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Abstract

A category-theoretic account of neural network semantics has been used to characterize incremental concept
representation in neural memory. It involves a category of concepts and concept morphisms together with cate-
gories of objects and morphisms representing the activity in connectionist structures at different stages of weight
adaptation. Colimits express the more specialized concepts as combinations of abstract concepts along shared
subconcept relationships specified in diagrams. This provides a mathematical model of concept blending, in
which designated relationships among concepts are preserved in a combination. Structure-preserving mappings
called functors from the concept to neural categories provide a mathematical model of incremental concept repre-
sentation through stages of adaptation. The work reported here extends these ideas to express temporal sequences
of events, such as episodic memories. This requires an extended notion of neural morphism and a design princi-
ple for diagrams involving concepts in a temporal sequence. This is tested in a new architecture that involves a
notion of supertemplates, which are ART network templates extending over a multi-level ART hierarchy with an
interposed temporal integrator network.

Keywords
ART, category, colimit, concept, connection path, diagram, episode, event, functor, morphism, neural, semantics,

temporal sequence, theory
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1 Introduction

In this paper, we apply a mathematical theory of concept representation and learning in neural networks to the
derivation of a network that can learn and re-enact temporal sequences of events. We are using it to model episodic
memory storage and recall, particularly in connection with the hippocampus and adjoining brain structures, and
sequence encoding in general (some representative work in these areas can be found in [19, 1, 12, 14]). The
newly-derived neural network is a combination of a previously-known architecture (the Fuzzy ART network,
[2]), a neural network layer that performs temporal integration, and additional neural structure suggested by
category theory. The resulting composite architecture generates a modified ART template which, instead of being
internal to a single ART network, embraces a hierarchy of two ART networks; we call this a supertemplate.

1.1 A Categorical Semantic Theory

In previous work, we have proposed and tested a theoretical model of knowledge representation in neural net-
works, the categorical neural semantic theory (CNST) (although not by that name; see any of [10, 9, 11, 7]). The
questions that can be addressed with the CNST include: What concepts express the meaning implicit in stimuli
and/or autonomous, internally-generated signals that produce specific patterns of activity in a network? How do
these concepts relate to each other and how are those relations represented in the network? Can we identify mech-
anisms by which, through connection-weight adaptation, new concept representations are formed in the network
from existing concept representations together with incoming stimuli and internally-generated activity? Because
it analyzes network activity and connection-weight adaptation in terms of concept representation, the CNST is a
declarative semantic model. It associates the connectionist structure of a neural network at any stage of adaptation
with a knowledge structure expressing facts and suppositions about possible worlds, or domains. This knowledge
representation is based upon the network’s experience with its stimulus generating environment, its initial struc-
ture, and any autonomous activity. Because it is mathematically based, the CNST is a formal declarative semantic
model. The mathematics is that of category theory, the study of structures and structure-preserving relationships
at all levels of abstraction. The CNST applies mathematical structures derived via category theory to express
interrelated systems of concepts and structure-preserving mappings of category theory to formalize the incre-
mental representation of these concept structures in neural structure and operation. This expresses the meaning
implicit in the transformation of input stimuli to neural network output, learning through long-term adaptation,
and retrieval from memory.

The CNST is one of three known category-theoretic models of neural structure and processing, each taking
a unique approach [4, 6, 10]. The purpose of the CNST is to characterize the semantics of the significant states
of processing in a network. The semantic analysis associates concepts with various sets of outputs for each node
and concept relationships with bundles of network pathways between nodes. The concepts are descriptions of
the stimuli that are associated with the output sets for the nodes. This is explained in detail in [10], and that
which is essential to the present topic will be summarized here. Other references contain information about
the theory and some initial applications of it; for example, see [8, 9, 20, 11, 7]. In the CNST, concepts are
expressed as theories in a formal logic and their relationships as theory morphisms, which together consititute
the objects and morphisms of a category. Many-to-one structure-preserving mappings called functors map this
category to categories representing the structure and processing of neural networks at their various stages of
adaptation in a given environment. In each functorial mapping, the many-to-one aspect of a functor “smears”
or “compresses” the representation of the infinite number of concepts and relationships that are not represented
explicitly in the network of interest (Fig. 1). Mappings called natural transformations are structure-preserving
associations between functors; these model coherent processing among the functional regions of a neural network
based upon their individual, functorial knowledge representations. Adaptation in the network is expressed as a
transition from one neural category to the next, with a concomitant change to the mappings.

The CNST has recently been applied to model the memory storage and retrieval operations involved in pro-
cessing temporal sequences of events, and in particular episodic memories. As mentioned in the first paragraph,
the neural network we have developed to begin exploring temporal sequence learning comprises multilevel ART
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Figure 1: Many-to-one functorial mapping.

modules, a temporal integrator module, and the supertemplate connection structure suggested by the CNST.

Section 2 provides a brief review of the CNST. Section 3 applies the CNST to an anlysis of temporal sequenc-
ing in neural architectures. In Section 4, we present an initial neural architecture for temporal sequencing and
discuss the neural category associated with the architecture, which leads to a modifies architecture incorporating
the supertemplate connections. An initial experiment in temporal sequence learning and replay with the archi-
tecture, comparing results obtained with and without the supertemplate connections, is the subject of Section 5;
graphical figures from the simulations are displayed in appendices A, B, and C. Section 6 is the conclusion.

2 Concept Representation: The CNST

Category theory (see for example [3, 13, 15, 17]) is based upon the notion of an arrow, or morphism (the two
terms are used interchangeably) between two objects in a category. A morphism f :a −→ b has a domain object
a and a codomain object b , and serves as a directed relationship between a and b . The significance of this
notion of arrow or morphism, and what distinguishes a category from a directed multigraph, is that a category
has the property of compositionality. That is, in a category C , each pair of arrows f : a −→ b and g : b −→ c
(where the codomain b of f is also the domain of g as indicated) has a composition arrow g◦ f : a−→ c whose
domain a is the domain of f and whose codomain c is the codomain of g . Composition is associative: For
three arrows f :a −→ b , g:b −→ c and h:c −→ d , the result of composing them is order-independent, with
h◦ (g◦ f ) = (h◦g)◦ f . For each object a , there is an identity morphism ida:a −→ a such that for any arrows
f :a−→ b and g:b−→ a , ida◦g = g and f ◦ida = f . A familiar example of a category is one called Set, which
has sets as its objects, functions as its morphisms, and whose composition is just the composition of functions,
(g◦ f )(x) = g( f (x)) .

Key notions for the theoretical background of this paper are commutative diagrams, initial and terminal
objects, and limits and colimits. A diagram is a collection of objects and morphisms of C . In a commutative
diagram, any two morphisms with the same domain and codomain, where at least one of the morphisms is the
composition of two or more diagram morphisms, are equal. An initial object, where one exists in C , is an object
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i for which every object a of C is the codomain of a unique morphism f : i −→ a . A terminal object t has every
object a of C as the domain of a unique morphism f :a−→ t . Limits will not be discussed here, and colimits will
be introduced with an illustration showing why they are needed. In several papers including [10], we have shown
how colimits model the learning of complex concepts through re-use of simpler concepts already represented in
the connection-weight memory of a neural network. In [7] we have applied both limits and colimits to modify a
neural network architecture (a version of ART) and thereby improve its performance in a class of applications.

A mapping between categories that preserves compositional structure, called a functor, formalizes the notion
of transporting one type of structure, represented by a category, into another type of structure that can support
a representation of the first structure. For categories C and D , a functor F : C −→ D associates to each object
a of C a unique image object F(a) of D and to each morphism f : a −→ b of C a unique morphism F( f ) :
F(a) −→ F(b) of D . As mentioned in Section 1, a functor is in general a many-to-one mapping, where many
objects of C can map to a single object in D , and similarly for morphisms (as long as domains and codomains
are properly mapped). But a functor is more than simply a mapping. In order for F to be a functor, it must
be the case that for each composition g ◦C f in C , the following holds: F(g ◦C f ) = F(g) ◦D F( f ) , where
◦C and ◦D denote the respective compositions in C and D . Along with this property, it is required that for
each object a of C , F(ida) = idF(a) . It follows that F maps commutative diagrams of C to commutative
diagrams in D . This means that any structural constraints expressed in C are translated into D . Finally, as also
mentioned, natural transformations unify different functorial mappings. They will not be discussed here, but it is
important to mention them because they fill important roles in the semantic theory and can be used in multiregion
network design. For example, they can express the fusion of the separate concept representations contained in
the processing regions of different sensor modalities in a multisensor neural network (for a brief description, see
[10]).

2.1 A Category for Neural Network Semantics

Symbolically-expressed concepts can be regarded as descriptions of possible worlds or domains, internal models
which the network constructs from stimuli, internally synthesized activity patterns, combinations of the two, or
time-varying sequences of these. We refer to all these forms as “input”, whether stimulus or synthesized. The
stimuli are inputs sampled from the environment via the network’s sensor(s). Depending upon the network’s
ability to synthesize activity, the worlds may or may not exclusively model the stimulus environment. Is the
network activity consistent solely with events occurring in the environment or are there systematic deviations
that signify autonomous operation? In any case, with an appropriate modelling capability in the hands of the
analyst, the possible worlds can be expressed as a system of concepts both abstract and specific. The concepts
depend upon the neural activity and connection-weight adaptation, or learning, that creates the representations
from the foregoing forms of input, for they determine the network’s future response. The capability of a given
neural network to represent a given level of conceptual knowledge, of course, lies in its connection structure and
operational rules for stimulus response and weight adaptation. With the CNST as a modelling tool, we analyze
the knowledge representation capability in a given network, or, alternatively, design for this capability in either
a new or modified network. In the scheme of the CNST, a network learns concept representations by re-using
the already-represented concepts in many ways in combination with its inputs to “discover” concepts not yet
represented in the connection-weight array of the network.

We express knowledge mathematically as a category Concept , whose objects are concepts and whose mor-
phisms are similar to “sub-concept” relationships. This is familiar to categorical logicians as a category of formal
logic theories ([3, 5, 16]; and see [10]). A theory morphism s:T −→ T ′ (if one exists with T as domain and T ′

as codomain) is a replacement of the symbols of T by those of T ′ that transforms the axioms of T into either
axioms or theorems of T ′ . The composition of morphisms by composing symbol substitutions is straightforward.
This provides a mathematical expression of the compositional, hierarchical (and parallel, distributed) structure
of knowledge. For example (see Fig. 2), a theory of polygons, such as triangles, includes a theory of geometry
that expresses points, lines, a notion of “betweenness” (for points that lie “between” two points on a line, or
“between” two rays emanting from a point), and angles. These, in turn, are expressed in simpler theories, some
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Figure 2: Composition of morphisms in the Concept category.

of them interrelated. The inclusion of points and lines in a theory of rays is a morphism, as is the inclusion of a
theory of rays in a theory of angles (all points “between” two rays). Points, lines, rays, and angles are all included
in a theory of, say, triangles, and the morphisms describing the relationships among these theories constitute a
hierarchy of knowledge beginning with “first principles” (the properties of points and lines). For brevity, we refer
the reader to any of [10, 9, 7] for a detailed discussion of theories and their morphisms. For our purposes, the
concepts the theories express will be illustrated pictorially, and the morphisms likewise.

Fig. 2 illustrates a simple composition of morphisms in Concept . The morphism s1 is a mapping of the
symbols and syntax of the simple geometry theory T1 , which expresses only points and lines, into the theory of
T2 , which expresses line segments bounded by point pairs and highlights a particular line segment labelled S .
Expressing T2 requires additional information to that from T1 , including a notion of “betweenness” for points
on a line. The key requirement on a theory morphism is that the mapping be truth-preserving: That is, after
substituting the names of symbols in T2 (or, more generally, symbol strings which are well-formed formulas)
into the syntax of T1 , all resulting statements are valid in T2 —that is, they are provable from the axioms of T2 .
The morphism s1 thereby explains the dependence of theory T2 on theory T1 , and does so with mathematical
rigor. The morphism s2 likewise maps T2 into the theory of a triangle (T3 ), in particular mapping S to one of the
three sides of the triangle. The composition morphism s2 ◦ s1 is the resulting mapping of T1 directly into T3 .

