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ABSTRACT

This paper considers the problem of identifying regions in the complex-plane, such that
polynomials having roots in those regions, have their phase bounded by that of a few extreme
polynomials. We present suÆcient and testable conditions for dis�erent regions satisfying
this property. Applications of the results to the robust SPR analysis and synthesis problems
are illustrated.

1 Introduction

This paper considers the problem of identifying regions in the complex-plane, such that the
phase of polynomials having roots in those regions, is bounded by that of a few extreme
polynomials. More speci�cally, given a family of polynomials P (z�1) with members p(z�1),
and with a nominal member p0(z

�1). Assume that the family is prescribed as follows

P (z�1) = fp(z�1); p(z�1i ) = 0; zi 2 
ig (1)

where 
i is a set about the corresponding root of p0(z
�1). We are interested in �nding

the sets 
i such that the phase of every member in P (z�1) is determined by a few extreme
members. This will allow us to study and to enforce the SPRness of a family of transfer
functions, by considering a �nite number of members of that family. The problem was
considered by many authors, and our development parallels that of [?]. The motivation
given there and elsewhere [1], [2], is that an SPR condition is frequently invoked to prove
convergence of adaptive algorithms. In general, the family of polynomials P (z�1) is a related
to the plant description and as such is uncertain in an adaptive algorithm or �ltering setting.

We di�er from [?] and [?] in that will not assume any knowledge of the spectral density
of the regressor that may lead to consider di�erent positivity regions. In order to allow
di�erent convergence rates, we will consider the complement of the circle of radius 1=r0
as the positivity region. However, the results presented here can be extended to regions
other than the complement of circular regions. As it is well-known in certain cases the SPR
condition can be enhanced by means of �lter design. In this case, a �lter f(z�1) is sought
such that the transfer function p(z�1)=f(z�1) is SPR for every p(z�1) 2 P (z�1). As it
has been pointed out in [?] and [?], the design procedure can be extraordinarily simpli�ed
when the phase of the family is bounded by that of two members. This advantage is more
evident when considering even-order polynomials but also for odd-order polynomials due to
the smoothness of the phase-bounding functions.

Of course, there is another bene�t of an extreme-point result for the phase, namely when
checking the SPRness of the family, since this can be accomplished by checking the phase
of a small number of selected polynomials.

This paper is organized as follows. The simple case of roots lying in regions bounded
by parametrized arcs is �rst discussed in section 2 where the concept of phase-convex arc
is introduced. The more special case of straight-line and circular arcs are also studied in
section 2. The general case of roots lying in Domains is given in 3. The applications of
the results to the robust SPR analysis and synthesis problems are presented in section 4.
Numerical examples are discussed in section 5 and our conclusions are given in section 6.
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2 Phase-Convex arcs

Let � ! F (�), � 2 [�0; �1] be a continuously di�erentiable parameterization of an arc in
the complex plane. It will be convenient to write F (�) = X(�) + jY (�), where X and Y
are two real functions of the real variable �. *****Show Figure**** We will consider �rst
pairs of complex conjugate roots, i.e., polynomials with the following structure

p(z�1; �) = [1� (X(�) + jY (�))z�1][1� (X(�)� jY (�))z�1] (2)

Note that this de�nes a family of second order polynomials with roots on F (�) and F �(�).
Throughout the text we will assume that jF (�)j < 1=r0, � 2 [�0; �1] which will be necessary
for stability (meaning here roots in the circle of radius 1=r0) of the polynomials considered.
Let �(!; �) = argfp(r�10 e�j!; �)g we seek conditions that guarantee

�(!; �0) � �(!; �) � �(!; �1) (3)

or

�(!; �1) � �(!; �) � �(!; �0) (4)

for all ! 2 [0; 2�). We will call an arc satisfying properties (3) or (4) a phase-convex arc
or simply say that an extreme-point property holds for the phase. From now on we will
drop the dependence with � wherever there is no possible confusion. Noting that the phase
function can be written in the following form,

�(!; �) = �2! + argfej! � (X + jY )r0g+ argfej! � (X � jY )r0g (5)

we can state our �rst result.

