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Distributed Joint Rate and Power Control
Game-Theoretic Algorithms for Wireless Data

M. Hayajneh, Student Member, IEEE, and C. T. Abdallah, Senior Member, IEEE

Abstract—In this letter, we consider two distributed game the-
oretic algorithms to jointly solve the problem of optimizing the
transmission rates and transmit powers for future wireless data
communication systems. We then establish the existence, unique-
ness and Pareto optimality of Nash equilibria of both games.

Index Terms—Game theory, joint rate and power, Pareto effi-
ciency.

I. INTRODUCTION

T RANSMITTERS in multimedia wireless networks may
require different quality of services (QoS) in order to es-

tablish a communication link with a receiver. Providing flex-
ible transmission rates for each transmitter/receiver pair and ef-
ficient use of the shared radio resources requires joint power and
rate control optimization algorithms. Earlier work in this arena
used centralized algorithms (c.f. [1]). Due to the difficulty of im-
plementing centralized algorithms, and to avoid control signals
that cause delays in the system operation, distributed algorithms
were proposed. Game theory was shown to be an appropriate
tool for finding power control algorithms in [7]–[10] and for rate
flow control algorithms in [4] and [5]. In particular, the authors
in [7] proposed a utility based joint power and rate optimiza-
tion algorithm, but the resulting Nash equilibrium (NE) point
was Pareto inefficient and to guarantee the uniqueness of NE the
rates of all users were forced to be equal. In this letter, we use
game theory framework for finding a pure distributed algorithms
for the joint rate and power control optimization problem. To
solve the problem, we propose two, layered, but noncooperative
priced games as follows: The first game allocates the optimal
transmission rates for all users, then provides the second game
with a vector of constants . The second game uses to eval-
uate the optimal transmit power levels that support the resulting
Nash equilibrium transmission rates of game .

II. SYSTEM SETUP AND OUR APPROACH

Consider transmitter/receiver pairs (users) in a mobile cel-
lular network. The th transmitter,
transmits at a power level from its convex strategy space
to the th receiver and sends data at a rate from its convex
strategy space . The received power level at the th receiver
from the th transmitter is given by where is
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the path gain from the th transmitter to the th receiver. This
gain may represent spreading gain and/or cross correlation be-
tween codes in CDMA systems or any gain that captures the
effect of a fading channel.

The game that optimally allocates the transmission rates
for all users is given by

(1)

where , is the pricing factor broad-
casted by the base station (BS) to all users, and (which mea-
sures the willingness of user to pay) is the utility factor of the
th user locally selected based on the desired transmission rate.

Finally, is a constant selected such that , and
is the minimum required transmission rate. The first term of
is chosen to maximize the transmission rate of user , while the
second term works as a barrier to prevent the th user’s rate from
going below , and to fairly allocate the transmission rates.
The goal of is to prevent the greedy use of the available
channel capacity.

Game below, allocates the transmit power levels that sup-
port the resulting Nash equilibrium rates , of game

.

(2)

is the effective interference that user needs to overcome.
Vectors and are the vectors of transmission rates and
transmit powers of all users except for the th user, and is the
signal-to-interference ratio (SIR) defined by

(3)

In applications where the spectrum and power are limited re-
sources, it is recommended to use a spectrally and power effi-
cient modulation technique such as M-QAM. An empirical link
rate model for -QAM of user is given by [2]:

(4)

where with is the target BER
of user and is a system constant. In this letter we use the
following approximation of (4) at high SIR [1]:

(5)

where is normalized by the channel bandwidth with units,
nats/s/Hz. A user can change the transmission rate by adapting
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different modulation formats (e.g., 2-QAM, 4-QAM, …).
Therefore, the transmission rate of each user belongs to a
discrete set, but we assume in this letter that the transmission
rates are continuous for simplicity. In Section III we establish
the existence, uniqueness and optimality of the equilibrium
point of both games.

III. EXISTENCE OF NASH EQUILIBRIUM

A. Non-Cooperative Rate Control Game
With Pricing (NRGP)

The optimization problem of the th user defined in game
is to find the transmission rate from the strategy space that
maximizes the utility function defined in (1). To do so, we set

(6)

The maximizing transmission rate of user , is thus given by

(7)

where and
. Note that

, , which means that is a strictly
concave function of . Therefore, is a quasiconcave func-
tion optimized on a convex set , and game theory results
guarantee the existence of a Nash equilibrium point [3]. In the
remainder of this section we prove the uniqueness of this Nash
equilibrium point. We first need the following result.

