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Abstract

In this paper we show how Internet-like protocols may be used to coordinate and control the usage of a resource
by n agents. Lyapunov second method is used to provide sufficient stability conditions of the dynamics of the n agents
in the presence of time delay.

Keywords: Coordination, multiple agents, time delay, utility function.

I. INTRODUCTION

The coordination of multiple systems presents unique challenges and remains a worthy goal in situations
where humans need to project efforts and control over large distances. Particularly challenging problems
arise when multiple robots are used in space applications to construct large space structures or to manipulate
material. For example, various teleautonomous applications have been proposed (see [15], [17]) to assist in
the construction of space systems meant to provide beamed power for commercial applications [16]. While
the physics and economics of such systems are being worked out, our particular research focuses on the
distributed, coordinated, and robust control of multiple agents representing robots engaged in an assembly
task in space.

The idea of internet-like protocols in control can be applied to such systems in which a group of n users
(clients) share a common resource (server)of finite capacity C. While Information systems such as the Inter-
net are only concerned with transferring the information (with high fidelity), networked control applications
are more involved due to the effects that dated information has on the control of dynamical systems [9],
[10], [11], [12], [13]. To quote Traub [14], information is “incomplete, priced, and corrupted”. However,
and for control purposes, it is also “timed”. To make the general idea of Internet-like control more precise,
we consider a network of n users of a resource C. If for user i, the state variable xi represents its usage of
the resource, then, it is desired that the system reaches the equilibrium point at which

n
∑

i=1

xi = C (1)

It is also necessary to define a feedback signal, from the resource to the users, which communicates the
availability or shortage of the resource. In [1], [3] a priced scheme has been used for this feedback. A low
price is an indication of resource availability, and a resource shortage is represented by an increase in price.

∗Rafael Sandoval-Rodriguez is supported by Conacyt, Mexico.
†The research of C.T. Abdallah and P.F. Hokayem is supported by NSF-0233205.
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A simple dynamical equation for the resource price is the integral of the difference between the resource
usage and the size of the resource, scaled by a positive gain γ, as follows

ṗ(t) = γ

[

n
∑

i=1

xi(t) − C

]

(2)

Different dynamical interactions between the resource usage xi(t), and the resource price feedback may be
used. The common thread in these models is the inverse relation, such as the additive increase multiplicative
decrease used in TCP Reno [3], e.g.

ẋ(t) =
1 − p(t)

τ 2
−

1

2
p(t)x2(t) (3)

Where p(t) is the price for the resource, and τ is the propagation delay between the user and the resource.
Equation (3) yields the following equilibrium point, with the natural assumption that x ≥ 0 and p ≥ 0,

2 − 2p

pτ 2
= x2

Another interesting inverse relation between the resource price p, and the resource usage x, is x = a
p
, where

a is a constant positive parameter of the user. As we will see below, this parameter a dictates the speed of
convergence of the user. Figure 1 illustrates the relation between x and p, with a = 1.

For a given resource price p, there corresponds a unique resource usage, or equilibrium point x. Such

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102
Inverse relation between  resource usage and resource price

Resource price p

Resource
usage x

Fig. 1. Plot of resource usage versus resource price, showing the inverse relation

equilibrium point, or inverse relation, can be obtained from six different differential equations, although the
dynamic behavior of these equations may be very different

ẋ(t) =
a

x(t)
− p(t) ẋ(t) = − a

x(t)
+ p(t)

ẋ(t) = x(t) −
a

p(t)
ẋ(t) = −x(t) + a

p(t)

ẋ(t) = x(t)p(t) − a ẋ(t) = −x(t)p(t) + a
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In this paper we focus our attention on the last differential equation, given that we are interested in the
additive increase multiplicative decrease behavior:

ẋ(t) = −x(t)p(t) + a. (4)

This model has been used ([1], [3]) to associate a utility function U(x) to each user, which in turns ad-
justs its resource usage x to optimize its utility function. These utility functions must satisfy the following
conditions:

• If the ith user attempts to maximize Ui(xi), then Ui(xi) must be strictly concave, such that there exists
a unique maximizer x∗

i .
• If the ith user attempts to minimize Ui(xi), then Ui(xi) must be strictly convex, such that there exists a

unique minimizer x∗

i .
The condition for a unique optimizer may be obtained by forcing the gradient d

dx
U(x) to be the update

equation for the resource usage, i.e. by making the resource update a gradient system [6]. One interesting
application of the utility function is its use as a Lyapunov function for stability analysis [2].
Following this line of thought and integrating (4) over the resource usage, results in the following utility
function

∫ x

0

ẋ dx = U(x(t), p(t)) = ax(t) −
1

2
x2(t)p(t) (5)

A plot of the utility function as a function of the resource usage and resource pricing is shown in Figure 2.
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Fig. 2. Utility function as a function of the resource usage and resource price

After this brief overview, we present in section II the case of n users and illustrate the behavior of the
coupled n-users system. Section III presents the stability analysis for a 1-user system in the presence of time
delays, while section IV presents the same study in the case of n-users system, and we conclude our paper
in section V.

II. SYSTEM WITH n USERS

In this section we extend the system (4) into a multiuser case. The system with n users and one resource
of size C is represented by the following differential equations,
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ẋ1(t) = −x1(t)p(t) + a1

ẋ2(t) = −x2(t)p(t) + a2

... (6)
ẋn(t) = −xn(t)p(t) + an

ṗ(t) = γ[x1(t) + x2(t) + · · · + xn(t) − C]

where p(t) ≥ 0, xi(t) ≥ 0,∀t ∈ R
+. The equilibrium point (x∗

1, x
∗

2, . . . , x
∗

n, p∗) for the system (6) is given
by

x∗

i =
ai

p∗
, p∗ =

∑n

i=1 ai

C
. (7)

In order to study the stability of the equilibrium point using a Lyapunov function, we first translate the
equilibrium point of (6) to the origin with the following change of variables

yi(t) = xi(t) − x∗

i , for 1 ≤ i ≤ n

ym(t) = p(t) − p∗, m = n + 1 (8)

Given that ẏi(t) = ẋi(t), then

ẏi(t) = −
(

yi(t) +
aiC

S

)(

ym(t) +
S

C

)

+ ai

ẏm(t) = γ

[ n
∑

i=1

[

yi(t) +
aiC

S

]

− C

]

where S ,
∑n

i=1 ai. Simplifying,

ẏi(t) = −
S

C
yi(t) − yi(t)ym(t) −

aiC

S
ym(t)

ẏm(t) = γ

[ n
∑

i=1

yi(t)

]

(9)

The translated nonlinear system (9) can be arranged in order to have the general bilinear representation as
in [4].













ẏ1(t)
ẏ2(t)

...
ẏn(t)
ẏm(t)













=













− S
C

0 · · · 0 0
0 − S

C
· · · 0 0

...
... . . . ...

...
0 0 · · · − S

C
0

γ γ · · · γ 0

























y1(t)
y2(t)

...
yn(t)
ym(t)













+













−1 0 · · · 0 0
0 −1 · · · 0 0
...

... . . . ...
...

0 0 · · · −1 0
0 0 · · · 0 0

























y1(t)
y2(t)

...
yn(t)
ym(t)













ym(t) +
C

S













−a1

−a2
...

−an

0













ym(t) (10)
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or more compactly:
[

˙̄y
ẏm

]

=

[

A 0(n−1)×1

γ1×(n−1) 0

] [

ȳ

ym

]

+

[

−I(n−1)×(n−1) 0(n−1)×1

01×(n−1) 0

] [

ȳ

ym

]

ym +

[

B

0

]

ym (11)

Theorem 1: The system (10) is globally asymptotically stable.
Proof: To analyze the stability of system (10), we use the quadratic Lyapunov function

V (y) =
1

2
yT Py

where P > 0 is an m×m diagonal matrix. Then V (y) > 0 for y 6= 0, and V (0) = 0. Taking the time
derivative of V (y) we obtain

V̇ (y) =
1

2

[

ẏT Py + yT P ẏ
]

=
m

∑

i=1

yiPiẏi

Expanding the terms

V̇ (y) =
n

∑

i=1

(

−
S

C
Piy

2
i (t) − Pi

aiC

S
yi(t)ym(t) − Piy

2
i (t)ym(t) + γPmyi(t)ym(t)

)