2.2 Colimits

The concept T3 in Fig. 2 is more complex than the others, which is not surprising in view of the fact that the
latter are the domains of morphisms for which T3 is the codomain. This expresses the inheritance by T3 of
the information in the theories T1 and T2 . Likewise, T2 inherits from T1 . But there is more to be said about
this hierarchical relationship among the theories, for our topic of interest concerns the manner in which a neural
network learns, which we analyze as the formation of concept representations. The formation process involves
the re-use of existing concept representations together with the new information supplied by the inputs. The two
principal means for forming new concept representations are through abstraction—“pulling back” on a diagram
of concepts and morphisms to extract a common concept—and specialization—“pushing out” on a diagram to
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Ttri2
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c  a’
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S S’

Figure 3: Combining features in a set to obtain a composite object representation is ambiguous. It has no
information concerning those parts of the two concepts Ttri1 and Ttri2 that are to be the same in the putative
combination. What is actually represented is a coproduct, Tcoprod .

combine concepts in a structured manner using “concept blending”. The categorical formalization of these two
operations utilizes limits and colimits, respectively. In this paper, we focus upon colimits; as anticipated, they
are here introduced with an example which is illustrated in two steps in Figs. 3 and 4. Briefly, a colimit is
derived from a diagram of simpler concepts and morphisms, called its base diagram. In the derivation, a larger
diagram is found (the defining diagram of the colimit) which contains the base diagram but which has two very
special properties. Before illustrating this, it is worthwhile addressing the following question: Why not simply
regard a concept specialization as a combination of concepts (its “features”)? Why are the notions of “diagram”,
“morphisms in a diagram”, and “colimit” necessary? To answer this question, let us examine an example of
concept formation that relates more closely to the geometry of an object appearing in a visual field.

The intuition for Fig. 3 is entirely in terms of simple geometry. It illustrates the notion of attempting to
represent a diamond shape by simply specifying that the shape consists of two triangles. Each triangle is expressed
as a named object, R or R′ , together with its labelled vertices, sides, and so forth in its own copy of a theory
expressing the geometry of triangles. The desired shape representation is envisioned as a combining of the two
theories. But this specification lacks essential information, and this is revealed by formalizing the intuition using
category theory. Unfortunately, the two theories together constitute a discrete diagram: a diagram with objects
but no morphisms (except for the identity morphisms of the objects, which are always present and so are normally
not shown). Because this diagram lacks information on how the objects within it are meant to be related in the
combination, its colimit is a coproduct, consisting of two disjoint triangles as shown in the valid combination
in Fig. 3 (the intended combination, which is not valid, is crossed out). In fact, formally, the coproduct theory
contains two unrelated copies of the theories of points, lines, etc. which are necessary to express triangles, and,
therefore, the combination involves two identical but unrelated notions of what constitutes a triangle. These facts
are important, for consider the following. First, a mere combination of one or more components, or features, of
an object in visual space is ambiguous, for the components can be combined in many ways to form a composite
object. The same is true in any context; with no information for “blending together” entities, the notion of a
combination of entities of any kind is meaningless. Second, the subject of our discussion is the structure of a
neural network that has the capability of forming and recalling memories. The underlying assumption is that
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Figure 4: A correct scheme for combining concepts. The combination has the needed information con-
cerning those parts of the two concepts Ttri1 and Ttri2 that are to be the same in the putative combination
Tcolim .

complex memories (of complex objects, of events, and of episodes consisting of sequences of events) consist of
combinations or associations of simpler items. But if the neural network is to build these complex memories,
it must somehow obtain the knowledge allowing it to form the specific combinations to correctly represent the
objects, events, and episodes. Whether artificial or biological, a neural network is a sort of machine and cannot
be assumed simply to have the required knowledge for any desired representation. It must have a mechanism for
the expression of the requisite knowledge for “blending” or “pasting” components to form a composite.

The difficulties posed by the foregoing manner of representation of complex objects in memory is entirely
due to the notion of memories formed as combinations over a collection of objects or features with no specific
expressed relationships. Category theory offers an immediate alternative, one that expresses combinations along
with information about the way in which the combined items are related in a particular combination—how they
are “pasted” or “blended together”. This alternative is the colimit construction.

In Fig. 4, a cocone is shown consisting of the morphisms τ1, τ2 and τ3 along with their shared codomain
Tcolim , attached to the diagram D (the base diagram) having objects Ttri1, Ttri2 and TlsL and morphisms s1:TlsL −→
Ttri1 and s2:TlsL −→ Ttri2 . Here, the line segment L in the theory TlsL is mapped via s1 to the side C of the tri-
angle R and via s2 to the side C′ of the triangle R′ (this information can be written in a formal language related
to the formal logic of the theories). The cocone has the property that all “triangular-shaped” diagrams involving
a composition τi ◦ si (i ∈ {1, 2}) and another cocone “leg” τk with the same domain and codomain as the com-
position, commute. The domain and codomain in question are TlsL and Tcolim , and τ3 is the “third leg” of two
triangular diagrams; the other two legs of each are s1,τ1 and s2, τ2 , respectively. Since each of these diagrams
must commute, we have τ1 ◦ s1 = τ3 and τ2 ◦ s2 = τ3 , which implies τ1 ◦ s1 = τ2 ◦ s2 . A colimit is given by
an initial cocone, an initial object in the category of cocones over D (for a definition of this category, see [10]).
For our purposes, the significance of these two properties is as follows. The commutative property implies that
regardless of the fact that the line segment L in the theory TlsL is mapped into two separate geometric constructs
via s1 and s2 , it can be mapped to only one item in the colimit theory via the two compositions τ1 ◦ s1 and
τ2 ◦ s2 , for they are one and the same morphism. This implies that in the colimit object Tcolim the two triangles
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R and R′ are “blended together” along the image K of the line segment L . Initiality implies that the colimit
cocone must be the domain of a unique morphism for any other cocone for D having the latter as codomain. This
means that the colimit cocone must be minimal, with its object having the least amount of information over all
cocones for D ; in effect, all other cocones “contain” it. To put this another way, the colimit object Tcolim is a sort
of least upper bound for the concepts that can be formed and include the concepts in D blended as indicated by
s1 and s2 . A neural network that can adapt its weights to form colimits for perceptual situations represented by
diagrams has a powerful capability for concept representation, for it can form “canonical” concepts to represent
the situations through concept blending, re-using concepts and relationships already available.

As just shown, two commutative triangles τ1, s1, τ3 and τ2, s1, τ3 sharing a common side can be “pasted
together” to form a commutative square. When τ1, τ2, τ3 form an initial cocone, the commutative square is the
defining diagram for a pushout. Conversely, a colimit for a finite diagram can be decomposed into successive
pushouts, each combining pushout (colimit) objects from the pushouts in the previous step. Hence forth, when
discussing a colimit we shall often refer to the commutative triangles of its defining diagram, or to the commuta-
tive squares they form. We shall frequently refer to concepts such as TlsL in Fig. 4 as “blending objects” in either
the base diagram (such as D ) or the defining diagram of a colimit, and to the colimit object as a “blending of
concepts along shared subconcepts”, keeping in mind that concept morphisms are not restricted to part-to-whole
(subconcept) relationships.

This leads to the notion of concept representation in a neural network. As previously mentioned, this is
expressed mathematically as a functor from the concept category to a neural category. Before discussing this in
detail, an explanation of the derivation of a neural category is in order.

2.3 Neural categories, functors, and knowledge representation

In the CNST, in a well-designed neural network adaptation in response to stimuli results in the derivation of new
concept and concept morphism representations through the re-use of existing representations. Before any adap-
tation has taken place, “pre-wired” nodes and connections at and near the sensor level of processing confer upon
the network the ability to represent primitive or “perceptual” concepts. These describe the basic stimuli associ-
ated with sensor elements and some structures expressing specific combinations of sensor elements. The stimuli
activate further neural structures, and the connection weight adaptation that follows forms new representations
at a more complex level. As described in the colimit concept combination of the preceding section, the new
representations extend the diagrams associated with sensor-level combinations by “pushing out”, forming cocone
representations by recruiting new neural network nodes through the formation of patterns of strengthened and
weakened connections. Further extensions occur at more complex, but also at simpler, levels by both “pushing
out” (concept specialization) and “pulling back” (concept abstraction). To formalize this process in correspon-
dence with the concept objects and morphisms, we require a category that expresses limits (abstractions) and
colimits (specializations), and this depends upon the neural network. If a category with sufficient structure can
be derived for a given neural network, that network can then be shown mathematically to be capable of learning
concept representations incrementally starting with a set of basic, sensor-level (perceptual) concepts and mor-
phisms. The learned concepts will either inherit (as colimits) or abstract (as limits) information from the concepts
and morphisms in the original diagrams from which they were formed. During retrieval, the appropriate limit
and colimit representations will be re-activated depending upon the relative amounts of activation in the neural
representation of their defining diagrams. This process forms a knowledge representation incrementally. We can
formalize the achieved representation at each stage of adaptation in terms of a functor.

Specifically, during connectionist learning in a neural network A , connection weight adaptation results in a
weight array w . In a properly designed neural network, this will result in one or more commutative diagrams
associated with limits and/or colimits in the neural category NA,w which is derived from A and w . We analyze the
representation of concepts and their morphisms, diagrams, limits, and colimits at any stage w of adaptation in the
network by attempting to define a functor M:Concept−→NA,w . If the neural network A with weight array w has
a structure with the requisite properties, so that NA,w has objects, morphisms, diagrams, and limits and colimits
to match those of interest in Concept , then the functor M can be identified—at least the part corresponding to
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the concept structures of interest. Since functors are many-to-one mappings, mapping all of Concept to NA,w
may be possible by “compressing” the unrepresented concepts and morphisms onto “compression objects” and
morphisms in NA,w . Where the neural structures for representing concepts and morphisms of interest are missing
from the architecture, a knowledge representation deficit has been found. That is, the network, at least with the
current weight array, is incapable of representing that part of the structure in Concept and, hence, is not capable
of responding to items in the input environment that are described by the missing concepts and morphisms.

One use of the CNST is in analyzing a neural architecture A , as above, to determine whether certain kinds
of representations are even possible and, if so, where in the network they can occur, either through adaptation
or “hard-wiring”. Some “hard-wired” or preset structure serves as a basis for initiating the process of limit and
colimit derivations by providing ready-made morphisms for diagrams at the input (and perhaps also at the output)
interface. In fact, as shown in [7], these preset structures, when added to a neural network that does not have
them, can yield improved input representations and thereby yield improved performance. We propose that in a
biological neural system these preset structures arise during the critical period of brain development and make
possible the perception of sensor primitives, for example, color and brightness in the primate visual system.

The CNST also can be applied to the design of new neural networks, suggesting the inclusion of neural
structure which encompasses, for example, colimits and limits. This brings us to the subject at hand.

2.4 Neural categories

A neural network architecture A is given in the usual fashion by nodes pi ( i = 1, 2, . . . , nn ) and weighted
connections c j ( j = 1, 2, . . . , nc ) which at a given stage of adaptation have weight values w j . At any stage
of adaptation, with weight array w , the neural network has an associated category NA,w . The category is a
mathematical representation of the structure comprising the network connections, its current weights, and its
potential activity patterns given the weight array w . The nodes and connection pathways are called carriers of
the objects and morphisms of NA,w . A morphism is defined in terms of a set of parallel connection paths that
share the same source and target nodes, where the source node is the carrier of its domain and the target node is
the carrier of its codomain. The morphism has a set of instances, states of activity over the network in which the
outputs of the nodes in the path set of the morphism vary simultaneously within some tolerance of their initial
values. This is assumed to occur during a time interval sufficiently long to be significant (for example, connection
weight adaptation can occur to exploit the information content of this activity). More precisely, the instances of a
morphism are the elements of the intersection of the instances of its objects, which in turn are the sets of activation
states of their carriers.

To establish notation, an object of NA,w is a pair (pi, η) ; its carrier pi is a node of A and η is one of
possibly many sets of signal function output values for pi . If the signal function is φi and θ is an activation state
yielding an output in η for pi , we can write φi(θi) ∈ η , where θi is the component of θ associated with pi .
The assortment of intervals η associated with a given node and the type of their values are options for the CNST
analyst, within reasonable limits. For example, η must have a structure—usually, that of a number system—that
allows elements to be regarded as “close to” each other and that admits certain algebraic operations, such as
addition for the purpose of accumulating input sums at a node. Often, signal function outputs and connection
weights will be considered as real values, and the sets η will then be intervals of real values. An alternative type
for values is the complex number system, in which case each η is a region in the complex plane. Real quantities
will be assumed here.

Because we are interested in situations involving connection paths whose nodes are experiencing simultaneous
activations with minimal variation, we assume that the nodes of current interest have activation values varying
within some tolerance around their initial values θi over the current time interval. In particular, when the object
(pi, η) is participating in an instance of a morphism (to be defined), this means that φi(θi) ∈ η . It is important to
note that nodes not in the subnetwork of current interest can have their activation values, hence their outputs, vary
significantly as the network undergoes weight adaptation. The initial conditions for a time interval associated
with an instance of (pi, η) are denoted (θ, e) , where e is a neural network input pattern occurring along with the
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state θ . We write (θ, e) ∈U(pi,η),w , where U(pi,η),w is the instance set for (pi,η) when the weight array is w .

