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1 Introduction

Recent advances in multiuser detection techniques open up new opportunities for resolving collisions at
the physical layer. These techniques permit the simultaneous reception of multiple packets by a node,
which in turn increases the capacity of wireless networks [1]. However, to fully exploit multi-packet
reception (MPR) capability, new architectures and protocols should be devised. These new schemes
need to reformulate a historically underlying assumption in wireless networks, which states that any
concurrent transmission of two or more packets results in a collision and failure of all packet receptions.
For example, the IEEE 802.11 Distributed Coordination Function (DCF) adopts a backoff mechanism
for which a node sensing the channel busy decreases its transmission probability.

Recently, researchers started focusing on theoretical upper and lower bounds on the throughput for
MPR-capable wireless networks [1], [2], [3]. Garcia-Luna-Aceves et al. [1] demonstrated that archi-
tectures exploiting MPR capability increase the capacity of random wireless networks by a logarithmic
factor with respect to the protocol model of Gupta et al. [4]. Subsequent work considered alternative
schemes to compute asymptotic bounds on the throughput capacity under some homogeneous assump-
tions, such as nodes transmit to a single base station or access point [5], or nodes are equipped with a
single omni-directional antenna1 [6].

In this paper, we present a generalized scheme to compute the optimal throughput in MPR-capable
wireless networks, where nodes have one or more transmitter interfaces. The scheme is valid for any
fixed wireless network configuration, with nodes endowed with directional or omni-directional anten-
nas. The generality of our model empowers us with considerable flexibility in contrast to previous
models that explicitly assume a single omni-directional antenna per node. Numerical results enable
us to draw valuable conclusions, some of which we summarize here. First, the number of transmitter
interfaces can strongly impact on the performance of MPR-capable networks. To fully exploit MPR,
nodes may need to be equipped with multiple transmitter antennas. Second, the use narrow beamwidth
antennas achieves better performance; however, MPR alleviates the inefficient spatial reuse of wider
beamwidth antennas, and increases the throughput to approach to the performance of networks with
narrower beamwidth antennas. Finally, in highly connected networks, by equipping nodes with the
ability to capture few packets simultaneously achieves considerable throughput enhancement; however,
subsequent increments in MPR capability do not significantly improve performance. In less connected
networks, further improvement can be achieved with subsequent increments in MPR capability. To the
best of our knowledge, this is the first work that simultaneously considers multiple transmitter inter-
faces, generalized antenna model and multi-packet reception.

The remainder of this paper is organized as follows. Section 2 discusses related work. Section
3 presents background terminology used in the paper, and defines the feasibility conditions for link
scheduling in MPR-capable networks. Section 4 formulates the throughput optimization problem in
MPR networks as a joint routing and link scheduling problem, and Section 5 presents a polynomial
time heuristic to approximate to the optimal solution. Section 6 shows numerical results, and Section 7
concludes and discusses our future work.

1The terms antenna and interface are used interchangeably hereafter.



2 Related Work

Scheduling problem. The throughput optimization problem in wireless networks can be seen as an ex-
tension of the maximum flow (max-flow) problem, where at any time only a subset of links may be
simultaneously scheduled or activated. Brar et al. [7] presented a greedy algorithm for the scheduling
problem under the physical model [4]. Moscibroda et al. [8] proposed a centralized scheduling algo-
rithm for scenarios where the traffic demands are the same on every network link. Djukic et al. [9]
presented a distributed scheduler based on the Bellman-Ford algorithm running on the conflict graph2.

Joint routing and scheduling. Jain et al. [10] presented a max-flow linear programming scheme for
computing upper and lower bounds on the optimal throughput under the protocol model. The scheme,
however, requires to find all independent sets in the conflict graph, which is intractable. Kodialam et
al. [11] proposed a polynomial time approximation algorithm for the routing problem, and a graph-
coloring approach for the scheduling problem. Zhang et al. [12] presented a column generation ap-
proach to iteratively solve the joint routing and scheduling problem.