We can cancel out the cross product terms by choosing Pi = Sγ

aiC
, for 1 ≤ i ≤ n, and Pm = 1, thus

simplifying

V̇ (y) = −

n
∑

i=1

y2
i (t)

(

Sγ

aiC
ym(t) +

S2γ

aiC2

)

In order to ensure that V̇ (y) < 0 we need the term inside the parenthesis to be positive, leading to

Sγ

aiC
ym(t) +

S2γ

aiC2
=

Sγ

aiC

(

ym(t) +
S

C

)

> 0

By definition, ai, γ, S =
∑n

i=1 ai, and C are positive, and since

ym(t) +
S

C
= p(t) > 0 for all t

then, the system (6) is asymptotically stable for all xi(t) > 0 and p(t) > 0.

�

A. Linearization Approach
We can get some insight into the effects of the parameters ai and γ on the speed of convergence by

linearizing the system in (10) about the equilibrium point, which leads to:
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A =
d

dy
f(0) =













− S
C

0 · · · 0 −a1C
S

0 − S
C

· · · 0 −a2C
S

...
... . . . ...

...
0 0 · · · − S

C
−anC

S

γ γ · · · γ 0













where

f(y) =









ẏ1(t)
...

ẏn(t)
ẏm(t)









Solving for the eigenvalues of A, we obtain

λk = −
1

C

n
∑

i=1

ai 1 ≤ k ≤ n − 1

λn = −
1

2C

n
∑

i=1

ai +
1

2C

√

√

√

√

n
∑

i=1

a2
i + 2

n−1
∑

i=1

ai

n
∑

j=i+1

aj − 4C3γ (12)

λn+1 = −
1

2C

n
∑

i=1

ai −
1

2C

√

√

√

√

n
∑

i=1

a2
i + 2

n−1
∑

i=1

ai

n
∑

j=i+1

aj − 4C3γ

The first n−1 eigenvalues in (12) are always negative, and larger ai’s result in large negative real parts of the
eigenvalues. Note in addition that the gain γ defines the root loci for the last 2 eigenvalues. The parameter γ

can then be selected to move all the eigenvalues into the left half plane.
Example 1: In order to see the response of this system, we ran a Simulink program for the case of 2 users.

The parameters used are a1 = 1 ∗ 105, a2 = 2 ∗ 105, C = 1 ∗ 104, and γ = 0.018. The left plot of Figure
3 shows the resource usage, the right plot of Figure 3 shows the resource price. The accumulated usage
converges smoothly to the size of the resource C. This smooth convergence was attained for the specified γ,
using the linearization derived in Section II-A, to avoid an overshoot. Also needed is an initial price larger
than the equilibrium price to avoid an initial overshoot.

We can see that the user with the larger ai receives proportionally more resource. The allocated resource
xi, is given by

xi =
ai

∑n

i=1 ai

C.

Note 1: In order to increase the speed of convergence to the equilibrium point, the user parameters ai have
to be increased by the same factor.

III. ANALYSIS OF A ONE-USER SYSTEM WITH TIME DELAY

Starting with the non-delayed system (see equation (9)), the differential equations for a single user and
price feedback are

ẏ1(t) = −
a

C
y1(t) − y1(t)y2(t) − Cy2(t)

ẏ2(t) = γ y1(t) (13)
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Fig. 3. Resource usage and resource price versus time, the 2 users case. In the left plot, user 1 is denoted by the blue line, user 2 by the red
line, and the green line denotes the accumulated usage.

In what follows, we consider the case when the forward propagation time delay (τf ), from the users to the
resource, is equal to the backward propagation time delay (τb), from the resource to the users. This is the
symmetric propagation delay case. Let τ = τf = τb, then the delayed system is

ẏ1(t) = −
a

C
y1(t) − y1(t)y2(t − τ) − Cy2(t − τ) (14)

ẏ2(t) = γ y1(t − τ) (15)

Grouping the terms multiplied by y2(t), and adding and subtracting y2(t + τ) as in [5]

ẏ1(t) = −
a

C
y1(t) − (y1(t) + C) · y2(t + τ)

+(y1(t) + C) · [y2(t + τ) − y2(t − τ)] (16)

To remove the positive time shift, we use the delayed differential equation

ẏ1(t − τ) = −
a

C
y1(t − τ) − (y1(t − τ) + C) · y2(t)

+(y1(t − τ) + C) · [y2(t) − y2(t − 2τ)] (17)

In order to eliminate y2(t) from the last term of (17), we integrate the differential equation for the price (15)
from −2τ to 0.