Theorem 1 An extreme-point result holds for �(!; �) if for any � 2 (�0; �1) the functions

g1(�) = (1� �2)
@X

@�
� 2�

@Y

@�
(6)

g�1(�) = (1� �2)
@X

@�
+ 2�

@Y

@�
(7)

both have the same sign, where

� =
Y r0

(1�Xr0)
(8)

� =
Y r0

(1 +Xr0)
(9)

Proof: Clearly, (3) or (4) will hold if �(!; �) is a monotonic function of � for every !. For
this, we require that for a �xed ! either @�=@� � 0 or @�=@� � 0 for every � 2 (�0; �1).
Let u = cos! and v = sin!. Di�erentiating � with respect to X and Y , we obtain

@�

@X
=

2vr0
D

[1 + (Xr0)
2 � 2uXr0 � (Y r0)

2] (10)

@�

@Y
=

�4vr0
D

(Y r0)(u�Xr0) (11)
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where D = [(u�Xr0)
2+ (v�Y r0)

2][(u�Xr0)
2+(v+Y r0)

2]. Then, it is possible to write

@�

@�
=

2vr0
D

��
1 + (Xr0)

2 � 2uXr0 � (Y r0)
2
� @X
@�

� 2(u�Xr0)Y r0
@Y

@�

�
(12)

Note that due to the antisymmetry of the phase of a real polynomial, we only need to consider
the interval [0; �) for ! or, conversely, v � 0. Also, �(0; �) = 0 for any � 2 (�0; �1). From
these two facts, we conclude that the factor v in (12) can be discarded for considerations of
extremality. The same can be said about the term 2r0=D since it is always positive.

Now, looking at the term in brackets, we see that it depends in an aÆne manner on
u = cos!. Therefore, one way of guaranteing monotonicity of � with � is that the term in
brackets has the same sign for u = 1 and u = �1 and for every � 2 (�0; �1). Note however
that this is only a suÆcient condition. For instance, it is still valid that the term in brackets
have di�erent signs at u = 1 and u = �1 if the change of sign of the derivative happens at
some u0 independently of �. In this case, it is clear that the phase function is constant with
� at u = u0 and hence condition (3) still holds with an equality.

Note also that the sign condition is maintained if we divide the term in brackets by a
positive number. Thus, let g1(�) denote this term for u = 1 divided by (1 � Xr0)

2 and
g�1(�) denote the term for u = �1 divided by (1+Xr0)

2. Then, we arrive to the condition
for phase extremality as

sgnfg�1(�)g = sgnfg1(�)g (13)

This completes the proof.

As we will later see, for a geometrical interpretation of (13) it is convenient to rede�ne
g�1 and g1 in the following way, provided that @X=@� 6= 0,

g1(�) = (�2 � 1) + 2� (14)

g�1(�) = (�2 � 1)� 2� (15)

so that condition (13) remains the same. Here,  = @Y=@X . It can be shown that the sign
condition can be restated as

sgnfh�1(�)g = sgnfh1(�)g (16)

where

h1(�) = j�+ j �
p
2 + 1 (17)

h�1(�) = j� � j �
p
2 + 1 (18)

In this expressions,  can be regarded as the direction of the tangent to the arc, giving the
following interpretation: for a given direction of the tangent, we can easily �nd those points
X + jY in the complex plane for which the sign condition holds, and consequently have
a monotonic phase for every ! 2 [0; 2�), thus building an arc for which there is a phase
extremal result.

Note that h1 = 0 and h�1 = 0 de�ne the boundaries of the feasible region (for a given ).
In terms of the (X;Y ), these two equations can be easily seen as 4 straight lines. Moreover,
the following properties can be derived
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1. The segment [�1=r0; 1=r0] of the real axis always belongs to the feasible region for any
.