A connection path is a chain of connections along with their source and target nodes; we can express this
in list notation, as [ p1, c1, p2, c2, p3, c3, p4, . . . pk ] (the selection of indices 1, 2, 3, . . . here is for simplicity).
Because we are interested in the activity as well as the connection structure of a network, for the same reason that
neural objects depend upon node outputs as well as the nodes themselves, a neural morphism must take account
of the outputs for the nodes lying in a connection path. Thus, we use signal paths, which specify sets of outputs
for the nodes. A signal path based upon the aforementioned connection path (again, in list notation and using
an ordered set of indices for simplicity) appears as [ (p1, η1), c1, (p2, η2), c2, . . .(pk, ηk) ] , where the ηi are the
specified output sets for the path nodes. This signal path can be used to define a morphism with domain object
(p1, η1) and codomain object (pk, ηk) . It is important to discuss instances again before pursuing this thought.

Recall that an instance of any of the items discussed here is an occurrence over the entire network that pro-
duces an output or outputs in the specified output set or sets of the item(s). Applying the principle of simultaneity,
an instance (θ, e) for a signal path µ , with (θ, e) ∈Uµ,w , is simultaneously an instance of all objects in the path.
Therefore, Uµ,w = U(p1,η1),w ∩U(p2,η2),w ∩ . . . U(pk,ηk),w . Now, the fact that µ incorporates neural objects other
than the domain and codomain of its morphism suggests that there can be many morphisms each associated with
a different one of its segments. In fact, there is a morphism associated with, for example, the single-connection
path [ (p1, η1), c1, (p2, η2) ] which is a segment of µ . Its instance set is U(p1,η1),w ∩ U(p2,η2),w , since every in-
stance in which p1 and p2 are generating outputs within the indicated intervals η1 and η2 is an instance of
this path. Not only are there morphisms associated with the segments of µ , but also with signal path sets con-
taining µ in which all members have the objects (p1, η1) and (pk, ηk) as domain and codomain. Given a set
Γ of such signal paths, its instance set is determined, again by simultaneity, as the intersection of the instance
sets for its members. In Fig. 5, two signal paths γ and γ′ are shown connecting objects (p1, η1) and (p4, η4) ,
with γ = [(p1, η1), c1, (p2, η2), c3, (p4, η4) ] and γ′ = [(p1, η1), c2, (p3, η3), c4, (p4, η4) ] . In the figure, the
partially-colored-in vertical bars represent the level values of the current outputs within the intervals ηi at the
nodes pi . Either path γ or γ′ defines a morphism by considering either Uγ,w or Uγ′,w only . On the other hand,
the path set Γ , where Γ = {γ, γ′} , is associated with a morphism we shall designate as m5 , as shown in the
figure. The instance set UΓ,w of the morphism uniquely associated with Γ is UΓ,w = Uγ,w ∩Uγ′,w .

The two paths in Fig. 5 from (p1, η1) to (p4,η4) each consists of two connections through a third ob-
ject. In fact, this suggests our definition of composition of morphisms for NA,w . The single-connection path
γ1 , where γ1 = [(p1, η1), c1, (p2, η2) ] , is uniquely associated with a morphism m1 , and γ3 , where γ3 =
[(p2, η2), c3, (p4,η4) ] is associated with a morphism m3 . Concatenating the two yields the two-connection
path γ , uniquely defining a morphism m . The instance set of γ , and, hence, of m , is Uγ,w = Uγ1,w ∩Uγ3,w . We
define composition in NA,w so that m = m3 ◦ m1 .

Similarly, the other two-connection path γ′ uniquely defines a morphism m′ = m4 ◦ m2 with instance set
Uγ′,w = Uγ2,w ∩Uγ4,w . In general, m and m′ can be two separate morphisms, and as before Γ has the instance set
UΓ,w = Uγ,w ∩Uγ′,w , associated with the morphism m5 . However, if Uγ,w = Uγ′,w , then the diagram formed by
m1, m2, m3, m4, m is commutative, m3 ◦ m1 = m5 = m4 ◦ m2 , because then Uγ,w = UΓ,w = Uγ′,w .

It is important to emphasize that a node can be the carrier of several neural objects. That is, any of the nodes pi
in Fig. 5 can have several objects of the form (pi,ηi) associated with it; in a real-valued neural network model, ηi
can be any of several, possibly infinitely many, intervals. Purely to simplify the notation for objects in the present
discussion, the intervals have been given subscripts identical with those for the nodes, as for example (p4,η4) .
Further simplifications will appear in the following discussion. For example, properly speaking, it is neural
network nodes pi that are the carriers of objects (pi, ηi) , and not the objects themselves, that become active (or
activated), which causes the nodes to generate outputs ξ in the intervals (ξ ∈ ηi ). To avoid lengthy definitions
and more terminology, however, we shall say also that objects, connections, and signal paths, morphisms, and
diagrams are active when the appropriate nodes are active.

Another simplification has been used in Fig. 5 and will occur throughout, to wit: The only nodes and con-
nections shown in a figure are those necessary to illustrate the point being made. In actuality, a node can have
inputs and outputs that are not shown. The latter may be necessary to help bring about the activations that we call
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p4

c1
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c4

p2
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η3

η4

η1

w4

w2

w3

w1

m3 ο m1

m1

m3

m4 ο m2

m2

m4

Figure 5: There are four neural morphisms m1, m2, m3, m4 defined by the single-connection paths for
connections c1, c2, c3, c4 between the neural objects (p1, η1),(p2, η2),(p3, η3),(p4, η4) , with compositions
m3 ◦ m1 and m4 ◦ m2 both having the same domain (p1, η1) and codomain (p4, η4) . A third morphism
m5 with the same domain and codomain is defined by the set containing both of these paths. The diagram
commutes if m3 ◦ m1 =m5 = m4 ◦ m2 .

instances of the neural objects and morphisms; for example, activity in node p1 certainly requires an excitatory
input assuming that it is not tonically active.

2.5 Functors

Mathematically, we analyze concept representation in a neural network A at a given stage of weight adaptation w
as a functor M:Concept−→NA,w . Figure 6 shows a functorial mapping of concepts T1, T2 and T3 and a compo-
sition s2 ◦ s1:T1 −→ T3 of concept morphisms s1:T1 −→ T2 and s2:T2 −→ T3 to neural objects (p1, η1), (p2, η2)
and (p3, η3) and a composition m2 ◦ m1:(p1, η1)−→ (p3, η3) of neural morphisms m1:(p1, η1)−→ (p2, η2)
and m2:(p2, η2) −→ (p3, η3) . The domain T1 of s1 is a theory of triangles; the codomain T2 is a theory of
a specific isosceles triangle given the name R . In terms of the pictorial illustrations with which theories and
morphisms are to be illustrated, s1 can be thought of as an explanation of how the theory of triangles is used in
describing an isosceles triangle—why the latter appears as it does (that is, what constitutes a triangle). Similarly,
the codomain T3 of s2 is a theory of a weight with a triangular cross-section resting on a horizontal surface; s2
describes the incorporation of the theory of R into its codomain, where the image of R expresses the triangular
cross-section of the weight.

For simplicity, m1 and m2 are associated with single-connection signal paths, [ (p1, η1), c1, (p2, η2) ] and
[ (p2, η2), c2, (p3, η3) ] , respectively. The functorial property specifies that the image of a composition is the
composition of images. In the example of Fig. 6, written in shorthand (without the domains, codomains, and
arrows), this is expressed M(s2 ◦ s1) = M(s2) ◦ M(s1) = m2 ◦ m1 . The functorial property ensures that the
compositionality of relationships between concepts is preserved in their neural representations. Their composition
m2 ◦ m1 is shown associated with two signal paths: the composite path [ (p1, η1), c1, (p2, η2), c2, (p3, η3) ] and
an additional path [ (p1, η1), c3, (p3, η3) ] . This illustrates the fact that the set of instances of a concatenation of
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Figure 6: Functorial mapping of a composition of concept morphisms to a composition of neural mor-
phisms.

paths may be shared by other paths having the same source and target objects. It also illustrates a principle we
propose: that in many important situations involving the composition of neural morphisms representing concept
morphisms, the path set of the composite includes an additional path that increases the likelihood that an instance
of the domain of a composition will correspond with an instance of the codomain. Furthermore, the concept
morphism representation includes a reciprocal path with connection strength sufficient to ensure that the Model-
space Morphism Principle [10] is followed: An instance of the codomain entails an instance of the domain. For
simplicity, the reciprocal path is not shown.

3 Temporal Sequences

Fig. 7 illustrates a temporal sequence expressed as a colimit for a diagram in the category Concept . Here, the
event sequence is described piecemeal by two concepts, Tevent1 and Tevent2 , expressing the temporal sequence of
the triangular weight falling a short distance onto the horizontal surface. The colimit concept Tepisode expresses
the sequence in full; to be a correct representation, it must include the information that the shape of the weight in
both Tevent1 and Tevent2 is described by a single concept Ttri−wt . The diagram of four morphisms in the figure is
a pushout square and, hence, commutes, indicating that it involves only a single morphism with domain Ttri−wt
and codomain Tepisode . This expresses the correct blending of Tevent1 and Tevent2 along their shared subconcept
Ttri−wt . Clearly, the concepts in the diagram inherit information from concepts and morphisms other than those
shown in the diagram, such as time, distance, mass, gravity, and velocity. Nevertheless, Fig. 7 is sufficient to
illustrate the point about combining concepts properly as was discussed in the example of Figs. 3 and 4. The
episode representation does, however, introduce the notion of time into our analysis, and this requires a special
treatment.
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τ2 ο s2  = τ3
                  = τ1 ο s1

Figure 7: A colimit representing an episode (a falling weight hitting a solid surface), expressing the episode
unambiguously as a blending of two events along a shared subconcept (the triangle concept).

3.1 Time-Dependent Representations of Temporal Stimuli

In previous discussions involving the CNST, the neural network concept representations have been time-independent.
To express the representations of temporal sequences of events in the theory, the definition of neural morphism
must be extended. This is because of the exclusive dependence of the existing definition on the notion of simul-
taneity. Of course, an event occurring over time can be represented in the existing theory as seen in Fig. 7, but
only in a compressed fashion. Since the major concepts expressing different time steps of a memory (events 1
and 2 in Fig. 7) must be included in the diagram from which the colimit is derived, and since a commutative
diagram in a neural category is represented by the simultaneous activation of neural network nodes along signal
paths that are the carriers of the morphisms of a diagram, everything involved in the event is represented as a
single occurrence, a “snapshot”. If the event is of short enough duration this might not be a serious drawback.
The stored memory represented by the colimit will be analogous to either an event recorded on slow film or in
a digital medium with a slow frame rate, or, alternatively, as a lossy compression whereby only certain parts of
the event occurring at different times are represented. However, this scheme does not allow the CNST to express
temporal sequences of such duration that it is important that they be replayed over time. It does not allow the
retrieval of the neural representation of the colimit concept to play back the temporal sequence.

To address this issue, we have extended the notion of neural morphism by generalizing the notion of simul-
taneity. In terms of Fig. 7, the issue to be resolved is that the two concept morphism compositions τ1 ◦ s1 and
τ2 ◦ s2 must be functorially mapped to neural morphism compositions whose signal paths can be active at dif-
ferent times instead of simultaneously. Yet, to be functorial, the mapping from concept to neural category must
map the commutative concept diagram to a commutative neural category diagram, and this involves the notion of
simultaneity.

Were the two compositions in Fig. 7 mapped to the two compositions m3 ◦ m1 and m4 ◦ m2 in the commuta-
tive neural category diagram of Fig. 5 (a convenient example since this diagram has the same trapezoidal shape),
what would be required is that m3 ◦ m1 = m4 ◦ m2 regardless of the fact that the two compositions were al-
lowed to be activated separately. Now, the foregoing equation states that there is a single morphism m associated
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with this diagram that has domain (p1, η1) and codomain (p4,η4) . But there could be other neural morphisms
with the same domain and codomain, representing other concept morphisms with domain Ttri−wt and codomain
Tepisode but not involved in this diagram. If we loosen the notion of simultaneity by allowing the two paths to
be active at different times, how are we to distinguish morphisms with more than one path from separate mor-
phisms associated with separate paths which happen to share a common domain and codomain? Simply allowing
the separate activation of the signal paths involved in a morphism without some restriction loses the information
necessary to identify the separate activations as a single instance, that is, an instance of a single morphism.