∫ 0

−2τ

ẏ2(t + s)ds = γ

∫ 0

−2τ

y1(t + s − τ)ds (18)

Applying the fundamental theorem of calculus,

y2(t) − y2(t − 2τ) = γ

∫ 0

−2τ

y1(t + s − τ)ds (19)
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and substituting (19) in (17), yields

ẏ1(t − τ) = −
a

C
y1(t − τ) − (y1(t − τ) + C) · y2(t)

+(y1(t − τ) + C) · γ

∫ 0

−2τ

y1(t + s − τ)ds (20)

Theorem 2: The system (20) is globally asymptotically stable if τ <
p(t−2τ)

2γC
for all t.

Proof: We propose the following Lyapunov function,

V (y) = y2
1(t − τ) +

C

γ
y2

2(t) + γC

∫ 0

−2τ

∫ t

t+s

y2
1(u − τ)duds (21)

Taking time derivative to the Lyapunov function

V̇ (y) = 2y1(t − τ)
[

−
a

C
y1(t − τ) −

(

y1(t − τ) + C
)

y2(t − 2τ)
]

+2Cy2(t)y1(t − τ) + γC

∫ 0

−2τ

[

y2
1(t − τ) − y2

1(t + s − τ)
]

ds (22)

Expanding the terms

V̇ (y) = −2
a

C
y2

1(t − τ) − 2y2
1(t − τ)y2(t − 2τ)

−2Cy1(t − τ)y2(t − 2τ) + 2Cy2(t)y1(t − τ)

+γC

∫ 0

−2τ

[

y2
1(t − τ) − y2

1(t + s − τ)
]

ds (23)

Using (18) and (19) with the third and fourth terms of (23), we get

V̇ (y) = −2
a

C
y2

1(t − τ) − 2y2
1(t − τ)y2(t − 2τ)

+2γCy1(t − τ)

∫ 0

−2τ

y1(t + s − τ)ds

+γC

∫ 0

−2τ

[

y2
1(t − τ) − y2

1(t + s − τ)
]

ds (24)

Grouping the first two terms and the last two, yields

V̇ (y) = −2y2
1(t − τ)

[

y2(t − 2τ) +
a

C

]

+γC

∫ 0

−2τ

[

y2
1(t − τ) − y2

1(t + s − τ)

+2y1(t − τ)y1(t + s − τ)
]

ds (25)

Using the following inequality

y2
1(t − τ) + y2

1(t + s − τ) ≥ 2y1(t − τ)y1(t + s − τ)

We can place an upper bound on V̇ (y), as follows

V̇ (y) ≤ −2y2
1(t − τ)

[

y2(t − 2τ) +
a

C

]

+ 2γC

∫ 0

−2τ

[

y2
1(t − τ)

]

ds (26)
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The integrand (y2
1(t − τ)) is independent of s, so we can move it outside and complete the integration, thus

V̇ (y) ≤ −2y2
1(t − τ)

[

y2(t − 2τ) +
a

C

]

+ 2γCy2
1(t − τ)2τ (27)

Simplifying
V̇ (y) ≤ −y2

1(t − τ)
[

y2(t − 2τ) +
a

C
− 2γCτ

]

(28)

From the definition of the translated state variables yi(t) in (8) and the equilibrium point in (7), we can see
that the first two terms inside the square brackets are the original price

p(t − 2τ) = y2(t − 2τ) +
a

C

Then, if we impose the following condition in (28)

p(t − 2τ) − 2γCτ > 0

The original time-delay system in (10) is asymptotically stable.

�

This leads to the upper bound on the propagation delay τ ,

τ <
p(t − 2τ)

2γC
(29)

Note 2: Note that the upper bound on the delay τ decreases for larger values of the resource size C, but
this can be compensated for by changing the gain γ. In fact, note that the delay upper bound is inversely
proportional to the product γC.

