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THE USE OF MACHINE LEARNING IN SMART ANTENNAS 

*Christos G. Christodoulou’, Judd A. Rohwer’, and Chaouki T. Abdallah’ ’ The University of New Mexico 
’Sandia National Laboratories, Albuquerque, NM 

Abstract-The goal here is to make arrays “smart” so that when one of the antenna 
elements in the array fails, the beamforming and beamsteering performance of the array 
degrades gracefully. Such an objective can be achieved in reconfiguring the array when 
an element is found to be defective, by either changing the material properties of the 
substrate or by applying appropriate loading in order to make the array functional again. 
Our approach is based on optimization using Machine learning and Support Vector 
Machines (SVM). The basic idea is to change the excitation coefficient for each array 
element (magnitude and phase) to optimize for changes due to the environment 
surrounding an array antenna. Using Support Vector Machines, one can train the antenna 
array to change its elements phase or excitation distribution in order to maintain a certain 
radiation pattem or to enhance its beam steering and nulling properties and solve the 
DOA problem as well. 

1. Introduction to Machine Learning and Support Vector Machines (SVM) 
Pattem classification is a machine learning process for observing input data and applying 
classification rules to generate binary or multiclass labels. In the binary case, a 
classification function is estimated using inpdoutput training pairs with unknown 
probability distribution,P(x,y), where x is sample vector of observations and y is a 
machine leaming label. Let: 

(XI , ~ i  1,. . ., (XN, Y N )  E % n  x Y,  
y i  = {- l,+l},i = I,. . . N 

(1) 

The estimated classification function maps the input to a binary output, 

f : ‘illn + {- l,+l} . The system is first trained with the given input/output data pairs, the 
sample size is length N, the input vectors are of dimension n . The test data, taken from 
the same probability distribution P(x,  y )  is then applied to the classification function. 
The binary output label, +1, is generated if f ( x )  2 0 , likewise -1 is the output label if 

f ( x )  < 0 .  For the multiclass case Y E %‘ where Y is a finite set and C is the size of 
the multiclass label set. The objective is to estimate the function which maps the input 
data to a finite set of output labels. Since the probability distribution of the input data is 
unknown, the classification function must be estimated by minimizing the empirical 
expected risk. The risk is defined as : 

and L is the loss function. By setting conditions of the minimization routine and the 
number of available data, the empirical risk converges towards the expected risk. 
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1.1 Kernel Functions 
Kemel-based machine learning algorithms utilize a projection of the input space to a 
higher dimensional feature space, F , via a nonlinear mapping, 
T : ! R N  -+F and x - + T ( x )  (3) 

Kemel functions compute the scalar dot products of the inputloutput pairs in the feature 
space F. Without kemel functions scalar operations in the higher dimensional feature 
space would be prohibitively difficult. Essentially, an algorithm in the input space can he 
applied to the data in the feature space. 

r(x). r(xi) = k(x. x i )  (4) 

A nonlinear algorithm in the input space, such as the classification functions, corresponds 
to a linear algorithm in the feature space. Figure 1 shows a nonlinear binary classification 
system that is not separable in the input space, but in the feature space the two classes are 
linearly separable with the optimal separating hyperplane. 

Fig. 1. The data in the input space is not 
linearly separable. The data in the higher 
dimensional feature space is linearly 
separable with the optimal separating 
hyperplane 

1.2 Support Vector Machines, Binary and Multiclass 
SVMs are a nonparametric machine leaming algorithm with the capability of controlling 
the capacity through the support vectors. SVMs find a classification function that 
separates data classes, with the largest margin, using a hyperplane. The difference 
between all machine leaming algorithms for pattem classification is the mathematical 
operations involved in calculating the optimal separating hyperplane. The data points 
near the optimal hyperplane are the “support vectors”. 

In binary classification systems the machine leaming algorithm generates the output 
labels with a hyperplane separation The input sequence and a set of training labels are 

represented as ( x i ,  y i } E 1 ,  yi = {- l,+l}, y,  E [- 411 represents the classification 

“label” of the input vector x which has dimension n and sample length N. If the two 
classes are linearly separable in the input space then the hyperplane is defined as 
wTx + b , with w being a weight vector perpendicular to the separating hyperplane, and b 
is a bias that shifts the hyperplane parallel to itself. If the input space is projected into a 
higher dimensional feature space then the hyperplane becomes wrY(x) + b = 0 

The SVM algorithm is based on the hyperplane definition, 
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Given the training sets in equation (1) the binary SVM classifier is defined as 

The non-zero a,:s are “support values” and the corresponding data points, xi are the 

“support vectors”. Quadratic programming is one method of solving for the ais 
and b in the standard SVM algorithm. 

1.3 Least Squares Support Vector Machines, LS-SVM 
Using the LS-SVM version of equation (6)  allows its use for non-binary applications. The 
LS-SVM classifier is generated from the optimization problem: 

y and vi are the regularization and error variables, respectively. The minimization 
in equation (6)  includes the constraints 

yi [wTr(xi) + b]= 1 - @ i , i  = 1,. . . ,n 

The LS-SVM includes one universal parameter, y , that regulates the complexity of the 
machine leaming model. This parameter is applied to the data in the feature space, the 
output of the kernel function. A small value of y minimizes the model complexity, 
while a large value of y promotes exact fitting to the training points. The error variable 
pi allows misclassifications for overlapping distributions. The Lagrangian of equation is 
defined as 

Z,,(w,b,h a)  = -&,W,@ - 2 a i  {y,[w‘r(x,) + b]- 1 + qt} (9) 
i = l  

where ai are the Lagrangian multipliers. 

2. How they are Applied to Array Antennas. 
The aim is to cast the array antenna problem into the form of equation (9) and then train 
the LS-SVM algorithm. For example, for the direction of arrival (DOA) problem, the 
LS-SVM algorithm is trained with projection vectors generated from the signal subspace 
eigenvectors and the respective covariance matrices. This takes into consideration the 
number of antenna elements, the element separation, Doppler shift, number of incident 
signals, and it can also be trained to take into consideration any terrain or platform 
changes on which the antenna elements reside on. The training can be done for any kind 
of communication system such as CDMA, FDMA or TDMA. The output labels from the 
multiclass LS-SVM system are the DOA estimates. Figure 2, depicts an example of 
DOAs evaluated using machine leaming and its comparison with the MUSIC algorithm 
[I-21. 

Beam steering and power control [3] of the antenna elements can also be handled for 
various communication channels. In every situation the idea is to find the optimal 
hyperplane that will allow us to separate the desired input features to classify and train 
the SVS algorithm. 
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Fig. 2. DOA estimation using the LS-SVM and the MUSIC algorithms. The LS-SVM DOA 
estimation algorithm includes five classes and a three degree DOA range. 

Conclusions. As array antennas are placed on complex surfaces and structures, more 
and more computational capabilities are developed to handle the demand of analyzing 
such antennas. However, once the antenna is built and placed on a certain platform, 
changes that affect both the shape of the structure and the effectiveness of the materials 
used to fabricate the antenna may occur. Machine leaming is an approach that can handle 
some of these complexities in real-time fashion. An example was presented with a 
multiclass LS-SVM architecture for DOA estimation 
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