2. The 4 straight lines intersect at points on the circle of radius 1=r0 forming a rectangle
inscribed in this circle.

The feasible region for  = 1 and r0 = 1 is depicted in �gure ??????.

2.1 Straight Line Segments

In the case of straight line segments, *****Show Figure**** with some slight modi�cations
of the original form for F (�), it is possible to write X(�) = x0 + �a, Y (�) = y0 + �b where
� 2 [0; 1], and a and b are real numbers. Now, whenever a 6= 0 we can write  = b=a and
therefore an extreme-point result will hold when (16) is satis�ed for (x0; y0) and (x0+a; y0+b)
or, put another way, when these two points belong to the feasible rectangle.
The case a = 0 (vertical lines) is somewhat special since it is not possible to use (16). As a
matter of fact, it can be shown that (13) does not hold. Here (12) becomes

@�

@�
= �4vr20(u�Xr0)Y b (19)

Then, there are two possibilities that may lead to a change of sign in (19). First, there is a
change of sign when u = Xr0. This situation was already discussed in the proof of theorem
1 and does not a�ect the extreme point property of the arc since it turns out that for !
such that u = Xr0 the phase is a constant with �. The second situation where @�=@� could
change sign is when Y = 0 for some �0. It is clear in this case that the phase will have an
extreme for � = �0. However, a close look at this fact allows us to restate the problem so
an extreme-point result holds. Clearly, if Y (�0) = y0 + �0b = 0, for some �0 2 (0; 1) then
we have a segment that crosses the real axis. Due to the symmetry of the roots on F (�) it
is clear that there are pairs of roots that are considered twice. Since this is not necessary,
it is possible to rede�ne the arc as Y (�) = y0� �y0, � 2 [0; 1], such that Y (1) = 0 and such
that an extreme-point result holds. We conclude from this discussion that vertical segments
always admit the extreme-point property.

The case of real roots can be treated as a special case of the horizontal segments. Note
that here F (�) � R so �rst-order factors can be dealt with. However, since F �(�) = F (�),
it is clear that the argument of [1�F (�)z�1] is half of that of [1�F (�)z�1][1�F �(�)z�1].
Since for this second-order polynomial we have proven that an extreme-point result holds
as long as F (�) � (�1=r0; 1=r0) the same follows for the �rst order polynomial with real
roots. ****Show Figures*****

2.2 Circular Arcs

The form of these arcs is F ( ) = (x0 + jy0) + rej ,  2 [ 0;  1]. *****Show Figure****
Therefore, g1 and g�1 in (6,7) become

g1( ) =

�
(y0 + r sin )r0

1� (x0 + r cos )r0

�2
� 1� 2

(y0 + r sin )r0 cos 

[1� (x0 + r cos )r0] sin 
(20)

g�1( ) =

�
(y0 + r sin )r0

1 + (x0 + r cos )r0

�2
� 1 + 2

(y0 + r sin )r0 cos 

[1 + (x0 + r cos )r0] sin 
(21)
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After some straightforward algebraic manipulations, it can be shown that g1 and g�1 have
the same signs as respectively h1 and h�1 de�ned below

h1( ) = r2r20 sin + 2ry0r
2
0 + y20r

2
0 � (1� x0r0)

2 sin � 2y0r0(1� x0r0) cos (22)

h�1( ) = r2r20 sin + 2ry0r
2
0 + y20r

2
0 � (1 + x0r0)

2 sin � 2y0r0(1 + x0r0) cos (23)