3.2 Temporal Neural Morphisms

The solution to this problem requires an unambiguous means of redefining simultaneity that allows separate signal
paths of a morphism to be active at different times, yet ensures that the separate activations together constitute
an instance of a single morphism. We proceed as follows. First, we require that the neural representations of the
domain and codomain objects of a morphism remain active throughout an instance; this expresses continuity in
time. The intermediate nodes along the separate signal paths can be allowed to have separate activations, since
the continuous activity associated with the domain and codomain maintains the continuity of the instance (an
additional means of maintaining continuity will be added presently). Also—and this is the second part of the
solution—the activations of the objects (pi, ηi) within each signal path must as before occur simultaneously,
because at the most elementary level this distinguishes a signal path; notice that this requirement is consistent
with the first part, for the domain and codomain objects must remain active. Finally, the paths must become active
in a continuous sequence, one after the other, during the instance.

These requirements impose a rather challenging constraint on neural network design and adaptation, for they
require a network to locally self-synchronize its activities along separate connection paths having a common
source and target when the paths are separately active. We suggest a neural design principle to supply an archi-
tectural mechanism for synchronization: In a temporal morphism, an additional, persistently-active path is added
to the set of separately-active paths of the morphism. The continuity of activity in the carrier nodes of the domain
and codomain of a temporal neural morphism is thereby ensured by the presence of a continuously-active path
connecting them. If this additional path is accompanied by a reciprocal connection, there can be feedback as
well, enabling a mutually-supportive interplay of the activities of the domain and codomain carrier nodes. The
feedforward path from domain to codomain is illustrated by the single connection c3 in Fig. 6. Notice that the
morphism associated with it was supposed to have the same instances as (hence, to be the same as) the composi-
tion morphism m2 ◦ m1 . In that case, we were proposing as a principle that such additional paths, formed perhaps
through adaptation, accompany the concatenated paths of a composition of morphisms in certain important cases.
A temporal neural morphism is such a case.

Figs. 8, 9 and 10 illustrate the replay of a temporal sequence represented by a neural morphism. The ob-
ject (p5, η5) is a colimit object, the image of a concept colimit such as that in Fig. 7, for a diagram consist-
ing of objects (p3, η3), (p4, η4) and (p0, η0) and morphisms M(s1), M(s2) associated with the signal paths
γ1,γ2 , respectively, where γ1 = [(p0, η0), c1, (p1, η1), c3, (p3, η3) ] , γ2 = [(p0, η0), c2, (p2, η2), c4, (p4, η4) ]
and M:Concept −→ NA,w is the concept representation functor for the neural representation with the current
weight array w for a neural network A . In addition to its apical object (p5, η5) , the colimit cocone includes
the leg morphisms M(τ1), M(τ2) and M(τ3) associated with c5, c6 and c7 (actually, with the single-connection
signal paths containing the connections). Just as with the concept category quantities they represent, the ob-
jects (p0, η0), (p3, η3), (p5, η5) and morphisms M(s1), M(τ1), M(τ3) and M(s2), M(τ2), M(τ3) form a pushout
square. Hence, M(τ1) ◦ M(s1) = M(τ3) = M(τ2) ◦ M(s2) , that is, all three morphisms with domain ob-
ject (p0, η0) and codomain object (p5, η5) are one and the same, and therefore their associated signal paths
are all part of the same morphism. However, the architecture has been arranged for a stepwise temporal re-
play: The composite path γ1; [ (p3, η3), c5, (p5, η5) ] of the temporal morphism will become active first and the
composite path γ2; [ (p4, η4), c6, (p5, η5) ] will become active next, with the first path suppressed. The path
[ (p0, η0), c7, (p5, η5) ] will remain active throughout, maintaining the continuity of the temporal morphism. The
objects (p1, η1) and (p2, η2) are intermediate objects along the paths γ1 and γ2 , respectively; an example of
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Figure 8: A temporally extended neural morphism. Temporal replay during recall begins when an excita-
tory stimulus (+) activates the carrier of the colimit object (p5, η5) .

such objects will be seen in the temporal sequence architecture to be presented in the next section. As in Fig. 5,
the colored-in vertical bars represent the level values of the current outputs within the intervals ηi at the nodes
pi . For the present case, most of the intervals are regarded as containing all nonzero values. The exception is that
the intervals η3, η4 are of the form η3 = {ξ | 0 ≤ ξ ≤ t1} and η4 = {ξ | 0 ≤ ξ ≤ t2} , where the interval upper
bound values t1, t2 are the heights of the bars for η3, η4 shown in Fig. 8. This allows these two intervals to rep-
resent the time ti relative to the start of the temporal replay at which their nodes first are to become active. Notice
that t1 ≤ t2 , indicating that node p3 is to become active before node p4 . Because they signify in increasing order
the relative times at which their nodes are to become active, the values t1, t2 form a recency gradient. Notice,
finally, that each connection ci has a reciprocal, denoted c−i . All feedforward connections shown (oriented in
the direction from p0 to p5 ) are excitatory, as are their reciprocals with the exception of reciprocals c−3 and
c−4 .

The replay of the temporal sequence represented by the subnetwork in Fig. 8 begins with a stimulus that
activates the node p5 , signified by the horizontal arrow labelled “+”. This causes p5 to reach its full excita-
tion level; through the reciprocal connections c−5, c−6 and c−7 , it stimulates the carriers p0, p3 and p4 of the
objects (p0, η0), (p3, η3) and (p4, η4) in the base diagram of the colimit. Now, p3 and p4 are temporal inte-
grator nodes; initially, they generate output magnitudes t1, t2 corresponding to the previously-mentioned recency
gradient, where (p3, η3) is the object representing event 1 of the sequence and (p4, η4) represents event 2.
This occurs because the same pattern of magnitudes was formed in the weights w−5, w−6 of c−5, c−6 when this
two-step sequence was learned. The weight value w−7 , on the other hand, is unity, causing p0 to become fully
activated immediately following the activation of p5 . Now, because of the inhibitory feedback via c−3, c−4 , the
intermediate objects (p1, η1), (p2, η2) of γ1, γ2 are suppressed following the activation of the integrator nodes
and, hence, only the path [ (p0, η0), c7, (p5, η5) ] of the temporal morphism can be active. This is its initial state.

The replay of step one (event 1) of the sequence occurs during the next phase of activity, shown in Fig. 9.
Because the temporal integration is a continuing process, the output of the nodes p3, p4 is continually decreasing;
eventually, p3 has reached a sufficiently low level that its output t acting through c−3 is no longer sufficent to
suppress p1 , where now t << t1 . The object (p1, η1) now becomes active because of the continuing input from
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Figure 9: A temporally extended neural morphism: First, one path bundle (consisting of a single path in
this example) becomes active because the source node is firing and nothing is blocking the activation of the
intermediate path nodes. However, the bundle on the right is temporarily blocked by inhibitory input to
its intermediate nodes.

the node p0 , allowing the path γ1 to be active (note the solid line for c3 ). Meanwhile, node p5 has experienced
an activity decay, making it less able to reinforce the activity of p0, p3, p4 through its reciprocal connections
to them. The dashed lines in Fig. 9 indicate the weak activity through those connections. Nevertheless, the
activity through connection c5 is strong enough to complete the first commutative triangle diagram, associated
with the equation M(τ1) ◦ M(s1) = M(τ3) and corresponding to activity in the paths γ1; [ (p3, η3), c5, (p5, η5) ]
and [ (p0, η0), c7, (p5, η5) ] . It is the dotted lines that indicate an inactive connection; for example, while both
c3 and c4 were inactive during the intial state of the temporal morphism, only c4 is inactive during step 1. Note
the continued activity of the path [ (p0, η0), c7, (p5, η5) ] .

In step two, shown in Fig. 10, activity in node p4 has decayed to such an extent that node p2 can become
active. In similarity with step 1, in step 2 the activity through c4 completes the second commutative triangle
of the pushout square, associated with the equation M(τ2) ◦ M(s2) = M(τ3) and corresponding to activity in
the paths γ2; [ (p4, η4), c6, (p5, η5) ] and [ (p0, η0), c7, (p5, η5) ] . The first commutative triangle is now inactive
because the activity in node p3 has decayed to a subthreshold level. Again, notice the continued activity of the
path [ (p0, η0), c7, (p5, η5) ] .

Because the diagram in Fig. 7 forms a pushout, the morphism τ3 is equal to both of the compositions τ1 ◦ s1
and τ2 ◦ s2 . Mathematically, it is each morphism, and all three morphism symbols are simply different ways of de-
noting the same thing. The same is true of the morphism M(τ3) : it is simply the two compositions M(τ1) ◦M(s1)
and M(τ2) ◦ M(s2) , for again these are three ways of denoting the same thing. In principle, then, the connection
c7 in this temporal morphism example is unnecessary, for the composite paths γ1; [ (p3, η3), c5, (p5, η5) ] and
γ2; [ (p4, η4), c6, (p5, η5) ] are carriers of the morphism M(τ3) , by definition. Also in principle, however, we re-
quire a full formalization of our definition of temporal morphism, one that not only supports temporal replay but
also distinguishes a temporal morphism from separate morphisms with the same domain and codomain but with
path sets whose instances occur at separate times. In the example just given, including the continuously-active
path [ (p0, η0), c7, (p5, η5) ] serves both purposes: It maintains the continuity expressing an extended notion of
an instance of a morphism while at the same time providing a means of identifying a temporal morphism in con-
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Figure 10: As the memory sequence progresses, the other path bundle becomes active while the first bundle
is blocked. The source and target nodes remain active during both phases of the temporal sequence.

tradistinction to non-temporal structures which are otherwise very similar. In fact, this additional path is identified
as a colimit leg morphism, τ3 (or M(τ3) ) in this case. This suggests extending our new design principle to all
colimits, as follows: Each colimit leg morphism includes in its path-set its own unique path. As will be seen, the
inclusion of this path is helpful not only in formalization and in temporal replay, but in the adaptation through
which a temporal sequence representation is first formed; more generally, it can aid in the formation of colimits.

3.3 Learning an Episode: Incremental Colimit Formation

Connection-weight adaptation in the subnetwork of Figs. 8–10 in response to the event sequence enables the later
replay of the sequence as described. The adaptation results in the formation of a temporal colimit with apical
object (p5, η5) . The temporal morphism just described is the composition along the sides of a pushout square in
the defining diagram of this colimit. The question of how this adaptation can occur will be addressed in Section
4, where we describe an experimental architecture.

Fig. 11 shows the same episode concept as Fig. 7, but formed incrementally by first deriving Tevent1 and
Tevent2 as colimits of diagrams D1 and D2 in which two concepts of shapeless items with mass M are merged
with the concept of a particular triangle to form the two separate events. Diagram D expresses the derivation
of Tepisode by merging the two events along their common triangular shape concept. Fig. 12 again shows the
colimit derivations for the two diagrams D1 and D2 in Fig. 11, but without pictures. Expressing diagrams in
this purely notational format will simplify the expression of diagrams having greater complexity, including, for
example, concepts and morphisms relating to time. An elementary concept of time would be the common domain
of morphisms whose codomains are concepts which express specific times. Adding these yields the diagrams
illustrated in Fig. 13. Even though we have designed an architecture with a temporal integrator, as mentioned
in the Introduction, we have not yet formulated an explicit representation of knowledge about time (formulating
useful concepts about time raises some fundamental issues). For this reason, the diagrams in Fig. 13 are vague
about this knowledge, indicated by the legend “theories of time”. The figure is included merely to indicate what
is needed for a full theoretical treatment of temporal sequences in the CNST. In the architecture to be described,
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Ttri-wt

5 kg
Tevent1

Tevent2

Tepisode

5 kg

5 kg

5 kg

s1 s2

τ2

D
τ1

M 5 kg
M

D1 D2

A B

Tfall

Thit

Tobj1 Tobj2

Figure 11: A hierarchy of colimits builds an episode theory.

the temporal integrator is assumed simply to subsume the notion of time through its behavior, which involves
the notion of temporal morphisms discussed in the preceding section. Notice also the mention of coproducts.
These are colimits of diagrams having no morphisms—hence, no blending. This is acceptable for combining
concepts which are completely unrelated, but note that time as well as the other theories in the diagrams do have
subconcepts in common: those relating to the theory of numbers. A full treatment would include in the diagram
a concept of number as a blending object (number as represented by the neural network, not necessarily a full
theory of numbers) and appropriate morphisms having it as domain. Finally, the episode theory is formed in a
two-step process as indicated in Figs. 14 and 15.