Scheduling with directional antennas. Spyropot et al. [13] formulated the scheduling problem
as a series of maximal-weight matching in a graph. Cain et al. [14] described a distributed TDMA
scheduling protocol, while Capone et al. [15] presented a max-flow formulation which results in an
integer linear program, and proposed a heuristic to solve it.

Scheduling, routing and MPR. Garcia-Luna-Aceves et al. [1] demonstrated that MPR increases
the order of capacity of random wireless networks by a logarithmic factor with respect to the protocol
model [4]. The same authors [2] demonstrated that throughput is also improved with respect to the
physical model [4], and that MPR provides greater improvement than network coding. Moraes et al. [3]
presented an architecture that exploits the advantages of multi-user detection, successive interference
cancellation, array antennas, CDMA and mobility to increase the per-source throughput. However,
considerable complexity is required at the nodes. Celik et al. [5] studied the negative implications of
reusing legacy MAC protocols in MPR-capable networks, and how alternative backoff mechanisms can
improve throughput and fairness. A max-flow model is presented by Wang et al. [6], who proposed a
centralized heuristic algorithm to jointly perform routing and scheduling.

By surveying previous work, we note that issues including the following items were not studied yet:
i) limitations of MPR-capability and ii) resources needed to overcome those eventual limitations; iii)
behavior of MPR-capable networks under directional transmissions and iv) impact of the beamwidth
of directional antennas; v) behavior of MPR-capable networks when nodes have multiple transmitter
antennas. To study these open research issues, we propose a generalized model for networks with
multi-packet reception.

3 Background

We represent a wireless network as a graph G = (V,E), where V is the set of nodes and E the set of
links. The existence of a link (u,v) ∈ E from node u to node v ∈V is determined by the channel model.
Link (u,v) has one tail (transmitter node u) and one head (receiver node v).

2In the conflict graph, there is a vertex for each link of the network, and an edge between two vertices if the corresponding
links conflict with each other. Conflicting or interfering links are those links which cannot be simultaneously scheduled under
the protocol model of Gupta et al. [4].



3.1 MPR and Directional Antennas

For nodes with an omni-directional MPR antenna, Ghez et al. [16] proposed the following model. A
node can correctly receive a part of all transmissions from nodes located inside the radius R from itself.
R represents the receiver range of the node. There exists a link (u,v) ∈ E from node u to node v if u is
in the receiver range of v. The MPR protocol model [1, 2, 6], which is a particular case of the model
by Ghez et al. [16], states that the reception of all transmissions is achievable if the the number of
simultaneous transmissions in the receiver range R is less than or equal to K, and other transmitters are
outside of the radius (1 + ∆)R. ∆ is a parameter that depends on the physical layer. As previous work
[6], we will assume that ∆ = 0.

Consider a wireless network where nodes are equipped with M ≥ 1 antennas. For M = 1, a node
cannot transmit and receive simultaneously, and the MPR antenna operates in either transmitter or re-
ceiver mode at a given time. For M > 1, one antenna, which has MPR capability, can operate as in the
case of M = 1 (i.e., the antenna can be scheduled to operate in transmitter or receiver mode, as specified
by the scheduling algorithm), and the other antennas operate in transmitter mode exclusively. The use
of at most one interface in receiver mode obeys the fact that MPR permits the reception of multiple
transmissions with a single antenna. We consider directional transmission and omni-directional recep-
tion. Directional transmission improves the spatial reuse, while omni-directional reception maximizes
the benefits of MPR.

