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Toward “Smart Tubes” Using
Iterative Learning Control

Chaouki T. Abdallah,Senior Member, IEEE,Vatche S. Soualian, and Edl Schamiloglu,Senior Member, IEEE

Abstract— In this paper, we present our progress toward
designing a “smart” high-peak power microwave (HPM) tube.
We use iterative learning-control (ILC) methodologies in order
to control a repetitively pulsed high-power backward-wave oscil-
lator (BWO). The learning-control algorithm is used to drive the
error between the actual output and its desired value to zero. The
desired output may be a given power level, a given frequency, or
a combination of both. The learning-control methodology is then
verified in simulation. This methodology is applicable to a wide
variety of HPM sources.

Index Terms—Backward-wave oscillator, frequency agility,
high-peak power microwave, iterative learning control.

I. INTRODUCTION

PRESENT-DAY high-peak power microwave (HPM)
sources typically operate in the single-shot regime

because of practical limitations imposed by the pulsed power
systems used to drive them [1], [2]. There are commercial
HPM systems that operate at modest repetition rates, two
examples of which include a system based on the Reltron
source [3] operating at 1 Hz, and a system based on a
magnetron source [4] operating at a 10-pulse/second burst
mode. It is clear that a modest pulse repetition rate is attractive
for a practical implementation of an HPM system.

The physics of the interaction between a relativistic electron
beam and various slow-wave structure (SWS) configurations
in a short-pulse backward-wave oscillator (BWO) has been
studied experimentally and computationally in a collaborative
effort between the University of New Mexico, Albuquerque,
and the Institute of High Current Electronics, Tomsk, Russia
[5], [6]. The electron-beam accelerator used in those studies
is a Sinus-6 device that produces a 10-ns full width at half
maximum (FWHM) beam current pulsewidth, and can operate
at a pulse repetition rate as large as 200 Hz. In practice,
the accelerator operates at a pulse repetition rate no greater
than 0.1 Hz, limited by the capacitor bank used to energize
the magnetic field-producing solenoidal coil. A novel result
of this effort was a demonstration of enhanced frequency
agility of a high-power BWO for constant electron-beam
and applied magnetic-field parameters [6]. This agility was
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obtained through an axial displacement of the SWS with
respect to the “cutoff neck” inlet to the electrodynamic system.
Furthermore, a companion study to this paper provided a static
affine model of the input/output characteristics of the Sinus-6-
driven BWO, and described how this information can be used
as part of an algorithm to meet specific control objectives, such
as maximizing the radiated frequency bandwidth for a fixed-
peak radiated-microwave-power level [7]. The next step in the
research is then to automate the control algorithms in order to
build a “smart-tube” HPM source. Bysmart tube, we mean
an HPM source capable of adjusting its output characteristics
to achieve certain preset criteria without operator intervention.
Furthermore, asmart-tubeHPM source will learn from its
earlier operation to affect its future performance. We believe
that a smart-tubeHPM source represents an important de-
velopment and will further the embodiment of these research
devices into practical systems.

From a controls perspective, it turns out that the fast
dynamics and changes in the operating characteristics of the
BWO render traditional automatic-control methods ineffective.
In fact, our results in [7] for the Sinus-6-driven BWO have
shown that a static affine model is an accurate representation
of its input/output characteristics. A static model is too fast
to be controlled in real time while maintaining the same-
order dynamics (and thus, the same bandwidth and speed
of response) of the open-loop system. However, and since
the BWO is repetitively pulsed, one can attempt to achieve
the control objectives between pulses. More specifically, for
control design purpose, an engineer is usually provided with
a mathematical model of adynamical system, which can
be described by differential/difference equations. The design
problem is then reduced to finding a suitable control law
to achieve some desired response. Research in controls has
focused on the control of dynamical systems since most
physical systems exhibit some kind of dynamic behavior.
Although a quantitative model may be difficult to obtain, once
such a model is made available, the design part is relatively
well developed. On the other hand, the control problem for
static systems is relatively undeveloped. Control issues for
static systems have recently arisen in many areas such as rapid
thermal processing [8] or in pulsed power systems [7]. Static
systems may, in fact, have dynamics, but their input–output
response is so fast that they defy the usual description with
differential/difference equations. One then has no hope of
controlling such systems using standard control methodologies
unless their maneuvers are repeated over and over. Moreover,
standard control issues such as stability may not arise when
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dealing with static systems, but others such as improving
performance, optimality, and disturbance rejection will.