Although a concept of time is not explicit in the present formulation, notice that its inclusion is suggested
by the temporal integration in Figs. 8–10. At the time the sequence is learned as a colimit, the integrator
nodes have relative output magnitudes that form a recency gradient. The concept of “time t1 ”—the time at the
occurrence of the first step, relative to any time at which the sequence is started— is represented in the object
(p3, η3) ; if the magnitude of output indicated by the bar in Fig. 8 has the value t1 , then the interval η3 is
η3 = {ξ | 0 ≤ ξ ≤ t1} , as in the preceding section. In Fig. 13, this concept is labelled Tt1 . Having diagrams
available for colimit constructions such as these allows us to see how such concept representations can be formed
in the neural network, and what consequences this has for neural structure.
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D1 D2
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Tobj1 Tobj2

q2 q1 q3 q4
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D1 D2

Tfall Thit

Tobj1 Tobj2
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r1 r4r3
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Figure 12: Colimits of two diagrams form the objects for the two events. The theories are illustrated both
pictorially (top) and by their labels (bottom).
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Figure 13: The two events are shown as coproducts that combine items with time of occurence.
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Tt1 Tt2

Ttime
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Figure 14: Morphisms whose domains are the theories Ttri−wt and Ttime , and whose codomains are Tevent1
and Tevent2 , are formed by composition.

Ttri-wt

Tevent1 Tevent2
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Ttime
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τ4

Figure 15: A final colimit forms the episode.
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Figure 16: Initial temporal architecture. The temporal integrator establishes a recency gradient over a
sequence of event nodes — F2 nodes from ART unit s .

4 A Temporal Colimit Architecture

How can a representation of such a colimit be formed through adaptation in a neural network? To answer this
question and to test the CNST in the temporal domain, we have designed an architecture as shown in Fig. 16.
It consists of three component networks, designated as units s , I , and s′ , in a multilevel array that is meant to
implement the temporal replay of Figs. 8–10 in Section 3.2. It is also meant to adaptively create the necessary
temporal morphisms through the incremental formation of colimits as described in Section 3.3. The feedforward
or bottom-up flow from the input event patterns (bottom layer of nodes) to the temporal colimit nodes (top layer)
organizes temporal sequences of events in the network memory. The top-down flow provides recall, replaying
a temporal sequence in stepwise fashion. The foregoing is merely an overview, for feedback through top-down
connections is involved in memory storage and feedback through bottom-up connections is involved in replay.

Units s and s′ in Fig. 16 are a modified version of “Fuzzy ART” networks [2]. Only the ART network detail
necessary to follow the operational description is shown. The ART units have been modified by omitting the
complement part of their input fields, thereby eliminating half of their F0 and F1 nodes. Thus, each component
of each input pattern, having a “fuzzy” x value scaled to the unit interval, 0 ≤ x ≤ 1, has no accompanying
“complementary” component with value 1 − x as it would in the usual usage of “Fuzzy ART”. This omission
is primarily to simplify the experiments performed with this initial temporal architecture; that it changes the
properties of the templates that form (to be described) is of no concern here.

“Fuzzy ART” is one in a series of Adaptive Resonance Theory (ART) architectures; its purpose is to provide a
means of performing a “fuzzy classification” of input patterns with analog or grey-scale component values. Here,
we regard it simply as a convenient off-the-shelf architecture for forming the concept representations we need by
classifying grey-scale input patterns. The pattern components are scaled to within the unit interval as mentioned,
and the scaled values of an input pattern appear as stimulus values which are output by the F0 (input) nodes of the
ART unit. Through one-to-one feedforward connections, these values appear at the F1 nodes. A pattern-matching
operation follows through an interplay of feedforward and feedback activity between the F1 layer and a mutually
competitive layer of F2 nodes. A winning node F2,k (1 ≤ k ≤ n2) , where n2 is the number of nodes in the F2
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layer, emerges whose pattern of nonzero weights in its feedforward afferent connections from F1 best matches
the nonzero components of the input pattern. The same pattern of nonzero weights is contained in its top-down
connections to F1 , which form the current template pattern Qk for the input pattern class k associated with
F2,k . Feedback to F1 through these connections results in a modified F1 pattern F1 ∧ Qk , a pattern of logical
“ANDs” with values min(F1,i, Qk,i)(i = 1, . . . , n1) , where n1 is the number of node in the F1 layer, which is
the same as the number n0 of its input nodes in F0 . During the pattern-matching operation, this ANDed pattern
is tested against the input pattern by a vigilance subsystem in the network; if there is not too much “erosion” of
the input pattern values via the minimum operation (not too many 1s replaced by 0s, for example), F2,k is said
to be in resonance with the input, activity in F2,k and the nodes of F0 ∧ Qk persists for a brief interval, and the
template Qk undergoes weight adaptation to become F0 ∧ Qk (and the feedforward weights from F1 to F2,k are
similarly modified). The input has become the most recent input pattern in the “cluster” of patterns represented
by F2,k and its template has been modified accordingly. If, on the other hand, the F0 ∧ Qk pattern expresses too
great a loss in overall magnitude from the input pattern F0 , an F2 reset occurs, a new F2 node emerges from the
competition as the winner, it reads out its template over F1 , and the match process is re-enacted. The net effect of
the entire process is that the input patterns form “clusters” by virtue of the fact that each one becomes associated
with an F2 node. Because each F2 node acquires through adaptation a feedback weight pattern Qk to F1 that
serves as a basis for future input-pattern-matching, it has a semantic representation, a “reason why” input patterns
are in its cluster. This justifies the transition in terminology from “cluster” to “class”. The usual convention in
ART network simulations is for the F2 nodes to adopt the initial members of their clusters/classes in the order
F2,1, F2,2, F2,3, . . . .

We first describe the temporal colimit formation process as it corresponds to the bottom-up flow. There are
three stages of processing of the input patterns representing the events, which are sampled at the input layer Fs

0 of
s . Each event is represented as an ART colimit by a node Fs

2,J (1 ≤ J ≤ ns,2) via the ART classification process.
Node Fs

2,J forwards its output to an I node IJ , which begins to “time-stamp” it by “integrating down”. In the
next time step, a different Fs

2 node will normally become active in place of Fs
2,J and the input to IJ will cease; if

the input from Fs
2,J persists, however, the down-integration process will start over. In any case, the value 1 − IJ

(where we let the symbol for a node such as IJ denote its current output) represents the elapsed time since the
Fs

2,J event last occurred, on a scale of 0 to 1. The output of IJ is forwarded to node Fs′
0,J as input to ART unit

s′ , and in turn is forwarded to node Fs′
1,J . Notice that the number of nodes in these layers is one and the same,

ns′,1 = ns′,0 = nI = ns,2 ; this is indicated in Fig. 16.

As node IJ “integrates down” over time its output is continually forwarded to node Fs′
0,J . When an Fs′

2

node resonates with an input pattern over Fs′
1 , therefore, it is adopting a recency gradient of integrated outputs

I j (1 ≤ j ≤ ns′,1) showing the elapsed time since each Fs
2, j was last active (with 0 indicating an elapsed time

too great to consider); its template will be modified accordingly. The recency gradients, which are continually
formed as new events are input at Fs

0 , are determined by the following update equations for the integrator nodes
I j at each time step of the simulation:

δ j = x j − I j,old,

I j,new =

 x j, δ j ≥ 0,
I j,old · dl, δ j < 0 and I j,old · dl > Imin,

0, otherwise.

(1)

Here, x j is the current input to integrator node I j , I j,old and I j,new are the old and new outputs for integrator
node I j , dl is the down-time-constant for activity decay in node I j , and Imin is a “noise” threshold for this
activity: at or below this value, the output of I j is set to zero. From equation ( 1), each node I j generates a
sequence of decreasing, graded output values over successive time steps except when it receives an input stimulus
which momentarily boosts its activity to the stimulus level. We call this process a decay sequence. It results in
a recency gradient over I at each time step which either is learned as a template for a newly-active Fs′

2 node
or is used to update the template of a previously-active Fs′

2 node, depending upon the current winner in the
winner-take-all competiton of the Fs′

2 layer.
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The Fs′,2 nodes are to form the colimit representations of the temporal sequences via the ART classification
of their inputs. However, there are two issues to consider in relation to this. First, to properly form a temporal
colimit representation would in general require a base diagram whose objects and morphisms represent complex
information resulting from several previous levels of colimit formation by the neural network, as discussed in
Section 3.3 (see Figs. 11–15). In order to simplify the experiments to be performed, the present test architec-
ture forms colimits in only two stages, by harnessing the classification capability of the two ART units. This
architecture can be extended to multi-stage colimit formation by including more ART and possibly integrator
modules, and so the restriction to two stages is not serious. A greater difficulty is posed by the fact that the
colimits formed by the ART architecture have a conceptual difficulty arising from their overly-simple form. In
the CNST analysis, each node F2,k (1 ≤ k ≤ n2) is the carrier of a colimit object whose base diagram consists
of neural objects (F1,i, ηi)(1 ≤ i ≤ n1) . This diagram is discrete, however, for it contains only a disconnected
collection of objects (and their identity morphisms, which are not shown). This means that the ART unit colimits
are merely coproducts. As discussed in Section 2.2, coproducts are generally inadequate for expressing complex
concepts in terms of simpler concepts because of the lack of blending objects and the requisite morphisms. Again
invoking the prerogative of simplicity, we can accept this inadequacy in the colimits formed from the event input
patterns by ART Unit s , since the content of these lower-level colimits is not the focus of the experiments to be
performed. This is not acceptable, however, for the colimit formation process for an episode as shown in Fig. 11.
In general, the integrator-time-stamped Fs

2 events must be blended along their common input features, that is,
along Fs

1 concept representations shared by their templates. In particular, under the assumption that a temporal
sequence such as an episodic memory sequence must have a notion of continuity, the lower-level blending ob-
jects indicated in the diagram for the entire episode together with the indicated morphisms must be present. These
serve to unify the sequence into a meaningful whole based upon information that is shared across the events. This
is discussed further in the context of the supertemplate architecture.

4.1 Supertemplates: Augmenting the Compositions

Now, we contrast the temporal colimit architecture of Fig. 16 with that of Fig. 17. For simplicity in referring
to the neural category items, let us eliminate intervals η in what would have been, for example, (Fs

1,1, η1) , and
simply let Fs

1,1 denote the object; that is, η1 includes all nonzero outputs of Fs
1,1 . However, we shall retain the

intervals in reference to Figs. 8–10. Also, let us eliminate the names of the connections in the paths in Figs. 16
and 17, which are anyway unlabelled, and use only the nodes to characterize the connection paths (signal paths)
in these figures. Finally, let us omit the terminology “carrier”, which distinguishes nodes and signal paths in a
neural architecture from objects and morphisms in the corresponding neural category, and refer to objects and
morphisms as being “active” or “activated”, “[an object] having afferent connections”, etc. This will provide a
notational shorthand and improve the readability of the following discussion.