Now, given x0, y0 and r it is possible to compute the values of  for which the sign of h1 and
h�1 is the same. This is done by calculating the roots of h1 = 0 and h�1 = 0. Both equations
have the form A sin +B cos +C = 0 with A;B;C real numbers. It is immediate to show
that each equation can have at most 4 solutions in the interval [0; 2�). These solutions
divide this interval in subintervals where the sign condition holds or fails. Obviously, if
[ 0;  1] is a subset of one of the subintervals where the sign condition is satis�ed, then the
arc F ( ) is phase-convex. The case y0 = 0 is especially simple, since

h1( ) = [r2r20 � (1�X0r0)
2] sin (24)

h�1( ) = [r2r20 � (1 +X0r0)
2] sin (25)

so it is clear that the two expressions have the same sign if and only if x0 2 (�1=r0; 1=r0).
Then, the extremes of the phase are obtained for  0;  1, unless the arc intersects the real
axis. If this were true, one (or both) of the extremes would be the intersection point (points).
Actually, this matches the result of [?] where these type of solutions were sought. However,
it is important to stress that the use of (22) and (23) allows for a much broader class of
extreme-point results.

3 Generalization to Domains

In this section we extend the previous results roots lying in arbitrary domains. *****Show
Figure**** Let 
 be an open region, simply connected and symmetric with respect to the
real axis, P (z�1) be the family of second-order polynomials p(z�1) with roots in 
 and
assume that the boundary of 
 can be written as

@
 =

N[
i=1

Fi(�i); �i 2 [�0i ; �
1
i ] � R (26)

where Fi(�i) is a continuously di�erentiable phase-convex arc, according to the discussion in
previous sections. Obviously, Fi(�

1
i ) = Fi+1(�

0
i+1), i = 1; � � � ; N +1, and FN (�

1
N ) = F1(�

0
1).

Let �p(z) = argfp(z�1)g and de�ne

��(z) = sup
p2P

�p(z) (27)

�(z) = inf
p2P

�p(z) (28)

These functions are respectively termed lead and lag functions of the family P (z�1) [?].
Also de�ne the extreme polynomials as

pi(z
�1) = [1� Fi(�

0
i )z

�1][1� F �

i (�
0
i )z

�1]; i = 1; � � � ; N (29)

and let the corresponding extreme phase functions �i(z) = argfpi(z
�1)g, i = 1; � � � ; N .

Then, the following result can be stated,
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Theorem 2 The lead and lag functions of the family P (z�1) for a given z = r0e
j!, ! 2

[0; 2�), are obtained by maximizing and minimizing among the extreme phase functions, that

is,

��(r0e
j!) = max

i=1;���;N
�i(r0e

j!) (30)

�(r0e
j!) = min

i=1;���;N
�i(r0e

j!) (31)

Proof: We will present here the proof for the lead function, since the corresponding proof
for the lag function follows along the same lines. From the fact that all the Fi(�i) are
phase-convex arcs, we can conclude that the maximum along @
 can be calculated from
maximization among the extremes of each segment. In order to prove that the supremum
for all the points in 
 is on the boundary, we can employ the Maximum Modulus Principle
[3] and the fact that every vertical segment is phase convex. In order to show this, consider
that for any polynomial q0(z

�1) = [1�(x0+jy0)z
�1][1�(x0�jy0)z

�1], x0+jy0 2 
, and for
a given z = r0e

j!, ! 2 [0; 2�), there must exist some q1(z
�1) = [1� (x1+ jy1)z

�1][1� (x1�
jy1)z

�1], x1 + jy1 2 @
 such that argfq0(r
�1

0
e�j!)g � argfq1(r

�1

0
e�j!)g. This x1 + jy1 is

simply one of the points at which the vertical line passing through x0 + jy0 intersects @
.
This then completes the proof.

Obviously, it is possible that only a subset of the N extremes is necessary to bound the
phase. A very important special case is summarized by the following corollary

Corollary 1 Suppose that there exist unique k; l 2 f1; � � � ; Ng such that the argument of

the polynomials with roots in Fi(�i) and F �

i (�i) for z = r0e
j!, ! 2 (0; �) changes from

strictly increasing to strictly decreasing with �i 2 (�0i ; �
1
i ) at i = k and viceversa for i = l.

Then, the argument is bounded by that of only two extremes, that is,

��(r0e
j!) = �k(r0e

j!) (32)

�(r0e
j!) = �l(r0e

j!) (33)

for some i; k 2 f1; � � � ; Ng.