In this paper, we use aniterative learning-control(ILC)
methodology on the static model of the repetitively pulsed
Sinus-6 BWO. Given a mathematical model of the Sinus-6-
driven BWO, one can solve for the desired input, given a
desired output, by finding the inverse system. This open-loop
control strategy works well if the system model is exact, is
invertible when no disturbances are present, and no issues
of stability are involved. In practice, however, the model is
obtained from a set of noisy input–output data points, and an
open-loop control strategy is not sufficient. In addition, the
BWO characteristics may be slowly varying due to changes
in its operating conditions (jitter). In such a case, one has
to account for any perturbations in the model and design
a controller that takes them into account in generating the
control law. Since, as discussed above, the BWO system is
extremely fast, we are not able to generate a control signal in
real time while maintaining the speed of the response, and it
is, therefore, logical to apply any control effort adjustments
off-line or in between successive shots [9]. One way to
design such an off-line controller is to use ILC algorithms,
which have been widely applied in the robotics industry and
elsewhere [9], [10]–[15]. The learning controller accounts for
the unmodeled effects, and is thus suitable in applications
where the same maneuver is repeated over and over. This
paper presents the results of an ILC simulation to achieve
specified control objectives based on actual input/output data
from the experiments. The experimental implementation of
an ILC is presently underway. In fact, a computer-controlled
motor-driven vacuum SWS axial displacement mechanism has
been constructed and installed on the experiment.

This paper is organized as follows. In Section II, a brief
description of learning control is given. Section III discusses
the experimental setup and the model of the Sinus-6. In
Section IV, we discuss the design of ILC’s and the two control
objectives, and present our simulation results. Our conclusions
and directions for future research are given in Section V.

II. PROBLEM DESCRIPTION AND ILC APPROACH

The problem studied in this paper is the design of a feedback
system which can automatically adjust the inputs to the Sinus-
6-driven BWO in order to achieve frequency agility or to
regulate the power and frequency of the radiated energy at
desired set points.

A. Learning Control

Modern control theory has been successfully employed in
controlling many industrial processes. Currently, there are
many analytical methods to choose a controller that achieves
asymptotic stability and an acceptable steady-state error, but
few for specifying the transient response of systems [16].
These limitations motivated researchers to develop new control
concepts for systems which repeat the same maneuvers, known
as ILC. ILC deals with processes where the same task, which
lasts a finite time interval , is repeated over and over. The
objective of the controller is thus to improve the performance

with each trial. The concept of iterative learning control was
first introduced by Arimoto [10], who proposed a new control
concept called betterment process. In [10], Arimoto suggested
a new controller which adds a correcting term to the existing
control input after each trial. Since then, similar algorithms
for different classes of nonlinear systems have been developed
[11], [17]–[19]. A survey of recent developments in the subject
can be found in [9] and [14].

The basic idea behind designing an iterative learning con-
troller is generically described in [14] as follows. Consider a
nonlinear system described by an operator where
both and are normed vector spaces [20]. The control
objective is to drive the output to a desired
function . This should be achieved by choosing the
appropriate input such that a norm
is minimized. If the system is left-invertible, one may
choose . In the following, we use
to denote a system which when evaluated at a particular
gives .

In most cases, may not be exactly known, and calcu-
lating the inverse system may be difficult, if not impossible.
In such cases, we would like to find a sequence of inputs

(1)

such that converges to as the iteration number
goes to infinity. Moreover, we would like to do so without the
explicit knowledge of if possible. This is then the essence
of iterative learning control. It turns out that in our particular
problem, the BWO model is static and time-invariant so that

. A contraction mapping theorem, which is the basis
of the ILC’s described in this paper, may be found in [9] and
[14].

A block diagram of a learning-control scheme is described
in Fig. 1. The signal is the desired output, which we try
to make the actual output track. The error is defined as
the difference . Note that in the figure, the controller
actually contains two parts, one which is based on the known
model and is thus fixed and produces, and another denoted
by and obtained as the output of the learning controller.
In our simulations, the known model is obtained from the
identification we performed in [7], which is the neural network
fitted to the actual experimental data.