There is a conceptual problem with the architecture of Fig. 16 and, as will be shown, a performance issue
is associated with this. The conceptual problem is that the architecture does not provide the unique signal path
that distinguishes a temporal neural morphism from other neural morphisms having the separate paths, which
are included. There is no way to disambiguate a collection of “time-stamped events” (the ART unit s′ recency
gradient components represented by top-down template connections to Fs′

1 ) from a sequence of time-stamped
events. Regardless of the fact that they are “time-stamped” by the integrator when an ART template is formed,
there is nothing to ensure that the events over an entire episode have anything in common, which would be
represented by persistently-active Fs

1 nodes. In an episodic memory sequence representing one person’s memory
of a meeting with another person, for example, the persistence of an Fs

1 node might represent the other person’s
face or some other aspect of their presence; that this contextual information is present throughout the meeting
could be the major determinant for the individual’s brain forming the episode. Such persistently-active nodes
correspond to the node p0 in the temporal morphism architecture of Figs. 8–10. In the latter, inhibitory feedback
from nodes p3 and p4 to nodes p1 and p2 suppresses the activation of paths γ1 and γ2 except when their times
for activation occur during replay. The appropriate time occurs when the activity of the associated node p3 ( p4 )
first declines to a level at which it can no longer suppress p1 ( p2 ). But in order for p1 ( p2 ) to become active, the
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Figure 17: Initial temporal architecture with an ART unit s′ supertemplate connection path to F1 node E
of ART unit s . The nonlinear temporal integrator IN supplies an intermediate node for this path.

release of inhibition is not enough; it requires excitatory input. This is supplied by node p0 , which is supposed to
remain fully active throughout the replay of the sequence. This is assured by the excitation supplied by the colimit
carrier node p5 through the top-down connection c−7 , the reciprocal connection opposite the bottom-up signal
path [ (p0, η0), c7, (p5, η5) ] associated with the colimit leg morphism M(τ3) . But in Fig. 16, the only source of
excitatory input to Fs

2 when an Fs′
2 node is active but there is no bottom-up input to Fs

1 via Fs
0 is via the top-down

connections from Fs′
2 to Fs′

1 , from Fs′
1 to I , and from I to Fs

2 . As will be seen, this is problematic not only for
the continuity of a temporal sequence because there is no unique path connecting an Fs′

2 node with the persistent
Fs

1 nodes unifying its events, but also for the activation of the Fs
2 nodes to effect the replay of the events in its

sequence. The reason for the latter problem is that the top-down connections from I to Fs
2 must be inhibitory,

as discussed for the scheme of Figs. 8–10. That is, the nodes in Fs
2 play the same role as p1, p2 , the integrator

nodes play the role of p3, p4 , and Fs
1,E plays the role of p0 . That Fs

1,E has no obvious source of excitation during
replay (when a bottom-up stimulus may not be present), as p0 must have, is the operational dilemma, which is
a reflection of the conceptual difficulty of the missing information at Fs′

2 about the persistence throughout the
sequence of the activity of Fs

1,E . The Fs
1 nodes that are active throughout a temporal sequence are the domains of

the temporal morphisms. Under our proposal for temporal colimits in Section 3.2, the diagram object associated
with each of these persistently-active Fs

1 nodes must be accompanied by a unique temporal morphism signal path
in the architecture. In particular, this requires a connection path with reciprocal between Fs

1,E and the appropriate
Fs′

2 node in addition to those which pass through Fs
2 and the linear integrator. As shown for Fs

1,E in Fig. 17, a
newly-added path and its reciprocal, corresponding to the reciprocal path [ (p5, η5), c−7, (p0, η0) ] in Figs. 8–
10, provides a source that enables the necessary excitation to maintain its activity throughout the replay. This
modification to the architecture, illustrated in Fig. 17, results in Fs′

2 templates which effectively extend over both
ART units. We call this kind of structure a supertemplate.

More detail is provided by the following operational description of the architecture. A temporal colimit object
— one is shown at the top of Figs. 16 and 17, Fs′

2,K — corresponds to the object (p5, η5) in Figs. 8–10, and ob-
jects Fs′

1,i to which it has nonzero template connections Qs′
K,i play the role of the objects (p3, η3) and (p4, η4) . A

morphism in the base diagram of the colimit is associated with a path [Fs
1,E , Fs

2,J , IJ Fs′
0,J , Fs′

1,J ] . Fig. 17 highlights
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three such paths, although they are also present (but somewhat less obvious) in Fig. 16. During the bottom-up
activation of the base diagram, an input at Fs

1,E , which is part of a diagram in ART unit s having colimit object
Fs

2,J , aids in the activation of the latter object. Its output has unit strength, and this activates a temporal integrator
node IJ which initially produces the same output. As time goes on, the output of IJ decreases, “integrating down”
according to the value of the down-time-constant in equation ( 1). The output of IJ registers through a bottom-up
connection at input node Fs′

0,J of ART unit s′ , then at Fs′
1,J . At some point in the process, the usual ART template

modification ensues while an Fs′
2 node Fs′

2,K is active. If Qs′
K,J 6= 0, the corresponding feedforward weight is

also nonzero, allowing the path [Fs′
1,J , Fs′

2,K ] to be active, as is also the path [Fs
1,E , Fs

2,J , IJ Fs′
0,J , Fs′

1,J ] . The com-
position of the morphisms associated with these two paths yields the morphism associated with the concatenated
path [Fs

1,E , Fs
2,J , IJ , Fs′

0,J , Fs′
1,J , Fs′

2,K ] . This corresponds to the composition M(τ1) ◦ M(s1) associated with the con-
catenation of paths γ1; [ (p3, η3), c5, (p5, η5) ] in Figs. 8–10, which combines a base diagram morphism with a
cocone leg morphism. Another composite path active at a later time but while the activities of both Fs

1,E and Fs′
2,K

persist corresponds to the composition M(τ2) ◦ M(s2) associated with the path γ2; [ (p4, η4), c6, (p5, η5) ] . Just
for completeness, let the second path be [Fs

1,E , Fs
2,L, IL, Fs′

0,L, Fs′
1,L, Fs′

2,K ] . Given that the constraints on a temporal
morphism are satisfied, the four morphisms involved in these two compositions form a pushout square. Note the
heights of the bars in Figs. 16 and 17, forming a recency gradient over integrator nodes labelled “1, 2, 3”. We
can regard nodes “1” and “2” as IJ and IL , whose outputs (two components of the recency gradient) register at
two vertices Fs′

1,J , Fs′
1,L of a pushout square (the vertical bars are not duplicated there to simplify the picture). The

inclusion of the third path, containing node “3”, results in a total of three pushout squares (the three combinations
of two paths through 1, 2, 3) with blending object Fs

1,E and pushout object Fs′
2,K . Together, the pushouts make up

the colimit defining diagram for a 3-event temporal sequence.

For convenience in operating with the two ART units and the integrator in the architecture of Fig. 17, both
the bottom-up and top-down paths, [Fs

1,E , Fs′
2,K ] and its reciprocal [Fs′

2,K , Fs
1,E ] , include more than just these two

nodes. They also include intermediate nodes provided by the extensions to the layers I, Fs′
0 , Fs′

1 which are shown.
These facilitate the adaptive formation of a strong supertemplate connection between Fs′

2,K and Fs
1,E during the

initial formation of the supertemplate Qs′
K as a result of Fs

1,E having been persistently active for a sufficient
number of time steps as determined by the nonlinear integrator values unl, dnI and θI

0 in the following equations,
where x j is the current input to integrator node IN

j , θI
j,old and θI

j,new are the (internal) activation values for IN
j

before and after the update, θI
0 is the uniform threshold value for the nonlinear integrator layer IN , and φI is its

uniform signal function. The up-time-constant for increasing activation for each IN
j at each time step is unl ; the

down-time-constant for activity decay is dnI . As can be seen, the IN nodes are binary with uniform output value
wI > 0 when their activation values exceed the uniform threshold. The equations are

δ j = x j − θI
j,old,

θI
j,new =

{
θI

j,old + unl ·δ j, δ ≥ 0,

θI
j,old + dnl ·δ j, otherwise,

Inew
j = φI(θI

j,new − θI
0)

(2)

where

φI(z) =
{

wI , z > 0,
0, otherwise. (3)

When Fs
1,E has been persistently active for a number of time steps as determined by equations ( 2)–( 3), θI

E

reaches a value such that θI
E − θI

0 > 0 and as a result φI(θI
E − θI

0) = wI . This value is forwarded to Fs′
0,E+ns′,1

,

then Fs′
1,E+ns′,1

. During the usual ART pattern-matching operation, resonance, and subsequent weight adaptation,

when Fs′
2,K is a newly-committed node the weight in the top-down connection [Fs′

2,K , Fs′
1,E+ns′,1

] will adapt to the

value wI and that in the bottom-up connection [Fs′
1,E+ns′,1

, Fs′
2,K ] will undergo the corresponding ART bottom-

up adaptation. The other connections in the top-down and bottom-up paths have unit weights, and, hence, the
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Fs’2,Κ

Fs1,Ε

Fs’1

Qs’K

Figure 18: A supertemplate representing the defining diagram of a temporal colimit. The supertemplate
weights Qs′

K,i are shown as vertical bars, with three recency gradient components on the left and a weight
derived from the nonlinear integrator on the right.

node Fs
1,E has effectively been connected to Fs′

2,K with the template weight value wI , supplementing the recency
gradient template connections [Fs′

2,K , Fs′
1,i ] in the newly-formed supertemplate Qs′

K (refer to Fig. 17). The new
supertemplate has component weight values Qs′

K, i = Ii (i = 1, . . . ns′,1) and

Qs′
K,ns′,1 + i =

{
wI , Fs

1,i persistent,
0, otherwise

(i = 1, . . . ns,1).

There is a further operational difficulty in Fig. 16 in addition to that of replaying a temporal sequence, again
a reflection of the conceptual difficulty in the lack of supertemplate connections. This occurs in the learning
of temporal sequences. The lack of unique signal paths in the path sets defining temporal morphisms makes
it difficult for the architecture to distinguish between sequences which have mostly the same events, but have
significant differences in their persistent Fs

1 nodes. This will be illustrated in the following sections, which
recount two experiments that test the effectiveness of the CNST modeling of event sequences presented here.
The two versions of the architecture in Figs. 16 and 17 provide the vehicle for the tests. The first experiment
differentiates between the presence and absence of supertemplates in learning a sequence of input events through
connection-weight adaptation. The second experiment tests the ability of an adapted network with supertemplates
to replay a sequence.

5 Experiment: Learning Temporal Sequences

We conducted an experiment to test the effect of a supertemplate connection upon the learning of temporal
sequences in the architecture of Fig. 17 compared with that of Fig. 16, which does not have supertemplates.
The hypothesis is that the supertemplate architecture, with the Fs

1 blending objects and their unique connection
paths to/from the Fs′

2 nodes, can distinguish between different event sequences having similar recency gradients
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in cases for which the architecture without supertemplates cannot. Because the architecture of Figure 16 has no
supertemplate connections between Fs

1 and Fs′
2 , it has only the recency gradients to guide the classification of

sequences of ART unit s input patterns by ART unit s′ . As a consequence, a low enough vigilance value in
ART unit s′ could allow enough generalization for two temporal sequences with a mismatch in only one or two
of their events to appear indistinguishable. By contrast, in the architecture of Fig. 17 the ART s′ classification
is supplemented by the supertemplate connections to the temporal colimit defining diagram blending objects
such as Fs

1,E in the previous discussion. If the dissimilar events in the same two temporal sequences result in Fs
1

patterns whose persistently-active nodes differ substantially, the two sequences will share few or no supertemplate
connections. This results in a loss of similarity in the two sequences in comparison with their similarity in the
architecture without supertemplates, which is based solely upon the two recency gradients. This in turn will affect
the ART Fs′

2 choice and vigilance operations, which determine whether or not the two sequences are classified
the same.

The bulk of the experiment consisted of an analysis based upon a knowledge of ART classification and
an analysis based upon the linear and nonlinear temporal integrator equations ( 1)–( 3) to select input pattern
sequences and parameter settings for the architectures of Figs. 16 and 17. The simulations that followed were
then a demonstration that inputs and parameter settings exist for which the hypothesis can be confirmed.

For both the supertemplate and no-supertemplate architectures, the vigilance value ρs of ART unit s was set
to ρs = 0.9 in this experiment, a value high enough that each distinct event input pattern (to be shown) forms
a separate Fs

2 class. Therefore, the connection-weight templates that are encoded by ART unit s duplicate its
input patterns. This simplifies the experiment by allowing the encoding of templates by multiple patterns only in
ART unit s′ , restricting the focus to generalization over sequences of input events by eliminating the effects of
generalization in the events themselves. On the other hand, ρs′ was set to ρs′ = 0.75, a value which allows for
the encoding of templates by multiple recency gradient patterns, facilitating generalization over sequences.

The “down” time constant dI for the linear integrator in equation ( 1) was set to dI = 0.6. When an Fs
2 node

Fs
2,J first forwards its output of unity to IJ , the latter registers an activation value (= output value) of IJ(t) = 1.0.

The inputs were such that each successive input pattern differed from the previous one, so that a different Fs
2 node

became active with each step and therefore xJ = 0. Thereafter, the activity level of IJ(t) would change according
to IJ(t + 1) = 0.6 · IJ(t) at each time step, where IJ(t + 1) is the quantity IJ,new in ( 1). Since I is a layer of
linear nodes, the output of I j is the same as its activity level unless the latter falls below the ”noise” threshold
Imin , in which case it is zero. In this experiment Imin was set to 0.1. The output of I j is continually relayed to
unit s′ input node Fs′

0,J , so that at each time step the Fs′
0 layer registers the current recency gradient. With the

down-time-constant set to 0.6 and with a “noise threshold” of 0.1, a maximum of five Fs′
0, j nodes were active

at any time due to activity decay. Their outputs duplicated the above-threshold portion of the current recency
gradient over the nodes I j .

