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Finite-Time Stability of Discrete-Time Nonlinear Systems:
Analysis and Design

S. Mastellone, P. Dorato, C. T. Abdallah

Abstract— Finite-time stability of nonlinear discrete-time
systems is studied. Some new analysis results are developed
and applied to controller design.

I. INTRODUCTION

In this work we propose a new analysis result for fi-

nite time stability of deterministic and stochastic discrete-

time nonlinear systems. We also extend existing results in

finite-time stability to the design of discrete-time stochastic

systems. In many practical problems it is of interest to

investigate the stability of a system over a finite interval

of time. Consider for example the problem of driving a car

across a tunnel for which the distance between the bound-

aries is a known quantity 2β, knowing that the mission

lifetime is N , we can reformulate the problem in term of

finite-time stability since we have specific constraints on

state bounds and time. Classical control theory does not

directly address this requirement because it focuses mainly

on the asymptotic behavior of the system (over an infinite

time interval), and does not usually specify bounds on the

trajectories. On the other hand, finite-time stability (or short-

time stability [7], [12]) plays an important role in the study

of the transient behavior of systems.

It is important to underline that the two stability concepts

are disconnected. In fact, a system may be finite-time stable,

i.e. a state starting within a “specified” bound α does not

exceed a “specified” bound β in a specified time interval

[0, N ], but may become unstable after the specified interval

of time. On the other hand, the state trajectory might

exceed the given bound over a certain time interval, but

asymptotically go to zero. Asymptotic stability is specified

with respect to arbitrary bounds, i.e. a trajectory starting

within a bound δ(ε) stays in an “arbitrary” ε and eventually

converges to the origin, while finite-time stability is always

defined with respect to pre-specified bounds α and β.

At first the concept of finite-time stability emerged under

the name of “practical stability” [22], in which specific

bounds on the state were given. The finite-time stability

analysis problem has been discussed for linear [3], [6], [7],

[8], [9], [10] and nonlinear systems [15], [16], [17], [18],

[26]. A stochastic version of finite-time stability has been

developed in [13] for analysis and in [20], [21] for optimal

control design. Deterministic finite-time stability theory has
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been applied to several control problems in linear systems

[4], [5], [11]. It is interesting to notice the time gap between

1972 and recent papers. After a brief discussion of the

deterministic version in section (II), we mainly focus on

stochastic finite-time stability (III). In particular, we intro-

duce in section (III-A) some useful bounds, then in section

(III-B) we use those bounds to state sufficient conditions for

a stochastic system to be finite-time stable. Section (III-C)

compares and discussed the results in the previous sections.

We then proceed in section (III-D) to extend the analysis

techniques to designing controllers. Finally in section (III-

E), we propose an optimal feedback law for finite-time

stability of a dynamical stochastic system.

II. DETERMINISTIC FINITE-TIME STABILITY

We focus on discrete-time dynamical systems described

by

xk+1 = f(xk), x ∈ IRn, x(0) = x0 (1)

Where x is the system state, and f : IRn → IRn is a vector

function. For notational simplicity, we use xk = x(k). Also

from now on we will denote ||.|| ≡ ||.||22. We are interested

in studying the state trajectory of the system in a finite time

interval.

Definition 1: Finite-Time Stability [1], [23] The sys-

tem (1) is finite-time stable (FTS) with respect to the 4-

tuple (α, β,N, ||.||), α ≤ β if every trajectory xk starting

in ||x0|| ≤ α satisfies the bound ||xk|| ≤ β for all

k = 1, . . . , N .

Some extensions of the FTS concept are presented in

[2],[15]. Next we present a new analysis result for FTS of

nonlinear discrete-time systems. We consider three classes

of systems described in Figure (1): a) systems for which the

state trajectories always increase in the norm, b) systems for

which states always decrease in the norm, and c) systems

whose state trajectories behavior’s is mixed.

The first step consists of exploring the state trajectories

using a discrete version of the continuous-time Bellman-

Gronwall inequality [19]. If the state trajectory is always

increasing (in the norm) during the time interval of interest,

then it is enough to verify that the state at the last time of the

interval does not exceed the bound. In the case where the

trajectory is always decreasing and it starts inside the bound,

the FTS is guaranteed. In the case of a mixed behavior, it

is necessary to explore if the trajectory is bounded at each

time step. In the next theorem we formulate the conditions

for finite-time stability of the system (1).
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Theorem 1: The system (1) is finite-time stable with re-

spect to (α, β,N, ||.||), α ≤ β, if for a function V (xk, k) =
Vk ≥ 0 such that δ1||xk|| ≤ Vk ≤ δ2||xk||, where

δ1 > 0, δ2 > 0, γ = δ1β, γ0 = δ2α, V0 ≤ γ0 and

Sβ = {xk : ||xk|| ≤ β} we have ∀k = 0, . . . , N, ∀xk ∈ Sβ

∆Vk ≤ ρkVk (2)

and one of the following three conditions occur:

• Case 1: ρk ≥ 0

γ

γ0
≥

N−1∏
i=0

(1 + ρi) (3)

The value of ρk ≥ 0 implies that the bounds on the

increments of Vk are as a worse case always greater

than one, which is the case of monotonically increasing

functions.