IV. ANALYSIS OF A SYSTEM WITH TIME DELAY AND MULTIPLE USERS

In this section, we analyze the multiuser case with different propagation delays. Thus, starting from (9)
and assuming symmetric propagation delays for each user, we have

ẏi(t) = −
S

C
yi(t) − yi(t)ym(t − τi) −

aiC

S
ym(t − τi)

ẏm(t) = γ

[ n
∑

i=1

yi(t − τi)

]

(30)

Adding and subtracting the positive time shift of ym(t), as we did in the single user case,

ẏi(t) = −
S

C
yi(t) −

[

yi(t) +
aiC

S

]

ym(t + τi)

+

[

yi(t) +
aiC

S

]

[

ym(t + τi) − ym(t − τi)
]

(31)

leading to the following delayed differential equation:

ẏi(t − τi) = −
S

C
yi(t − τi) −

[

yi(t − τi) +
aiC

S

]

ym(t) + · · ·

+

[

yi(t − τi) +
aiC

S

]

[

ym(t) − ym(t − 2τi)
]

(32)
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Using

ym(t) − ym(t − 2τi) = γ

∫ 0

−2τi

n
∑

j=1

yj(t + s − τj)ds (33)

We obtain

ẏi(t − τi) = −
S

C
yi(t − τi) −

[

yi(t − τi) +
aiC

S

]

ym(t)

+

[

yi(t − τi) +
aiC

S

]

γ

∫ 0

−2τi

n
∑

j=1

yj(t + s − τj)ds (34)

Theorem 3: The system (34) is globally asymptotically stable if:

τi <
S2

2nγC2ai

; ∀i = 1, · · · , n (35)

Proof: We purpose the following Lyapunov function

V (y) =
n

∑

i=1

1

ai

y2
i (t − τi) +

C

Sγ
y2

m(t)

+
nγC

S

n
∑

i=1

∫ 0

−2τi

∫ t

t+s

y2
i (u − τi)duds (36)

Taking the time derivative of V (y), leads to

V̇ (y) =
n

∑

i=1

2

ai

yi(t − τi)

[

−
S

C
yi(t − τi) −

[

yi(t − τi) +
aiC

S

]

ym(t − 2τi)

]

+
2C

Sγ
ym(t)γ

[

y1(t − τ1) + y2(t − τ2) + · · · + yn(t − τn)
]

+
nγC

S

[ ∫ 0

−2τ1

[

y2
1(t − τ1) − y2

1(t + s − τ1)
]

ds + · · ·

+

∫ 0

−2τn

[

y2
n(t − τn) − y2

n(t + s − τn)
]

ds

]

(37)

Expanding terms

V̇ (y) = −
2S

a1C
y2

1(t − τ1) −
2

a1

y2
1(t − τ1)ym(t − 2τ1) −

2C

S
y1(t − τ1)ym(t − 2τ1)

...

−
2S

anC
y2

n(t − τn) −
2

an

y2
n(t − τn)ym(t − 2τn) −

2C

S
yn(t − τn)ym(t − 2τn)

+
2C

S
y1(t − τ1)ym(t) + · · · +

2C

S
yn(t − τn)ym(t)

+
nγC

S

∫ 0

−2τ1

[

y2
1(t − τ1) − y2

1(t + s − τ1)
]

ds + · · ·

+
nγC

S

∫ 0

−2τn

[

y2
n(t − τn) − y2

n(t + s − τn)
]

ds (38)
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Grouping the last terms of the first n rows with the (n + 1)th row using (33), and also grouping the first two
terms together for the n first rows.

V̇ (y) = −
n

∑

i=1

y2
i (t − τi)

[

2

ai

[

ym(t − 2τi) +
S

C

]

]

+
2γC

S

n
∑

i=1

∫ 0

−2τi

yi(t − τi)
n

∑

j=1

yj(t + s − τj)ds

+
nγC

S

n
∑

i=1

∫ 0

−2τi

[

y2
i (t − τi) − y2

i (t + s − τi)
]

ds (39)

Using the following inequality for the second term

y2
i (t − τi) + y2

j (t + s − τj) ≥ 2yi(t − τi)yj(t + s − τj)

After applying this to the n×n cross products, we can set an upper bound on V̇ (y) as follows