In the following section, we review our experimental setup
and present the static model of the BWO to which we apply
the learning-control ideas described above.

III. EXPERIMENTAL SETUP

Initial experimentation with the Sinus-6-driven BWO has
been reported elsewhere [5], [6], and has yielded input/output
data which was used to obtain the model used in this research.
Next, we refer to the block diagram in Fig. 2. The block
labeledSystem is identified as the mathematical model in
our experiment. The model of the high-power BWO consists
of an – gap (electron gun) delivering an intense electron-
beam current that is guided through a SWS by a strong axial
magnetic field. There are actually two inputs into this system:
the cathode potential and the current , while the
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Fig. 1. Learning-control scheme.

Fig. 2. Block diagram of system.

two measured outputs are the microwave power and
the microwave frequency . The microwave conversion
efficiency is obtained by dividing the peak output
microwave power by the input beam power . The voltage

may be manipulated by changing the spark gap pressure,
while the current may be changed by adjusting the– gap.
In this research, the – gap remains constant, thus fixing the
input impedance . This translates into a control algorithm
whose only output is the voltage since is dependent on
through . Another control parameter which allows
one to achieve frequency agility is the axial displacement
of the SWS with respect to the “cutoff neck” inlet to the
electromagnetic system [6]. This is what we term “shifting”
in this paper.

In this paper, we propose and simulate two control algo-
rithms: the first regulates the output power and frequency to
desired set values, and the other achieves frequency agility
by allowing the frequency to change around a center value
while maintaining a constant output power. In order to achieve
these objectives, the ILC takes the outputs from the BWO and
calculates the desired voltage applied to the system to regulate
the power and frequency, adjust the output frequency, or to
maximize the efficiency.

As discussed above, and from the research described in [5],
we have access to a set of input cathode voltage, current ,
output microwave efficiency , power , and frequency .
Due to the complexity of obtaining a physics-based model of
high-power BWO’s, researchers utilize fully electromagnetic

particle-in-cell (PIC) codes like MAGIC [21] in order to
simulate certain aspects of the operation of these devices.
In order to obtain a model suitable for applying our control
algorithms, we choose instead to build a model based on the
input/output data with the physics providing guidance. We
have thus obtained the following static nonlinear, but affine,
model for the Sinus-6-driven BWO:

(2)

where and . More specifically, we
consider

(3)

This model was motivated by the fact that the affine model
can simplify the control system design.

The experimental data was collected in four separate exper-
iments, where the – gap was adjusted to four different
values (the – gap determines the electron-beam diode
impedance). We shall denote these four experimental phase as

, , , and . The four intervals were divided into 95
sampling points for the first experiment, 102 sampling point
for the second experiment, 78 sampling points for the third
experiment, and 43 sampling points for the fourth experiment.
The experimental data consists of the cathode voltage input

, the current , and the two outputs: total peak
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power and frequency . The RF generation efficiency
was calculated from the formula

(4)

It turns out that, for the case that output is frequency
and total power, four affine neural networks can be used to
approximate four experiment phases, , , and . But
for the case that output is the efficiency, it cannot. This is
obvious, because from (4) we see that RF efficiency is not
a linear function of the voltage. Instead, we obtain a bilinear
fit of the efficiency by taking the ratio of by the product

, where itself is fitted linearly as a function of . The
affine neural-network model was used to fit the experimental
input/output data. The objective of the fit is to minimize the
following performance objective:

where

(5)

by a choice of the weights . In general, this is accomplished
by a gradient descent procedure of updating the weights as
described, for example, in [22]. In this research, we have
used theback-propagationtraining algorithm implemented in
the neural-network toolbox of MATLAB [23]. The learned
parameters are given in [7] and will be used in Section IV to
simulate the controllers.

IV. DESIGN OF ITERATIVE LEARNING CONTROLLERS

The design of ILC’s consists of choosing the mapping
in (1) so that it is a contraction mapping, as described in [9].
The idea of using a contraction mapping is useful in trying
to show the convergence in many algorithms since once a
mapping is shown to contract distances, and using the fact
that vectors getting close to each other must be getting close
to a unique vector, convergence of the iteration algorithm is
guaranteed. For our case, the system to be controlled is given
as in (2) by . Note again, that because our system
is static, no time dependence appears. The ILC structure used
is of the form

(6)

where is the iteration number, and is
an operator (static or dynamic) to be designed such that the
conditions of the contraction mapping are satisfied [9], [14].
In the following, we show how to choosefor two different
control objectives.