The antenna model considered in this paper is the one used in previous work including [17], [18],
[19]. Sidelobes and backlobes are ignored. Although this model simplifies the radiation pattern, the
sidelobes are generally small enough. Moreover, the gain of the main lobe of typical directional anten-
nas is more than 100 times the gain of sidelobes. Additionally, smart antennas often have null capability
that mitigates the sidelobes and backlobes. The interference region of an antenna is principally deter-
mined by its main lobe and simplifying the radiation pattern will not lead to a fundamental change on
the result of the throughput analysis [17]. To define the radiation pattern, assume that i) all nodes in the
network lie in a two-dimension plane, so that the gain of the antenna is a function of the azimuth angle
only; ii) the gain of the main lobe is constant (greater than zero), and zero outside it. The main lobe is
characterized by the beamwidth β of the antenna; iii) the axis of the main lobe, namely the boresight,
can be directed to only one direction at a time. Fig. 1 (a) shows the radiation pattern model; α represents
the angle between the boresight of the transmitter antenna and the direction of a potential receiver node.
We will use the notation (M, K, β)-network3 to refer to a network with M interfaces per node, where
the receiver antenna can decode up to K packets simultaneously, and the transmitter antennas have a
beamwidth β.

3.2 Scheduling in (M, K, β)-networks

A schedulable set S ⊆ E is a set of links which can be scheduled simultaneously. The set S can be
characterized by a schedulable vector pS of size |E|, where | · | denotes cardinality. The jth element of
this vector is set to one if the link e j ∈ E is a member of S, and to zero otherwise. The definition of
the vector pS assumes that the set of links in the network are ordered in a determined way, such that
E = {e1,e2, ...,e|E|}. Any schedulable vector pS can be regarded as a point in a |E|-dimensional space,
which also becomes a vertex of the the convex hull of the set of schedulable vectors. To illustrated these
concepts, consider the network topology of Fig. 1 (b), where E = {(a,b),(c,d),(e, f )} and the links

3We use this notation to simplify the explanation. It is straightforward to generalize to networks where M, K and β are not
the same at every node.



Figure 1: (a) Radiation pattern model. (b) A wireless network where links (a,b), (c,d) and (e, f )
interfere with each other. (c) Schedulable vectors and corresponding convex hull for the network in
(b), assuming a (1, 2, 2π)-network. (d) A feasible schedule for the network in (b), assuming a (1, 2,
β′)-network, and (e) corresponding schedulable vectors and convex hull.

conflict with each other. For a (1, 2, 2π)-network, links can be scheduled individually, or they can be
combined in groups of two (because K = 2). Fig. 1 (c) shows the corresponding schedulable vectors
and convex hull. Now, if nodes are endowed with directional antennas so that the network becomes a
(1, 2, β′)-network, a feasible schedulable set is shown in Fig. 1 (d), which enlarges the convex hull as
depicted in Fig. 1 (e).

To define the feasibility conditions for scheduling, we need to define the following terminology. Let
δ+(u) ⊆ S denote the set of links in S having node u as tail (transmitter). Similarly, let δ−(v) ⊆ S be a
set of links such that, ∀e ∈ δ−(v), the corresponding tail of e, say node u, is in the receiver range of v
and schedules its antenna in a direction for which −β

2 ≤ αuv ≤ β
2 ; αuv is the angle between the boresight

of the transmitter antenna at u and the direction of v from u. δ−(v) represents the set of links for which
node v is within a distance R to the corresponding transmitter antennas and lies in the main lobe of
them. Finally, let I(v) be a binary variable equal to one if ∃ e = (u,v) ∈ S, and zero otherwise. For a
(M, K, β)-network, a set S⊆ E is a feasible schedulable set if ∀ e = (u,v) ∈ S:

|δ+(u)|+ I(u) ≤ M, (1)

I(v) · |δ−(v)| ≤ K. (2)

The first term on the left hand side of Eq. (1) is the number of links having node u as transmitter (i.e.,
|δ+(u)| interfaces are used in transmitter mode), while the second term is equal to one if S includes at
least one link having u as receiver (i.e., the antenna that can operate as transmitter or receiver must be
scheduled to operate in receiver mode). Eq. (2) states that the receiver node v can decode at most K
packets.