V̇ (y) ≤ −
n

∑

i=1

y2
i (t − τi)

[

2

ai

[

ym(t − 2τi) +
S

C

]

]

+
nγC

S

n
∑

i=1

∫ 0

−2τi

[

y2
i (t − τi) + y2

i (t + s − τi)
]

ds

+
nγC

S

n
∑

i=1

∫ 0

−2τi

[

y2
i (t − τi) − y2

i (t + s − τi)
]

ds (40)

We can reduce V̇ (y) to

V̇ (y) ≤ −
n

∑

i=1

y2
i (t − τi)

[

2

ai

[

ym(t − 2τi) +
S

C

]

]

+
2nγC

S

n
∑

i=1

y2
i (t − τi)

∫ 0

−2τi

ds (41)

Evaluating the integral

V̇ (y) ≤ −
n

∑

i=1

y2
i (t − τi)

[

2

ai

[

ym(t − 2τi) +
S

C

]

]

+
2nγC

S

n
∑

i=1

y2
i (t − τi)(2τi) (42)

And finally collecting terms

V̇ (y) ≤ −

n
∑

i=1

y2
i (t − τi)

[

1

ai

(

ym(t − 2τi) +
S

C

)

−
2nγCτi

S

]

(43)

We thus require the term inside the square brackets to be positive. In fact, it is sufficient for stability to
assume:

n
∑

i=1

τi <
S

2nγC

n
∑

i=1

ym(t − 2τi) + S
C

ai

(44)



ACCEPTED - IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL - 2003 12

In order to simplify this condition further, note from the definition of the translation variables that

ym(t − 2τi) +
S

C
= p(t − 2τi) (45)

Thus, we have the following inequality

p(t − 2τi)

ai

>
2nγCτi

S
(46)

In order to guarantee asymptotic stability, we can thus set the following upper bound for each delay

τi <
Sp(t − 2τi)

2nγCai

(47)

We can see that this condition is conservative, given that we are forcing each one of the n terms inside the
square brackets to be positive, when all that is needed is for (43) to be negative definite. Moreover, note that
(43) is an upper bound to (39).

From the plot of the price in Figure 3, we can see that if the initial value for the price is greater than the
equilibrium price, and with the appropriate selection of the gain γ, the price p(t) will be, for all t ≥ 0, greater
or equal to the equilibrium price. Then, if we substitute p(t − 2τi) by S

C
in (47), we can evaluate the upper

bounds, although these bounds will be even more conservative. The expression for these upper bounds is

τi <
S2

2nγC2ai

(48)

�

As we can see in (48) the upper bound in the time delay for each user decreases for large values of the
resource capacity, this condition is similar to what the authors in [3] found for their models of TCP Reno
and RED. Also with a large number of users the upper bound is decreased. But decreasing the value of γ

accordingly will diminish the effect of these previous parameters. Is important to note that the parameter ai

will give each user a different upper bound; users favored with a large resource allocation, given a large ai,
will have a lower upper bound than the others users.

Example 2: Using the values of the example 1, a1 = 100, 000, a2 = 200, 000, γ = 0.018, C = 10, 000.
Then n = 2, and S =

∑2
i=1 ai = 300, 000. The upper bounds are

τ1 <
(300, 000)2

2 · 2 · 0.018 · (10, 000)2 · (100, 000)
= 125 msec

τ2 <
(300, 000)2

2 · 2 · 0.018 · (10, 000)2 · (200, 000)
= 62.5 msec (49)

Using the same Simulink model of example 1, with the addition of the following delays, τ1 = 125 msec,
and τ2 = 62.5 msec, results in the responses shown in Figure 4. As we can see in Figure 4, the overshoot is
almost about 200%, but the accumulated usage converges to the resource size after 3 seconds.

As we mentioned before, (48) gives conservative upper bounds, but how conservative are such bounds is
yet to be quantified.