A. Controlling Radiated Power and Frequency

Next, we discuss an approach of obtaining voltage and
current set points which will maximize the output power
along with the RF conversion efficiency. In order to solve
the set-point design problem, we resort to the use of quanti-
fier elimination (QE) methods. We used a software package
called QEPCAD [24] in order to implement such algorithms.

TABLE I
RESULTS OF QEPCAD FOR EXPERIMENT E1

v0s I� V � F � P � E�

0 � v2 � 310
�8 6 700 9.936 540.398 0.129

v2 = 410
�8 6 532 9.883 495.112 0.155

v2 = 510
�8 6 426 9.85 466.539 0.182

610
�8 � v2 � 10

�6 6 375 9.834 452.791 0.201

v2 = 210
�6 3.50 375 9.688 291.373 0.222

310
�6 � v2 � 1 2.75 375 9.645 242.948 0.236

QEPCAD software produced the results in Table I for ex-
periment , and for different , combinations. A more
detailed description of this approach may be found in [25]. We
can see that with decreasing and decreasing, the power
is decreased, but the efficiency is increased. Now that we
have the desired set points, we present to implement the ILC to
regulate and . In what follows, we use the following ILC:

where the symbol denotes convolution and the filter whose
impulse response is is chosen to satisfy the norm inequal-
ity

(7)

where denotes the largest singular value and denotes
the supremum. This then insures that the conditions of the
contraction mapping theorem holds. We choose

, where satisfies inequality (7), and
is the set of rational transfer functions. For our purpose, we
have chosen diagonal with entries having norm less
than one. Then, can be computed as follows:

(8)

where and are less than 1. For
simulation purposes, we choose

In order to illustrate our ILC performance, we choose a
nominal model in our simulation, as obtained from [7]

(9)

and assume that the actual plant is given by

(10)

The desired output response were GHz and
MW. We thus use the structure in Fig. 1 to

design an ILC controller with a nominal component obtained
from the nominal model, and a learning controller designed
based on the ILC concepts. The simulation results are shown in
Fig. 3. Note that both frequency and peak power are regulated
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(a) (b)

(c) (d)

Fig. 3. Plot of the output error and control effort response for� = 5; K = 1.

(a) (b)

(c) (d)

Fig. 4. The frequency agile ILC performance.

to their desired values after a couple of iterations, and that
the current and voltage inputs stabilize to their desired values.
Note that in practice this takes a very short time, allowing
time for the mechanical adjustment between successive firings
of the accelerator.

B. Frequency Agility

In this case, our control objective is to keep a constant output
power when we axially displace the SWS, and thus change

the output frequency [6]. Note that in the previous section,
the main concern was to control both output variables, namely
the frequency and power, by adjusting the input current and
voltage with no constraints on the inputs. In practice, this is
possible if the control variables are independent. However, as
mentioned earlier, our only accessible variable is the pressure
(or voltage), and the input current is a linear function of this
voltage:

(11)
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The frequency–agility control problem can thus be reformu-
lated as follows: given a desired output power, find the control
signal to drive the error between the measured output power
and the desired one to zero, with the constraint

, where denotes the iteration number. Now that
the only output variable to be controlled is the power, we have

(12)

where the pair ( , ) is the first row of the matrix
, and are the control efforts at theth trial, and

the corresponding output measured power. Now define
and . The control effort is

of the form

(13)

where is the vector gain to be calculated and
, where is the desired output power. The actual

output power can then be written in the form

or, finally,

(14)