4 Problem Formulation

We formulate the joint routing and scheduling problem in (M, K, β)-networks as a max-flow problem.
Let N be the set of end-to-end flows. Each flow is characterized by a 3-tuple (sn,dn, fn), which de-
notes the source node, the destination node and the flow4 in bits per second (bps) transmitted from sn

to dn respectively. The problem can be divided into: i) routing, which ignores the impact of wireless
interference, and attempts to maximize throughput by routing through (potentially) multiple paths con-
necting each source-destination pair, and ii) scheduling, which deals with finding schedulable sets and
the fraction of time allocated to each set.

4Although a flow is characterized by (sn,dn, fn), we will also use the term flow to informally refer to fn.



4.1 Routing
Let xn

i j be the variable representing the amount of the nth flow routed on link (i, j). The routing problem
is defined by:

max F = ∑
n∈N

fn (3)

∑
j:(i, j)∈E

xn
i j− ∑

j:( j,i)∈E
xn

ji =





fn; if i = sn
− fn; if i = dn

0;otherwise
;n ∈ N (4)

xn
i j ≥ 0; n ∈ N,(i, j) ∈ E (5)

∑
n∈N

xn
i j ≤ ci j; (i, j) ∈ E (6)

Eq. (3) is the aggregated throughput, or simply throughput, which must be optimized. Eq. (4) rep-
resents the flow conservation constraint. Eq. (5) restricts the amount of flow on each link to be non-
negative, and Eq. (6) states that the total amount of flow on a link (i, j) cannot exceed its capacity ci j.
We will refer to Eqs. (3)-(6) as linear program 1 (LP1).

4.2 Scheduling

A schedule specifies the schedulable sets and the fraction of time allocated to each of them. Let Γ =
{S1,S2, ...,S|Γ|} be a set of schedulable sets which satisfy Eqs. (1) and (2), and λk,0 ≤ λk ≤ 1, be the
fraction of time allocated to Sk. We may write the time interval [0,1] as ∪k[tk, tk+1], where links in Sk are
active for the activity period tk+1− tk = λk. We will call the variables λ′s as activity period variables.
The schedule restriction can be written as:

∑
Sk∈Γ

λk = 1 (7)

Let U = (u1,u2, ...,u|E|) be a |E|-dimensional usage vector, where ui indicates the fraction of time link
ei ∈ E is active. Jain et al. [10] proved that for a scheduling problem under the protocol model, a vector
U is feasible if U lies within the independent set polytope. For (M, K, β)-networks, we can extend this
proposition as follows.

Proposition 1 A usage vector U is feasible if and only if it lies within the convex hull of the schedulable
vectors.

The proof is given in Appendix A. The scheduling problem also imposes link capacity constraints. For
wireless networks, the link capacity constraint given by Eq. (6) should be redefined as follows. The
total capacity of a link (i, j) is given by sum of the product of the fraction of time the link is active on a
scheduled period and the capacity of the link on that period:

∑
n∈N

xn
i j ≤ ∑

Sk|(i, j)∈Sk

λkcλk
i j ; (i, j) ∈ E (8)

cλk
i j represents the capacity of the link (i, j) during the activity period λk. The MPR protocol model [1]

sets this value as a constant (cλk
i j = ci j). We use this model to compute ci j as:

SNIRi j =

{
ζ · r−γ

i j ; if −β
2 ≤ αi j ≤ β

2
0; otherwise

(9)

ci j = log2(1+SNIRi j) (10)



Eq. (9) states that the SNIRi j decays exponentially according to the distance ri j between nodes i and
j, and it is zero if the receiver node j is outside of the main lobe of the transmitter antenna. ζ and γ
depend on the path loss model. Eq. (10) is the normalized Shannon capacity. A similar capacity model
is frequently used for omni-directional antennas [20]. Eqs. (9) and (10) model the common case where
shorther transmission distance implies higher link capacity [20]. We will refer to Eqs. (3)-(5), (7) and
(8) as LP2. If Γ includes all schedulable sets, then LP2 yields the global optimal solution. However,
since there can be an exponential number of schedulable sets, we present a polynomial time heuristic in
the next section.

