 }
043 return true;
044 }

Lastly, we find the main function. The first two lines initialize the robot driver node and the nodehandle nh.
The third line creates an object called driver of type RobotDriver and the fourth line executes the function drive
from the created object.

053 int main(int argc, char∗∗ argv)
054 {
055 //init the ROS node
056 ros::init(argc, argv, "robot driver");
057 ros::NodeHandle nh;
058
059 RobotDriver driver(nh);
060 driver.drive();
061 }

6 Conclusions

We have provided the basics of the technical procedure to configure a set of sensors and actuators attached to
a P3-AT robots using ROS. Given the intrinsic complexity involved in hardware configuration procedures and
the lack of documentation in that sense, we aimed to provide a better understanding of the experimental design
related to mobile sensor networks. Even though there are a lot of devices not covered by the document, we hope
the reader would feel encouraged enough to try out new devices and configurations.
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