From (14), it is easy to see that in order to satisfy the
conditions of contraction mappings [9], we need to choose
such that . We have chosen in our simulations the
value , and . Note that in reality,
and since is not exactly known, we may need to design an
adaptive gain in order to guarantee that . This will
be a topic of future research. The simulation was performed
for four different shifts of the SWS, and the plots in Fig. 4
show that for every shift in the SWS, the control efforts are
automatically adjusted, keeping the impedance value constant.
In fact, notice that the difference between the desired peak-
power output and the actual output goes to zero after each shift
and after one shot. The frequency of the output is allowed to
vary between 9.3–9.65 GHz, while the voltage input (and thus,
the current) is adjusted to counteract the effect of shifting on
radiated power [6].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an iterative learning-
controller approach in trying to design smart microwave tubes.
This control structure was chosen because of its ability to
improve its performance in systems such as the repetitively
pulsed Sinus-6 BWO. Our control design was built around our
previous experience in modeling the Sinus-6 BWO, our earlier
research on frequency agility, and on our control-system expe-
rience. The controller we designed and simulated was shown
effective in regulating the output frequency and peak power
output, and in achieving frequency agility. The frequency
and power set points were chosen using QE methods. The

frequency agility was simulated by modeling the displacement
of the SWS while adjusting the voltage input.

We are currently in the process of implementing these
controllers on the Sinus-6 BWO. We have constructed
a computer-controlled motor-driven vacuum SWS axial-
displacement mechanism and have installed it on the
experiment. While displacing the SWS, we will be automati-
cally adjusting the spark gap pressure according to the control
algorithm in order to affect the input voltage. This represents
only one of the parameters which can be eventually adjusted
to implement the final controller. Eventually, we will also
adjust the – gap, thus changing the input impedance and
achieving an independent change in the input current in order
to achieve our control objectives. The final controller will
be implemented in software and will be tunable to different
operating conditions and to different microwave tubes.

REFERENCES

[1] J. Benford and J. Swegle,High Power Microwaves. Norwood, MA:
Artech House, 1992.

[2] C. Taylor and D. Giri,High-Power Microwave Systems and Effects.
Washington, DC: Taylor & Francis, 1994.

[3] R. B. Miller, “Pulse shortening in high-peak-power Reltron tubes,” this
issue, pp. 340–347.

[4] D. Price, J. S. Levine, and J. Benford, “Diode plasma effects on the
microwave pulse length from relativistic magnetrons,” this issue, pp.
348–353.

[5] L. Moreland, E. Schamiloglu, R. Lemke, S. Korovin, V. Rostov,
A. Roitman, K. Hendricks, and T. Spencer, “Efficiency enhancement
of high power vacuum BWO using nonuniform slow wave structures,”
IEEE Trans. Plasma Sci., vol. 22, pp. 554–565, Apr. 1994.

[6] L. Moreland, E. Schamiloglu, R. Lemke, A. Roitman, S. Korovin,
and V. Rostov, “Enhanced frequency agility of high power relativistic
backward wave oscillators,”IEEE Trans. Plasma Sci., vol. 24, pp.
852–858, Apr. 1996.

[7] C. Abdallah, W. Yang, E. Schamiloglu, and L. Moreland, “A neural
network model of the input/output characteristics of a high power
backward-wave oscillator,”IEEE Trans. Plasma Sci., vol. 24, pp.
879–883, Mar. 1996.

[8] R. Smith and A. Packard, “Optimal control of perturbed linear static
systems,”IEEE Trans. Automat. Contr., vol. 41, pp. 579–584, Sept.
1996.

[9] K. L. Moore, Iterative Learning Control For Determistic Systems, 1st
ed. Berlin, Germany: Springer-Verlag, 1992.

[10] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
dynamic systems by learning: A new control theory for servomechanism
or mechatronic systems,” inProc. 23rd Conf. Decision Control, vol. 2,
Las Vegas, NV, Dec. 1984, pp. 1064–1069.

[11] T. Sugie and T. Ono, “An iterative learning control law for dynamical
systems,”Automatika, vol. 27, no. 4, pp. 729–732, 1991.

[12] S. Hara, Y. Yamamot, T. Omata, and M. Nakano, “Repetitive control
system: A new type servo system for periodic exogenous signals,”IEEE
Trans. Automat. Contr., vol. 33, pp. 659–667, July 1988.

[13] J. J. Craig,Adaptive Control of Mechanical Manipulators, 1st ed.
Reading, MA: Addison-Wesley, 1988.

[14] K. L. Moore, “Iterative learning control–an expositionary overview,”
Appl. Computational Controls, Signal Processing, Circuits, to be pub-
lished.