Proposition 1: For game defined in (1), the best response
of user , given the transmission rates vector of the other users

is given by: , where
is the maximum allowed transmission rate in the th

user’s strategy space .
Proof: Define the best response function of the

th user as the best action that user can take to attain the
maximum pay off given the other users’ actions . That is,

,
where this set contains only one point [9]. From (7), is the
unconstrained maximizer of the target function , i.e.,

. Since is negative , this
maximizer is unique. Now, assume that is not feasible, that is,

, then user will get his/her maximum at since
the target function is increasing on the set . This
implies that is the best response of user given

.
The following theorem, proven in [6], guarantees the unique-

ness of a Nash equilibrium operating point of game .
Theorem 1: If a power control algorithm with a standard best

response function has a Nash equilibrium point, then this Nash
equilibrium point is unique.

See [6] for the definition of a standard function. Theorem 1
allows us to state the following lemma, whose proof is omitted.

Lemma 1: In game , the best response vector of all users
given by

is a standard vector function. Therefore, by theorem 1, game
has a unique Nash equilibrium point .

B. Non-Cooperative Power Control Game With Pricing

To find the maximizing for game we evaluate:

(8)

and by substituting for the value of , the maximizing transmit
power level is thus given by

(9)

The transmit power level represents the minimal power (i.e.,
without waste) required to support the optimal transmission rate

, Note that , . There-
fore, is a strictly concave function, and using the same ar-
gument for in , there exists a Nash equilibrium point

in game . In what follows we prove
the uniqueness of the Nash equilibrium point of game by
proposing the best response of user in game similarly to
proposition 1.

Proposition 2: For game defined in (2), the best response
of user , given the transmit power levels vector of the other
users is given by: ,
where is the maximum transmit power level in the th
user’s strategy space .

Then, the uniqueness of the Nash equilibrium operating point
can be proved similarly to game since the best response
vector of users in given as
is also a standard function. The following Lemma then guar-
antees Pareto optimality (efficiency) of the equilibrium point

of both NRGP and NPGP games and , respec-
tively.

Lemma 2: The Nash equilibrium point of the NRGP
game and NPGP game is Pareto optimal. Mathemat-
ically speaking, for , :

, and for some , with
component wise. For , :

, and for some
, with component wise.

Proof: We already know from (6) that

(10)

where , therefore (10) can be written as

(11)

Without loss of generality, let , where
, . Then we have the following:

(12)
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In order to find out how behaves with , we need to find
the first-order derivative of with respect to as follows:

(13)

where . One can check easily
that , . Henceforth,

, , that is, is decreasing
over for all users, and by this we conclude that
is a Pareto optimal NE point of NRGP game . To prove
that is a Pareto optimal NE point of , it is enough to
prove that is the minimum required transmit power
to support for all . By re-writing (9) as:

, And from (5), we conclude
the proof.

It was proven in [6] that both synchronous and asynchronous
algorithms with standard best response functions converge to
the same point. Therefore, we consider asynchronous power
and rate control algorithms which converge to the unique Nash
equilibrium point of games and . In this algo-
rithm, the users update their transmission rates and powers in
the same manner as in [9]. Assume user updates its transmis-
sion rate at time instances in the set , with

and for all . Let
where with and define to
be the transmission rates vector picked randomly from the total
strategy space .

Algorithm 1: Consider the game given in (1) and gen-
erate a sequence of transmission rates vectors as follows: (a)
Set the transmission rate vector at time : , let

(b) For all , such that : Given ,
calculate , then let
the transmission rate
(c) If stop and declare the Nash equilibrium
transmission rates vector as , else let and go to
(b). (d) For all , calculate and provide it to algorithm 2.

When Algorithm 1 converges to , Algorithm 2 below finds
the optimal levels to support . Suppose user updates its
power level at time instances in , with

and for all . Let where
with and define a

randomly chosen power vector in .
Algorithm 2: The game as given in (2) generates a

sequence of power vectors as follows: (a) Set the power
vector at time : , let . (b) For all

, such that : Given , then calculate
, then let the

transmit power (c) If
stop and declare the Nash equilibrium power

vector as , else let and go to (b).

IV. SIMULATION RESULTS

We consider a wireless data system with re-
ceiver/transmitter pairs. The path gains were generated
from a uniform distribution on for all

Fig. 1. Normalized equilibrium rates of the game G1(�) and the normalized
minimum required rates of the users (+) in the upper graph and the equilibrium
powers of the gameG2(�) in the lower graph versus the user index with pricing
factor � = 10 , utility factors u = 10 , and � = 10 , 8 i 2 N .

and [1]. The additive-white-gaussian noise
(AWGN) variance was set . Game was
run for different values of the minimum transmission rates for
different users. Results show that all users were able to reach
reasonable transmission rates with low transmit power levels
resulting from game as shown in the lower graph of Fig. 1.

V. CONCLUSIONS

In this letter two joint game-theoretic distributed rate and
power control algorithms for wireless data systems were pro-
posed. We presented target functions which are composed of
the difference between a utility function and a pricing function
to set the rules of the games among the users. We established
the existence, uniqueness and Pareto optimality (efficiency) of
the Nash equilibrium point of both games. All 50 users in the
studied example were able to attain transmission rates that are
higher than their minimum required transmission rates at very
low transmit power levels.
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