V. CONCLUSIONS

The use of a bilinear equation as the inverse relation between resource usage and resource price let us
obtain a Lyapunov function that in clean way gave us a proof for the stability of the multiuser system with-
out delay. For the multiuser system with symmetric propagation time delay, we could obtain a Lyapunov
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Fig. 4. Resource usage and resource price versus time, the 2 users case with the nominal delays in (49).

function which gave us upper bounds for the delay of each user, however, these upper bounds are too con-
servative. Moreover, can particular users increase their delays beyond the conservative bound if other users
have much shorter delays? We are currently using sampling techniques [7], [8] to answer these questions and
to obtain more practical bounds on the time delays. The use of sampling techniques allows us to obtain more
practical bounds for the delays, and other metrics of the system responses. It will also allow us analyze the
effects of varying the forward and backward delays, on the convergence and overshoot of the accumulated
resource usage.

REFERENCES
[1] F.P. Kelly, “Charging and rate control for elastic traffic”, Eur. Trans. Telecommun., vol. 8, pp. 33-37, 1997.
[2] F.P. Kelly, A.K. Maullo, D.K.H. Tan, “Rate control for communications networks: Shadow prices, proportional fairness and stability”, J.

Oper. Res. Soc., vol. 49, no. 3, pp.237-252, Mar. 1998.
[3] S.H. Low, F. Paganini, J.C. Doyle, “Internet Congestion Control”, IEEE Control Systems Magazine, Vol.22: Issue 1, pp. 28-43, Feb. 2002.
[4] R.R. Mohler, Nonlinear Systems, Vol. II, Applications to Bilinear Control, Prentice Hall, 1991.
[5] T.A. Burton, “Stability and Periodic Solutions of Ordinary and Functional Differential Equations”, Mathematics in Science and Engineer-

ing Vol. 178, Academic press, Inc., p. 253.
[6] H. K. Khalil, Nonlinear Systems, 3

rd Edition, Prentice Hall, NJ, 2002.
[7] V. Koltchinskii, C.T. Abdallah, M. Ariola, P. Dorato, D. Panchenko, “Statistical Learning Control of Uncertain Systems: It is Better than

it Seems”, Technical Report, EECE Dept., Univ. of New Mexico, 2000.
[8] P.F. Hokayem, C.T. Abdallah, and P. Dorato, “Quasi-Monte Carlo Methods in Robust Control Design”, Submitted to the 11

th Mediter-
ranean Conference on Control and Automation, Rhodes, 2003.

[9] S. Tatikonda, A. Sahai, S. Mitter, “Control of LQG Systems under Communication Constraints”, Proc. of the American Control Confer-
ence, San Deigo California, pp.2778-2782, June 1999.

[10] S. Tatikonda, “Control Over Networks”, 41th IEEE Conference on Decision and Control, – invited, December 2002
[11] N. Elia, S.K. Mitter, “Stabilization of Linear Systems With Limited Information”, IEEE Transactions on Automatic Control, Vol. 46, No.

9, September 2001, pp. 1384-1400.
[12] G. Walsh, H. Ye and L. Bushnell, “Stability Analysis of Networked Control Systems”, IEEE Transactions on Control Systems Technology,

Vol. 10, No. 3, May 2002.
[13] E. Verriest and M. Egerstedt, “Control with Delayed and Limited Information: A First Look”, Proc. of the 41

st Conference on Decision
and Control, Las Vagas, Nevada USA, pp. 1231-1236, Dec. 2002.

[14] J.F. Traub, and A.G. Werschulz, “Complexity and Information”, Cambridge University Press, Cambridge, 1998.
[15] L.Conway, R.A. Volz, and M.W. Walker, “Teleautonomous Systems: Projecting and Coordinating Intelligent Action at a Distance”. Report

available at: http://ai.eecs.umich.edu/ mirror/TAsys/TApaper.html
[16] JAPAN - US Science,Technology & Space Applications Program, 2002. http://www.hawaii.gov/dbedt/ert/justsap/
[17] Bekey, G. et. al., “Autonomous Construction and Manufacturing for Space Electrical Power Systems,” Final Report NSF-NASA Workshop,

Arlington, VA April 4-7, 2000. Available at: http://www-robotics.usc.edu/workshops/ssp2000/


	University of New Mexico
	UNM Digital Repository
	10-1-2003

	Internet-like protocols for the control and coordination of multiple agents with time delay
	Chaouki T. Abdallah
	Rafael Sandoval-Rodriguez
	Peter F. Hokayem
	Recommended Citation


	cpaper0131.dvi