[15] E. Rogers and D. H. Owens,Stability Analysis for Linear Repetitive
Processes, 1st ed. Berlin, Germany: Springer-Verlag, 1992.

[16] T. Kailath, Linear Systems, 1st ed. Englewood Cliffs, NJ: Prentice-
Hall, 1980.

[17] T.-Y. Kuc, J. S. Lee, and K. Nam, “An iterative learning control theory
for a class of nonlinear dynamical systems,”Automatika, vol. 28, no.
6, pp. 1215–1221, 1992.

[18] P. Bondi, G. Casalino, and L. Gambardella, “On the iterative learning
control theory for robotic manipulators,”IEEE J. Robot. Automat., vol.
4, pp. 14–22, Feb. 1988.

[19] T.-Y. Kuc, K. Nam, and J. S. Lee, “An iterative learning control of
robot manipulators,”IEEE Trans. Robot. Automat., vol. 7, pp. 835–842,
Dec. 1991.



ABDALLAH et al.: TOWARD “SMART TUBES” USING ITERATIVE LEARNING CONTROL 911

[20] M. Vidyasagar,Nonlinear Systems Analysis, 2nd ed. Englewood Cliffs,
NJ: Prentice-Hall, 1993.

[21] B. Goplen, L. Ludeking, D. Smithe, and G. Warren, “User-configurable
magic for electromagnetic PIC calculations,”Comput. Phys. Commun.,
vol. 87, pp. 54–86, 1995.

[22] P. Baldi, “Gradient descent learning algorithm overview: A general
dynamical systems perspective,”IEEE Trans. Neural Networks, vol. 6,
pp. 182–195, Jan. 1995.

[23] H. Demuth and M. Beale,Neural Network Toolbox. Natick, MA: Math
Works, 1993.

[24] H. Hong, “Parallelization of quantifier elimination on workstation net-
work,” Johannes Kepler Univ., RISC-Linz, Tech. Rep. 91-55.0, 1991.

[25] C. Abdallah, W. Yang, E. Schamiloglu, and V. Souvalian, “On the
control of a high power backward-wave oscillator using quantifier
elimination methods,” inProc. Amer. Control Conf., Albuquerque, NM,
June 1997, pp. 3255–3256.

Chaouki T. Abdallah (S’81–M’83–SM’95)
received the B.E. degree in electrical engineering
from Youngstown State University, Youngstown,
OH, in 1981, and the M.S. and the Ph.D.
degrees in electrical engineering from the Georgia
Institute of Technology, Atlanta, in 1982 and 1988,
respectively.

From 1983 to 1985, he was with SAWTEK Inc.,
Orlando FL. He joined the Department of Electrical
and Computer Engineering, University of New
Mexico, Albuquerque, in 1988, and was promoted

to Associate Professor in 1994. He co-editedRobot Control: Dynamics,
Motion Planning, and Analysis(New York: IEEE Press, 1992), co-authored
Control of Robot Manipulators(New York: Macmillan, 1993), andLinear
Quadratic Control: An Introduction(Englewood Cliffs, NJ: Prentice-Hall,
1994). His research interests are in the areas of robust control, adaptive and
nonlinear systems, and robotics.

Dr. Abdallah was exhibit chairman of the 1990 International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), and is currently
serving as the local arrangements chairman for the 1997 American Control
Conference.

Vatche S. Soualian received the B.E. degree in
electrical engineering from the American University
of Beirut, Beirut, Lebanon, in 1995, and is cur-
rently working toward the M.S. degree in electrical
engineering at the University of New Mexico, Al-
buquerque.

During the summer of 1994, he worked in the
O.G.D. 545, on a shore gas development project in
the United Arab Emirates. In 1996, he joined the
Department of Electrical and Computer Engineer-
ing, University of New Mexico, Albuquerque. His

research interests are in the areas of iterative learning control and statistical
signal processing.

Edl Schamiloglu (M’90–SM’95), for a photograph and biography, see this
issue, p. 234.


	University of New Mexico
	UNM Digital Repository
	6-1-1998

	Toward “smart tubes” using iterative learning control
	Chaouki T. Abdallah
	Vatche S. Soualian
	Edl Schamiloglu
	Recommended Citation


	Toward "smart Tubes" Using Iterative Learning Control - Plasma Science, IEEE Transactions on