It is worth remarking that most of the arcs that have been considered so far (except the
vertical line segment) satisfy the conditions in Corollary 1.

Theorem 2 can be also used to produce conservative (but simple) bounds. In fact,
consider the family

Q(z�1) = fq(z�1); q(z�10 ) = 0) z0 2 � or z0 2 ��g (34)

for which � � 
 and de�ne �q(z) = argfq(z�1)g. Then

inf
p2P

�p(z) � inf
q2Q

�q(z) � sup
q2Q

�q(z) � sup
p2P

�p(z) (35)

for z = r0e
j!, ! 2 [0; 2�).

A necessary and suÆcient special case is the following. Let G 2 @
 be the set of points
Fi(�

0
i ), Fi(�

1
i ) for which the extremes in (30) or (31) are attained for some ! 2 [0; 2�).

6



Then, if G � @
 \ @�, equation (35) holds with equalities in the leftmost and righmost
expressions.

The results given so far can be extended to families of polynomials of any degree n.
We will consider �rst the case of n even and complex conjugate roots and then include the
remaining cases. Since it is possible to place the roots in di�erent domains, we consider
families of the form

P (z�1) = fp(z�1) =

mY
l=1

pl(z
�1); pl(z

�1) 2 Pl(z
�1); l = 1; � � � ;mg (36)

where

Pl(z
�1) = fpl(z

�1) =

MlY
i=1

[1� ziz
�1][1� z�i z

�1]; zi 2 
lg (37)

and each region 
l � C, l = 1; � � � ;m is such that its boundary is described by

@
l =

Nl[
i=1

Fi;l(�i;l); �i;l 2 [�0i;l; �
1
i;l] � R (38)

where the Fi;l(�i;l) are continuously di�erentiable phase-convex arcs. De�ning the extreme
polynomials pl;i(z

�1) as

pi;l(z
�1) =

MlY
i=1

[1� Fi;l(�
0
i;l)z

�1][1� F �

i;l(�
0
i;l)z

�1]; i = 1; � � � ; Nl (39)

(40)

and the extreme phase functions as �i;l(z) = argfpi;l(z
�1)g, i = 1; � � � ; Nl; l = 1; � � � ; n=2

we can state without proof the following result

Theorem 3

��(r0e
j!) = max

l=1;���;m

i=1;���;Nl

X
l

�i;l(r0e
j!) (41)

�(r0e
j!) = min

l=1;���;m

i=1;���;Nl

X
l

�i;l(r0e
j!) (42)

Note that the above maximization and minimization processes su�er from a \combinatorial-
explosion" as n grows. However, frequency-dependent reduction techniques can be used,
by identifying subintervals of [0; 2�) where the functional expression of the lead and lag
functions remains the same. Di�erent important special cases can be identi�ed. One such
case is when the domains 
l are the same, that is, m = 1, since then the number of
extremes required is that of the family of second-order polynomials with roots in 
l. Another
important case is that for which every section Pl(z

�1) satis�es the conditions of Corollary
1. Then, only two extremes are required, no matter how large n is.

7



The case of n odd and real roots correspond tofactors of the form

Pl(z
�1) = f

MlY
i=1

(1� ziz
�1); zi 2 
l � (1=r0; 1=r0)g (43)

From Section 2.1, it is clear that these regions are phase-convex, so Theorem 3 extends in
a very straightforward way to this case.

4 Application to SPR problems

The �rst application of our results has to do with SPR checking of families of polynomials.
Suppose that the family P (z�1) described in (36) is stable (note that this implies that every

l is contained in the circle of radius 1=r0 which was one starting assumption). Then, the
condition for SPRness on the complement of the circle of radius 1=r0 is that

Refp(r�10 e�j!)g > 0; 8p 2 P; 8! 2 [0; 2�) (44)

It is immediate to see that this condition can be transformed into one involving the phase,
namely

�=2 < �(r0e
j!) � ��(r0e

j!) < �=2; 8! 2 [0; 2�) (45)

From this condition, it is clear that if the root domains are bounded by closed curves that
are piecewise phase-convex, the family will be SPR if and only if some adequately selected
extreme polynomials are SPR. The importance of this result resides in the fact that the
SPR checking of the family of polynomials can be simpli�ed to a �nite test. Moreover, recall
that the possible combinatorial explosion can be generally alleviated or even eliminated (cf.
previous section).