5 Polynomial Time Heuristic

The heuristic consists of three steps: i) solve LP1; ii) create the set Γ by using a greedy approach; iii)
solve LP2.
Step 1. This step is intended to identify good paths for each flow, such that the throughput is maximized.
The output of the step 1 is the set of links which are assigned a positive flow value by LP1, namely
ELP1 = {(i, j) ∈ E|∑n∈N xn

i j > 0}.
Step 2. Given that step 1 may (likely) produce an unfeasible solution (LP1 ignores the conditions for the
feasibility of scheduling imposed by Eqs. (1) and (2)), step 2 finds feasible schedulable sets for ELP1.
The main idea is to find a small number of schedulable sets, so that they can be found in polynomial
time. The schedulable sets, however, should be as good as possible. To this end, we consider maximal5

sets. The detailed process is shown in Algorithm 1. The Greedy Scheduler creates sets S1,S2, ...,S|Γ|,
where every link of each set satisfies Eqs. (1) and (2). Line 3 sets the mode the antennas operate at. For
M > 1, M - 1 antennas operate in transmitter mode. The remainder antenna, which has MPR capability
and can operate in either transmitter or receiver mode according to Section 3.1, is set to exclusively
work in receiver mode. For M = 1, the operation mode of the MPR antenna is decided later by the
algorithm (e.g., if a link (u,v) is scheduled for a certain period of time, the interfaces at nodes u and v
are set to operate in transmitter and receiver mode for that period). In line 10, a link is greedily chosen
to belong to the set Sk according to µi j = ∑n∈N xn

i j
ci j

. The value µi j represents the utilization (in fraction of
time) of link (i, j). The greedy selection attempts to group links with similar utilizations in the same
set.
Step 3. The last step solves LP2, which produces an optimal solution with respect to Γ (i.e., the best
convex combination of the schedulable vectors considering the schedulable sets in Γ is obtained). The
solution of LP2 gives the amount of flow xn

i j routed through each link (i, j), and establishes the fraction
of time λk allocated to each schedulable set Sk.

Define τk = max{µi j|(i, j)∈ Sk}, Sk ∈ Γ, and τ = ∑Sk∈Γ τk. The flow value FLP2 (Eq. (3)) is bounded
by:

FLP1

τ
≤ FLP2 ≤ FLP1 (11)

This proof is given in Appendix B.
To demonstrate that the heuristic has a polynomial running time, we will show that the running

time and the size (number of variables and constraints) of steps 1 and 3 are bounded (step 2 is a greedy
algorithm, which obviously runs in polynomial time). Step 1 is a linear program (LP1), with O(|N| · |E|)
total positive flow variables (Eq. (5)). The number of flow conservation (Eq. (4)) and link capacity (Eq.

5A schedulable set that is maximal under inclusion is called a maximal schedulable set.



Algorithm 1 Greedy Scheduler
1. INPUT: ELP1, G(V,E)
2. OUTPUT: Set Γ of schedulable sets.

3. Initialize the operation mode of antennas
4. Γ = {}
5. k = 0
6. while (ELP1 6= {}) do
7. k = k +1
8. Sk = {}
9. while (∃ (i, j) ∈ ELP1|Sk ∪{(i, j)} is a schedulable set) do

10. (i, j) = arg max{µi j|Sk ∪{(i, j)} is a schedulable set; (i, j) ∈ ELP1}
11. Sk = Sk ∪{(i, j)}
12. ELP1 = ELP1−{(i, j)}
13. end while
14. Γ = Γ∪Sk
15. end while
16. return Γ

(6)) constraints are O(|N| · |E|) and O(|E|) respectively. Thus, the number of variables and constraints
are polynomially bounded in |N| · |E| and can be solved by a polynomial time linear programming
algorithm. LP2 is similar to LP1, except that one additional constraint is added, namely Eq. (7), and
O(|E|) additional variables (i.e., the activity period variables).