For the supertemplate architecture, all parameters shared with the no-supertemplate architecture were set to
the same values. The “up”/“down” time constants unl and dnl for the nonlinear integrator nodes, which are
intermediaries in the supertemplate signal paths, were set to the values unl = 0.3 and dnl = 1.0 in ( 2)–( 3).
The threshold value for the nonlinear integrator nodes IN

j was set as θI
0 = 0.8, and for z = θI

j,new − θI
0 > 0

the signal function output was set to φI(z) = wI = 0.5. This had the effect of requiring that in order for a
supertemplate connection path J to become active, Fs

1,J must be persistently active for at least five successive
events, in which case the intermediate supertemplate connection path node Fs′

1,J would output the value 0.5. This
value is forwarded to the current winner-take-all node Fs′

2,K and, following resonance, becomes its supertemplate
weight for the top-down connection to Fs′

1,J . As previously explained, the connections from/to Fs
1 to/from IN

and those from/to IN to/from Fs′
1 are fixed at the value 1.0. This leaves the ART reciprocal connections between

Fs′
1 and Fs′

2 as the only adaptive connections in the supertemplate connection paths. Their weights extend the
ART unit s′ templates beyond the original templates stored in the connections between Fs′

1 and Fs′
2 . These

supertemplate weights, like the original template weights, have initial values of 1.0 and, after encoding, are
all 0.0 except for those values corresponding to the nonzeros in a bottom-up/top-down pattern match (the input
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e11 e12 e13 e14 e15

e21 e22 e23 e24 e25

Figure 19: The events in sequences e1 (top) and e2 (bottom). Notice that pixel (5, 3) is active (black) in all
5 images of e2 , but is inactive in image 2 of e1 .

pattern/template pattern AND operation described earlier). In total, the supertemplate of an Fs′
2 node encodes that

part of the superimposed recency gradients for the temporal sequences it adopts and their associated persistent
Fs

1 active nodes that survive all of the pattern-match operations at Fs′
1 .

The experimental hypothesis was tested by supplying the same two sequences of five events each, first e1
and then e2 , to both architectures exactly as shown in Fig. 19, with the full 10-pattern sequence repeated once.
For simplicity, e2 has a single input pattern pixel that is ON in all five input patterns and e1 does not have such
a pixel. This results in a substantial difference in the supertemplates for the two sequences, with e2 having a
single blending object and with e1 having none. The input patterns are binary, with white = 0 and black = 1
in Fig. 19. They are denoted ei, j (i = 1, 2; j = 1, . . . , 5) , presented successively to ART unit s in an input field
of 6× 6 = 36 binary pixels at the Fs

0 layer. Notice that the single pixel (3, 5) (row 3, column 5) is present in
all 5 events of e2 and in events e1,1, e1,3, e1,4, e1,5 , but not in event e1,2 , of e1 . Thus, within a certain range of
nonlinear integrator up/down time constants including the values stated in the preceding paragraph the pixel in
row 3, column 5 represents a blending object for the 5 events as objects in the defining diagram of a colimit for
e2 . This does not hold for e1 because of the lack of reinforcement in the e1,2 input pattern.

5.1 Results

Because the value ρs = 0.9 is sufficently high, the template patterns Qs
1, . . . , Qs

5 that form exactly match the input
patterns e1,1, . . . , e1,5 from which they were encoded, as expected. Subsequently, e2,1, . . . , e2,5 are input; three
of these, e2,1, e2,4 and e2,5 , exactly match the three templates Qs

1, Qs
4 and Qs

5 and therefore are adopted by the
same nodes Fs

2,1, Fs
2,4 and Fs

2,5 as were e1,1, e1,4 and e1,5 , respectively. However, because of their dissimilarity
with the corresponding e1 patterns, the two input patterns e2,2, e2,3 encode new templates, Qs

6 and Qs
7 for nodes

Fs
2,6 and Fs

2,7 . Figs. 20– 43 in Appendix A show the graphic displays for two successive passes through both
sequences for the architecture of Fig. 16, then that of Fig. 17. Each input event is shown as a 6×6 pixel pattern
displayed at the bottom. The template following coding/recoding for the current input is shown just above the
input pattern, and the activity of the corresponding Fs

2 node is shown in the bar above that, which shows the entire

28



UNM Technical Report: EECE-TR-10-0001

Fs
2 array (20 nodes were present, an ample provision for potential templates). The output (which equals unity)

of the currently-active Fs
2 node is forwarded to the corresponding integrator node, shown in the next bar upward

in the graphics; this bar is labelled “Temp Int T0”. Each integrator node initially generates a unit output but
begins to decrease in activity when its input stimulus is removed as previously described based upon equations
( 1) for the linear integrator layer I and ( 1)–( 3) for the nonlinear integrator layer IN . A recency gradient is
available as the output of the linear integrator nodes at each time step. Initially, the recency gradients have fewer
than 5 components as they gradually build to the full 5 as e1,1, . . . , e1,5 are input successively, finally resulting
in a full 5-component gradient with e1,5 (Fig. 24). With each step, the integrator outputs are the inputs to the
corresponding Fs′

0 nodes, then to Fs′
1 (shown at successively higher levels in the graphics). Following the ART

pattern-matching and resonance, a node Fs′
2,K adopts the current recency gradient into its input class. Its template

Qs′
K (the horizontal bar labelled “SP Res Temp (value K )” for “s′ resonant template K ”) either is encoded as a

recency gradient or is recoded to generalize over multiple recency gradients.

Without supertemplates

During the first presentation of e1 a separate recency gradient template was encoded with each time step because
they were dissimilar with respect to the ART matching criterion with the vigilance value used (ρs′ = 0.75).
This is a reflection of the fact that although the full gradients for the two input sequences e1, e2 are the focus
of the experiment, the special status given to e1 and e2 is simply an experimental convenience. The network
continuously encodes recency gradients, beginning a new Fs′

2 template when the output of I at the current step
differs significantly from that at the previous step according to the ART network similarity criteria. Figs. 20–31
in Appendix A show the simulation graphically for the no-supertemplate architecture of Fig. 16. The simulation
begins with event e1,1 at time step 1 (Fig. 20); the initial template Qs′

1 has Qs′
1,1 = 1.0 (black) and Qs′

1, j = 0.0

for j > 1 (white). Event e1,2 at time step 2 yields (Fig. 21) Qs′
2,1 = 0.6 (darkest grey), Qs′

2,2 = 1.0 (black),
and Qs′

2, j = 0.0 for j > 1 (again white). This process continues, and the fifth template Qs′
5 registers the re-

cency gradient for the full five-step sequence e1 (Fig. 24) as [0.13, 0.21, 0.36, 0.6, 1.0, 0.0, . . . , 0.0] (note the
progressive shades of grey increasing to black from left to right, then all white again). Because e2,1 duplicates
e1,1 , it has the same ART unit s template Qs

1 ; however, by this time, there is a full recency gradient avail-
able as input to ART unit s′ . This deviates substantially from Qs′

1 , which has a single nonzero component.
Therefore, although it has the same template as e1,1 in unit s , it encodes a new template Qs′

6 in unit s′ , with
Qs′

6 = [1.0, 0.13, 0.22, 0.36, 0.6, 0.0, . . . , 0.0] (Fig. 25). This continues with the encoding of Qs′
7 , Qs′

8 , and Qs′
9 .

However, the processing of e2,5 , instead of ending with the encoding of a new template Qs′
10 , incurs the recoding

of template Qs′
5 , to produce Qs′+

5 = [0.13, 0.0, 0.0, 0.6, 1.0, 0.0, . . . , 0.0] (Fig. 29). This happens because the re-
cency gradient that is available after e2,5 occurs is just similar enough (given ρs′ = 0.75) that instead of causing
a reset, it resonates with the existing template Qs′

5 . As a result, components Qs′
5,2 and Qs′

5,3 are now zero because

events 2 and 3 in e2 are different from those in e1 . All components Qs′
5,i(i > 5) were already zero. Since the

other three recency gradient components of e2 exactly match those of Qs′
5 , they are retained as Qs′

5,1, Qs′
5,4 and

Qs′
5,5 .

At this point, the full recency gradients of e1 and e2 have been adopted into the same ART unit s′ class
but with a template that excudes the second and third events of both sequences, where these events are “ze-
roed out” by the ART pattern AND operation at Fs′

1 . The input of the two sequences was repeated in the
same order. On this second pass, the input e1,1 (Fig. 30) produced (because of the intervening processing of
e1, e2 ) the recency gradient I = [1.0, 0.0, 0.0, 0.36, 0.6, 0.13, 0.22, 0.0, . . . , 0.0] . Notice the values 0.13, 0.22
for I6, I7 , which are “integrated down” from the values at the times e2,2, e2,3 were first input. This input re-
sulted in the recoding of a template, Qs′

6 , as [1.0, 0.0, 0.0, 0.36, 0.6, 0.0, 0.0, 0.0, . . . , 0.0] . On the other hand,
the second pass of e1,2 in the next time step produced a recency gradient which encoded a new template,
Qs′

10 = [0.6, 1.0, 0.0, 0.22, 0.36, 0.0, 0.13, 0.0, . . . , 0.0] (notice that the recency gradient has advanced one time
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step from the second pass of e1,1 , and the value 0.13 of Qs′
10,7 retains the recency gradient value at I7 ).

The preceding discussion of the simulation with the architecture of Fig. 16 is intended not only to clarify its
operation, but also to highlight the ANDing of the full recency gradients from e1 and e2 as a consequence of their
being adopted into the same ART unit s′ class, whose template is Qs′

5 . In conclusion, in learning, the architecture
can place two closely-related event sequences in the same class. Its only degree of freedom in avoiding this is the
parameter ρs′ , for which an increase in value would be necessary. However, a higher value ρs′ > 0.75 would
inhibit generalizing over similar recency gradients, which can be a disadvantage if the events that generated the
gradients share much the same information and therefore indicate that the similarity is indeed meaningful. But for
this similarity to be truly meaningful, the network must be capable of responding differently if the two recency
gradients represent event sequences with contexts or continuity information which differs significantly. This
information is represented by those input components which the events in a sequence have in common—that is,
which have persistent activity throughout a sequence.

With supertemplates

Next, the same experiment with the sequences e1 and e2 was run with the supertemplate architecture of Fig.
17. This was to test its capacity for the disambiguation of temporal sequences having similar recency gradients
but differing in the information content shared by their events. All of the network parameter values used for the
non-supertemplate architecture were the same in this simulation. A new degree of freedom was provided by the
newly-added supertemplate connection paths between Fs

1 and Fs′
2 , which contain the nonlinear integrator nodes

with the “up” and “down” time constant values unl = 0.3 and dnl = 1.0 in ( 2)–( 3), threshold θI
0 = 0.8, and

signal function output φI(z) = wI = 0.5 when z = θI
j,new − θI

0 > 0. This had the effect of requiring that in order
for a supertemplate j connection to become active, Fs

1, j must be persistently active for at least five successive
events, in which case it would output the value 0.5; this would become the weight for the adaptive connection from
Fs′

2 to the appropriate node in the extended Fs′
1 layer, and thereby the weight for the corresponding supertemplate

connection path. Figs. 32–43 in Appendix B show the result of performing the same experiment with the two
sequences e1 and e2 , but this time with the supertemplate architecture. The new display is the same as the
previous one except that the contribution of the nonlinear temporal integrator is now included along with that of
the linear temporal integrator. As opposed to the horizontal bar (Temp Int T0) showing the linear integrator input
to Fs′

0 , the nonlinear integrator (NL Temp Int T0) input to the extended Fs′
0 is shown as a 6 X 6 square, since

its nodes express the time-integrated activity of the inputs from Fs
1 . The “SP Res Temp” display, in turn, shows

the thresholded values of the supertemplate derived from “NL Temp Int T0”. These are zero except where an Fs
1

node has been active for at least the preceding 5 inputs.

The simulation proceeded as it did for the first architecture until the supertemplate connection shown in Fig.
17 became active. Notice that all values in the supertemplate square were zero (Figures 32–37) until event e2,2 oc-
curred, signifying that the input patterns e1,1, e1,2, e1,3, e1,4, e1,5, e2,1 did not yield a sequence containing shared
information (because e1,2 is missing this information). Thereafter, several five-step sequences with continuity
information (shared input component at pixel (3, 5) ) appeared, with the value 0.5 output by the corresponding
Fs′

1 node. Since our focus is upon the full sequences e1 and e2 , we highlight the occurrence of event e2,5 . Here
(Figure 41) the same persistent input was present (pixel (3, 5) ), indicating that the 5 events in e2 share this con-
tinuity information. As a consequence, as opposed to the outcome of the non-supertemplate simulation, the input
pattern e2,5 did not resonate with the the supertemplate Qs′

5 , and, hence, did not recode it. Instead, it encoded a
new supertemplate, Qs′

10 .