The second application deals with �lter design to enforce SPRness of a family of poly-
nomials. In this case, we want to �nd a stable polynomial f(z�1) such that given the stable
family P (z�1) as de�ned in (36), the following condition holds

Re

�
p(r�10 e�j!)

f(r�10 e�j!)

�
> 0; 8p 2 P; 8! 2 [0; 2�) (46)

In [2] it is shown that a necessary and suÆcient condition for the existence of such f(z�1)
is that for all ! 2 [0; 2�),

��(r0e
j!)� �(r0e

j!) < � (47)

Again, if the root domains for the family of polynomials satisfy the requirements for phase-
convexity, it is clear that the previous condition can be transformed into a �nite set of
conditions involving the extreme polynomials. As before, it can be easily shown that this
amounts a �nite test to determine whether the family can be made SPR.

As was pointed out in [2], any stable polynomial with phase [ ��(r0e
j!) � �(r0e

j!)]=2
satis�es (47). The problem is however to �nd the coeÆcients of such a polynomial. An
especially appealing solution is obtained when a polynomial of degree n having the desired
phase [?] can be found. This can be achieved when in (37) and (43) (depending on whether

l is complex or real) Ml is even for every l = 1; � � � ;m and every Pl(z

�1) satis�es the

8



conditions of corollary 1 (i.e., phase bounded by only two extreme phase functions). Suppose,
without loss of generality, that for every l 2 f1; � � � ;mg, �� and � are attained for the extremes

F1;l(�
0
1;l) and FNl;l(�

0
Nl;l

). Then, the choice of f(z�1) that will make the family SPR is

f(z�1) =

mY
l=1

[1� F1;l(�
0
1;l)z

�1]
Nl
2 [1� F �

1;l(�
0
1;l)z

�1]
Nl
2

[1� FNl;l(�
0
Nl;l

)z�1]
Nl
2 [1� F �

1;l(�
0
Nl;l

)z�1]
Nl
2 (48)

When 
l � R, (48) admits an obvious extension with �rst order sections in the product.
If any of the Nl is odd, then the optimal solution has to be approximated, thus not guar-
anteeing that (46) is satis�ed. In [?] some ideas are presented that can be useful in this
approximation.

5 Numerical Examples

*******Show Examples********

6 Conclusions

Given a family of polynomials where the poles are uncertain but known to lie in a domain,
we have provided a systematic characterization of domains for which the phase of the family
can be bounded by that of a �nite set of extremes, thus paving the way for �nite tests to
check if a family is SPR or can be made SPR by output error �ltering. In addition, we
have shown how in certain cases this characterization of the uncertainty can be succesfully
exploited to �nd the structure of the optimal �lter.

We have specialized our results for straight line segments and circular arcs, since we feel
it is of value to use these type of simple sets in the process of identi�cation of the unknown
roots or to embed the uncertain set in a minimal domain with this simple structure. When
the design of the �lter f(z�1) is not critical (i.e., there is a certain amount of freedom in
the phase condition), this overbounding by a set that admits a two-extreme result will give
a way of �nding suitable f(z�1) using the solution given in the paper.

Even though we have considered here the complement of a circle as a positivity region
and structured uncertainties, our results can be adapted to consider other positivity regions,
as in [?], [?], and to include unstructured uncertainties [?].

Research is in progress in the design of suboptimal �lters f(z�1) that can be used in
cases where more than two extremes are necessary, such as that of rectangular domains for
the roots, where more than four extremes are required.
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