6 Numerical Results

We present numerical results based on the heuristic presented in Section 5, which was implemented as
a solver in C language. For LP1 and LP2, the solver incorporates the package lpsolve [21]. Although
several topologies were considered, we report here the results from one representative topology. The
network topology, for different values of R, is shown in Fig. 2. We considered a connected network
with one hundred nodes and fifty flows. Nodes were uniformly distributed over a 1000 x 1000 square-
meter area. The source and destination of each flow were randomly selected, so that each node acts
as either a source or a destination of one flow. A node can also operate as relay node for other flows.
We assumed a link capacity ci j = 10 units when the distance ri j between nodes i and j is equal to R
(maximum distance from which a node can decode a packet). The path loss exponent γ was set to 4,
which corresponds to the two-ray model. Having set these values, any link capacity can be computed
according to Eqs. (9) and (10). We considered several scenarios with different values of β, K, M and
R. The results were evaluated in terms of the objective function (Eq. (3)), and normalized to the upper
bound FLP1.

Impact of the number of interfaces. Fig. 3 (a) shows the throughput as a function of K, for different
number of antennas with β = π

3 . Note that the throughput for M = 1 and M = 2 increases monotonically
until K = 3, and that further increments of K have no impact. The corresponding curves are almost
overlapped because they have the same bottleneck: only one interface can operate in transmitter mode.
By adding transmitter antennas, the MPR capability is better exploited and the throughput is increased.
Note also that the throughput increases approximately linearly until K equals the number of transmitter
antennas.

Impact of the beamwidth. Fig. 3 (b) shows the curves of throughput vs K with M = 1, and different
values of β. The best performance is obtained with the minimum beamwidth value (β = π

3 ), due to a bet-
ter spatial reuse. However, the disadvantage of having wider beamwidth antennas can be compensated
by increasing the MPR capability; for M ≥ 11, even the use of omni-directional antennas produces an



optimal performance. The effect of increasing the number of interfaces to three (two interfaces operate
in transmitter mode) is shown in Fig. (3) (c): the maximum throughput increases from about 0.19 to
0.35. Note also that, for both, M = 1 and M = 3, and for a given value of K, say 5, a beamwidth β = π

2
produces about the same result as a beamwidth β = π

3 (i.e., a beamwidth of π
2 is narrow enough for

optimal performance, and narrower beamwidths would not produce significant improvement). This fact
is better highlighted in Fig. 3 (d).

Impact of the receiver range R. Fig. 3 (e) shows, for M = 1, the normalized throughput FLP2/FLP1
′,

where FLP1
′ is the flow value when R = 400. LP1 produces the maximum upper bound on throughput

when R increases, because of a higher connectivity (the average node degrees for R = 200, 300 and
400 meters (m) were 10.26, 21.92 and 35.7 respectively). For omni-directional transmitter antennas,
the best performance is obtained when R = 400; the throughput monotonically increases until 0.054 at
K = 11, and higher values of K do not produce any improvement. For small values of K, and R = 200
or R = 300, increments in K produce smaller improvement than for the case of R = 400. Similarly, for
β = π

3 and K ≤ 3, the best performance is obtained when R = 400. On the other hand, for K > 4, higher
throughput is obtained when R = 200. These results allow us to infer the following: i) for high values
of R, the high connectivity permits the routing of flows through short paths in term of hops. Thus, few
links are needed to be scheduled, which can be achieved with small values of K. For higher values of
K, the improvement in throughput is not significant because of two bottlenecks: the large number of
conflicting links due to the high connectivity, and the limited number of transmitter antennas; ii) for
small values of R, the increments of K have more impact than for the case of high values of R, because
more links can be simultaneously scheduled due to the lower connectivity. Fig. (3) (f) shows this
fact, where the average number of links scheduled per second was computed as ∑Sk∈Γ λk|Sk|. Similar
conclusions can be obtained by increasing M. However, those results are not included in this paper
because of space limitation.