5.2 Discussion of Results

The separate outcomes of the two simulations of temporal sequence learning are evidence that including the
unique supertemplate connection paths in a temporal neural morphism provides the extra degree of freedom
needed to disambiguate sequences of events having similar recency gradients (but with one or more differing
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events) while sharing different information across their events. The new supertemplate paths are the persistently-
active paths for a temporal neural morphism, a notion which arose in expressing a sequence of events as a concept
colimit. In the experiment, the theory (concept) of a sequence of events is the apical object in a colimit cocone.
This is part of the defining diagram for the colimit, which includes not only the separate theories expressing the
events, but also blending objects and morphisms which express the information that is shared by all events in
the sequence. This structure can be mapped as a functorial image into a neural category expressing a properly-
designed neural network. The results presented here suggest that this categorical formalization of temporal se-
quence learning is useful not only in understanding the acquisition of temporal concept representations, but also
in designing networks with greater discriminative power in this form of learning.

5.3 Temporal Replay via Supertemplates

A simulation was performed to demonstrate that the supertemplate ART/temporal-integrator architecture can
replay a representation of a temporal sequence of events in a stepwise fashion, where the sequence has been
learned as a colimit. The sequence learned by the neural network of Fig. 17 is displayed in the simulation
steps shown in Figs. 44–48. The graphic output for the 5 time steps of recall for the sequence e2 , captured in the
supertemplate Qs′

10 , is shown in Figs. 44–48 in Appendix C. The temporal replay mode of the simulator is separate
from the learning mode. Based upon studies of memory in cognitive and neural science, in a full, biologically
realistic simulation the recall mode for a previously-learned event sequence would occur simultaneously with
further learning, thereby potentially modifying the sequence. To simplify the study of the temporal colimit
morphisms, the present simulator software enacts the two modes separately. Later simulations will investigate
the combined learning and replay modes.

During recall, an Fs′
2 node—Fs′

2,K , using the notation from our earlier example —receives a stimulus. This
could occur through the bottom-up connections of the supertemplate architecture indicated in Fig. 17, but then
would involve the learning mode together with replay. At present, we are concerned with an independent recall
scenario involving a separate stimulus input to Fs′

2,K . The source of the stimulus would be in another part of
a larger neural network within which the supertemplate architecture is embedded; for example, the recall (and
replay) of an episodic memory in this way would involve cognitive input from a different brain region such as
the prefrontal cortex. The separate-stimulus scenario was suggested in the discussion of the temporal neural
morphism of Figs. 8–10, where a separate excitatory input to the codomain node of the morphism is shown;
here, the codomain node is the colimit Fs′

2,K node. The stimulus excites Fs′
2,K , which then excites Fs

1,E via the
adaptively-learned, strong supertemplate connection. In Figs. 8–10 this connection is c−7 ; in Fig. 17, it is the
reciprocal path from Fs′

2,K to Fs
1,E ; in the replay simulation figures in Appendix C, Fs

1,E is the node (3, 5) in the 6
X 6 input array. The excitation of Fs

1,E results in signals from it to the Fs
2 nodes to which it has nonzero bottom-

up and corresponding top-down template connections, initially resulting in the activation of these nodes and
initiating the usual ART F2 competition among them. However, the Fs′

1 nodes with template connections from
Fs′

2,K have become active, registering the recency gradient of the temporal sequence it represents. Each of these
nodes provides excitatory input through the top-down connections to their correspondents in the I integrator
layer, causing the recency gradient to register there. Through the top-down inhibitory connections from the I
nodes to their Fs

2 correspondents, they suppress them, cancelling the effect of the bottom-up signals from Fs
1,E .

Let us assume for the present that the Fs
2 nodes having Fs

1,E in their nonzero template connections are just those
receiving top-down inhibition from the current recency gradient in I . This ensures that the entire Fs

2 layer is shut
down by the inhibition, for in general Fs

1,E could have nonzero template connections with other Fs
2 nodes as well.

The removal of this assumption will be addressed presently.

Eventually, the first recency gradient component in I (the node with the smallest activity, number 1 in Fig.
17) “integrates down” to below the “noise” threshold; as a consequence, it releases its inhibition of its Fs

2 node.
Because Fs

1,E has been persistently active, having received a continuing stimulus via the Fs′
2,K to Fs

1,E connection
path, the just-released Fs

2 node, still receiving the stimulus from Fs
1,E , again becomes active; now, with no

competition and no inhibitory input, it displays its template over Fs
1 . The first event in the sequence, e2,1 , is

now undergoing replay (Fig. 44 in Appendix C). As in the learning mode simulation, Fs
1,E is the node (3, 5) in
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the 6 X 6 input and template arrays. The input field has been left blank, but since there has been no template
recoding in ART unit s the template displays the entire field of input stimuli. The now-active Fs

2 node and the
Fs

1 nodes having nonzero connections in its template undergo a reverberating period of activity through both the
top-down template and their corresponding, also-nonzero, bottom-up connections. The next I node to reach a
below-threshold level now releases its inhibition of its Fs

2 node. According to the biological interpretation of
adaptive resonance theory, the Fs

2 node representing e2,1 will have had the synaptic neurotransmitter substance
in its bottom-up connections depleted during its reverberating activity. As a consequence, it is now vulnerable
to the competitive inhibitory input from the rejuvenated Fs

2 node representing e2,1 , which is receiving the full
stimulus from Fs

1,E since the latter also has a nonzero template connection from it. The first Fs
2 node is thereby

suppressed and now it is the event e2,2 that undergoes replay (Fig. 45). This process continues throughout the
replay of the sequence e2 (Figs. 46–48).

5.4 Discussion of Replay Result

The simulations presented here do not attempt to address the fine details of neural network processing; they
are only intended to evaluate the ability of the supertemplate architecture to provide more discriminatory abil-
ity between sequences with different contexts during learning, as in Experiment 1, and to demonstrate that the
supertemplate architecture can indeed perform the replay of a learned sequence and can be argued to have done
so because it has the needed mechanisms for this. The specific mechanisms that provide the replay are (1) the
activation of one or more Fs

1 nodes such as Fs
1,E that provide the stimulus that re-activates Fs

2 , together with
(2) the inhibition and timed event-by-event release of inhibition provided by the top-down connections from the
integrator layer, which in turn is displaying the recency-gradient template currently active in ART unit s . There
is one detail, however, that is worth addressing in this discussion. In the replay simulation, we assumed that there
was an exact match between the Fs

2 nodes having Fs
1,E in their nonzero template connections and those receiving

top-down inhibition from the current recency gradient in I . This was done to ensure that the entire Fs
2 layer

is initially shut down by the inhibition, for in general Fs
1,E could have nonzero template connections with Fs

2
nodes which are not part of the sequence. This assumption can be removed under the weaker assumption that
the sequences which are represented separately by the architecture have unique sets of persistently-active input
stimuli through Fs

1 , and that the intersections of these sets are sufficiently small and the bottom-up Fs
1 to Fs

2
weights are also sufficiently small that only the Fs

2 nodes for the events in a sequence will become fully active
during its replay. Further simulations will test the applicability of the weaker assumption.

6 Conclusion

We have presented a theory of event sequence learning by a neural architecture that is based upon the categor-
ical neural semantic theory (CNST) together with an architectural implementation of this theory that employs
a system of interconnected ART and temporal integrator networks. The architecture is hierarchical, as is ap-
propriate since the CNST expresses the incremental representation of a hierarchy of concepts and concept ab-
straction/specialization relationships in a diagrammatical, adaptive neural network structure. The ART and linear
and nonlinear integrator neural network components, acting through their reciprocating bottom-up and top-down
connections as specified, provide both the learning and replay modes that support a neural memory capable of
learning the event sequences and forming appropriate generalizations of them in the context of their input stimulus
components which are persistently active throughout a given sequence.

There is a great deal more work that must be done to evaluate the effectiveness and scope of this theoretical
model, particularly as we propose it as a mathematical semantic model of episodic memory encoding and recall
as well as motor sequence learning and other functions. There is also more theoretical work to be done; for
example, we have not yet investigated in detail the transfer of information acquired during episodic encoding into
semantic memory. What we do have, through bottom-up connections as indicated for ART unit s in the foregoing
experiments, is the ability to build episodic representations out of semantic memory components. However,
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the transfer from episodic to semantic memory is of the utmost importance, as both directions of transfer are
implicated in cognitive and neural investigations of declarative memory [18]. An initial model of abstraction
from episodic to semantic memory has been performed with the CNST and remains to be explored through
simulation and further modeling.

Other essential investigations are the application of this work directly to motor and other sequence learning
and execution by the brain, and to the purported neural processing in episodic memory storage and recall via the
hippocampal formation and its interactions with other brain regions, principally through entorhinal cortex and the
amygdala. However, these are challenges that we hope will be engaged in collaboration with those investigating
these phenomena in cognitive and neural science.
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A Graphics from the Initial Temporal Architecture Simulation

Figure 20: Event 1 of sequence e1 .

Figure 21: Event 2 of sequence e1 .
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Figure 22: Event 3 of sequence e1 .

Figure 23: Event 4 of sequence e1 .

35



UNM Technical Report: EECE-TR-10-0001

Figure 24: Event 5 of sequence e1 . The template Qs′
5 , identical with the recency gradient at I , Fs′

0 and Fs′
1 ,

represents the sequence at ART unit s′ .

Figure 25: Event 1 of sequence e2 .
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Figure 26: Event 2 of sequence e2 .

Figure 27: Event 3 of sequence e2 .
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Figure 28: Event 4 of sequence e2 .

Figure 29: Event 5 of e2 . Because of the vigilance level ρs′ = 0.75 , Qs′
5 , the template that was produced by

e1,5 , is recoded by e2,5 . As a result, both sequences have the same resonant node Fs′
1,5 . They are missing

events 2 and 3 because of the mismatch there, where ρs = 0.9 .
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Figure 30: At the end of the second pass through e1 , the recency gradient at Fs′
1 has the same resonant

node Fs′
1,5 , but with its template Qs′

5 recoded by e2,5 .

Figure 31: At the end of the second pass through e2 , the recency gradient at Fs′
1 also retains the resonant

template Qs′
5 .
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B The Supertemplate Architecture Simulation

Figure 32: With supertemplates: At e1,1 , the inputs to Fs′
2 via Fs′

0 through the weak supertemplate con-
nections from Fs

1 have not yet reached the thresholds of the Fs′
0 nodes. Hence, they are registered as zero,

and the processing is the same as it is without the supertemplate connections.
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Figure 33: At e1,2 , the inputs to Fs′
2 via Fs′

0 through the weak supertemplate connections from Fs
1 are still

below threshold.

Figure 34: At e1,3 , the processing is still the same as it is without the supertemplate connections.
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Figure 35: At e1,4 , the processing is the same as it is without the supertemplate connections.

Figure 36: Regardless of the presence of supertemplate connections, at e1,5 the input from Fs
1 remains zero

because each node of Fs
1 has registered zero activity during at least one of the last five events.
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Figure 37: At e2,1 the same situation holds as at previous events.

Figure 38: Novel behavior appears during the input of e2,2 : The above-threshold input to Fs′
0 from the

nonlinear integrator produces a supertemplate with a nonzero weight corresponding to the supertemplate
connection for the node in row 3, column 5 of Fs′

1 , which has been active in the last 5 consecutive events.
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Figure 39: At e2,3 the supertemplate connection remains active.

Figure 40: At e2,4 the supertemplate connection remains active.
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Figure 41: Finally, at e2,5 the supertemplate connection remains active still. With its contribution to the
input pattern at Fs′

0 , there is sufficient difference with the template Qs′
5 that the latter is NOT recoded.

Instead, the input of e2,5 results in a new template, Qs′
10 . Notice the above-threshold input to Fs′

0 through
the supertemplate connection indicated by row 3, column 5 of Fs′

0 , which has held since the event e1,3 . We
now have separate templates for e1 and e2 , expressing not only their recency gradients but the blending
object that is consistent throughout e2 .

Figure 42: Event 5 of sequence 1, second pass. Notice that supertemplate Qs′
5 is recalled, unaltered by the

processing of sequence e2 .
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Figure 43: Event 5 of sequence 2, second pass. Supertemplate Qs′
10 is recalled.
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C Sequence e2 replay

Figure 44: Replay of event e2,1 , time step 1 encoded via supertemplate Qs′
10 . The small white square

identifies Fs
1 node (3, 5) , the single persistent node for sequence e2 .

Figure 45: Replay of event e2,2 encoded via supertemplate Qs′
10 .
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Figure 46: Replay of event e2,3 encoded via supertemplate Qs′
10 .

Figure 47: Replay of event e2,4 encoded via supertemplate Qs′
10 .
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Figure 48: Replay of event e2,5 encoded via supertemplate Qs′
10 .
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