7 Conclusion

In this paper, we have presented a generalized model for the throughput optimization problem in wire-
less networks. To the best of our knowledge, this is the first work that simultaneously considers mul-
tiple transmitter interfaces, generalized antenna model and multi-packet reception. We have divided
the problem into two subproblems: routing and scheduling. Because of the hardness of the scheduling
subproblem, we have also proposed a polynomial time heuristic based on a combination of greedy and
linear programming paradigms.

(a) (b) (c)

Figure 2: Network topology.



Based on the proposed heuristic, we have studied the impact of the the number of interfaces in MPR
networks. We have shown that to fully exploit MPR capability, nodes may need to be endowed with
multiple transmitter antennas; otherwise MPR capability may not be enough to improve performance.
Additionally, we have considered the effect of the beamwidth of directional antennas on the through-
put. The results include the study of increasing the MPR capability of wide beamwidth networks to
achieve similar performance to narrower beamwidth networks. Finally, we have studied the impact of
the receiver range of antennas on the throughput performance. As future work, we plan to evaluate our
proposed scheme under the MPR physical model. We will further investigate the relations among the
parameters K, M, β and R. Devising an analytical model for these relations is part of our future agenda.
A distributed solution for routing and scheduling in MPR-capable networks will also be investigated.

A Appendix

Proof of Proposition 1. ⇒Assume that U is feasible and Γ = {S1,S2, ...,S|Γ|}. Then, U can be computed
as:

U = ∑
Si∈Γ

λi pSi . (12)

By definition, the convex hull of all schedulable vectors is the set of all convex combinations of schedu-
lable vectors:

Convex hull = {θ1 pS1 + ...+θk pSk |pSi is a feasible schedulable vector,θi ≥ 0,θ1 + ...+θk = 1}. (13)

Note that the usage vector U given by Eq. (12) is a convex combination of the schedulable vectors in
Γ, where the weights are given by the activity periods λi’s. U is a particular point that satisfies Eq. (13)
and therefore it belongs to the convex hull of schedulable vectors.
⇐ Assume that U lies within the convex hull of the schedulable vectors. Then, U can be expressed
as a convex combination of a set Γ = {S1,S2, ...,S|Γ|} of schedulable vectors, similar to Eq. (12). By
allocating λi seconds to Si ∈ Γ (the schedulable set that has a corresponding schedulable vector pSi), we
can build a feasible schedulable, which implies that U is feasible.

B Appendix

Proof of Eq. (11). We start by proving the lower bound FLP1
τ ≤ FLP2. We proceed by constructing

a feasible schedule, which uses the set Γ obtained in step 2 and the flow values xn
i j,(i, j) ∈ E,n ∈ N,

obtained by LP1 in step 1. The scheme is straightforward: allocate τk seconds to each schedulable set
Sk ∈ Γ. During the activity period τk, send the aggregated flow ∑n∈N xn

i j through link (i, j) ∈ Sk. The
flow value (in bps) for this scheme is:

F =
FLP1

schedule period
=

FLP1

∑Sk∈Γ τk
=

FLP1

τ
Now, by solving the linear program LP2 with the same set of schedulable sets Γ, we obtain the optimal
solution with the flow value FLP2. This solution is better than any other solution (included the previous
scheme) that only uses the set Γ. Therefore, FLP2 ≥ FLP1

τ .
The bound FLP1 ≥ FLP2 is a trivial upper bound; if all the links can be active simultaneously (i.e., there
is only one schedulable set and Γ = E), then LP2 = LP1 and FLP2 = FLP1; otherwise, any link capacity
ci j is decreased as expressed at the right hand side of Eq. (8) and the flow value FLP2 may accordingly
be reduced. Thus, FLP2 ≤ FLP1.
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Figure 3: Numerical results.
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