• Case 2: 0 ≥ ρk > −1
No additional conditions are required.

The condition 0 ≥ ρk > −1 restricts the bounds on

the increments of Vk to be always between zero and

one, which constrains the function to be monotonically

decreasing.

• Case 3: ρk > −1

γ

γ0
≥ sup

k

k−1∏
i=0

(1 + ρi) (4)

The case ρk > −1 contains the two previous cases, that

is the function Vk may be increasing and decreasing.

Proof: The proof is available in [25]
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Fig. 1. a) Increasing dynamics. b) Decreasing dynamics. c) Mixed
dynamics.

III. STOCHASTIC FINITE-TIME STABILITY

Next, we describe how finite-time stability, which was

originally defined for deterministic systems may be ex-

tended to stochastic systems. Consider a discrete time,

stochastic dynamical system

xk+1 = f(xk, θk), x ∈ IRn, x(0) = x0 (5)

Where x is the system state, and f : IRn × B → IRn is a

vector function, B is the family of Borel subsets of points on

IR; also {θk} is a stationary independent random sequence,

with mean µθ = E[θk] = E[θ2
k] and variance σθ, which

makes xk a Markov process in IRn. In stochastic dynamical

systems it is meaningful to consider the probability for the

trajectory not to exceed a given bound over a finite time

interval. Therefore we consider the following definitions

Definition 2: Inclusion Probability [20] Consider the

dynamical stochastic system (5), the associated inclusion

probability with respect to (α, β,N, ||.||) is defined as

follows:

Pin(xk;α, β,N) = P{||xk|| ≤ β : 0 ≤ k ≤ N ; ||x0|| ≤ α}
Definition 3: Exit Probability Consider the dynamical

stochastic system (5), the associated exit probability with

respect to (α, β,N, ||.||) is defined as follows:

Pex(xk;α, β,N) = P{ sup
N≥k≥0

||xk|| > β; ||x0|| ≤ α}
Note that Pex(xk;α, β,N) = 1 − Pin(xk;α, β,N). There-

fore, we define stochastic finite-time stability:

Definition 4: Finite Time Stochastic Stability,(FTSS)

The dynamical system (5) is FTSS with respect to

(α, β,N, λ, ||.||) if

Pin(xk;α, β,N) ≥ (1 − λ), or (6)

Pex(xk;α, β,N) < λ (7)

We will show next how FTSS can be indirectly deter-

mined by studying the exit and inclusion probabilities asso-

ciated with a function V (xk, k) defined for the dynamical

system.

A. Bounds on Exit Probability

In order to analyze and to eventually design for the finite-

time stability of a process, we provide in this section upper

bounds on the exit probability of the process (5) and on the

associated function Vk. These upper bounds will allow us to

indirectly study the FTSS of the system. The first theorem

we present is from [13], [14].

Theorem 2: [13] Consider a discrete-time Markov pro-

cess xk, k = 0, 1, . . . . Also consider the function

V (xk, k) = Vk ≥ 0 and the open set Sγ = {xk : Vk ≤ γ}.

If the following conditions are satisfied ∀xk ∈ Sγ , φk ≥ 0

Exk
[V (xk+1, k + 1)] ≤ ∞∀xk ∈ Sγ ,

Exk
[V (xk+1, k + 1) − V (xk, k)] ≤ φk+1

Then for the initial condition x(0) = x0 we have

Pex(Vk; γ0, γ,N) ≤ [V0 + ΦN ]
γ

(8)
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where ΦN =
∑N

i=1 φi

Proof: See [13] or [14]

The last theorem gives an upper bound for the exit probabil-

ity of Vk. This upper bound depends on the initial conditions

through V0, on the desired bound through γ, and on the time

interval and state dynamics indirectly through ΦN . Next,

we bound the exit probability of the state dynamics of (5)

directly.

Theorem 3: Consider the dynamical system (5)

and its exit probability with respect to (α, β,N, ||.||),
Pex(xk;α, β,N), also consider the function Vk as

described previously, we have the following upper bound

Pex(xk;α, β,N) ≤ E

[
supN≥k≥0 ||xk||

β
; ||x0|| ≤ α

]
Proof: The proof easily follows from Chebychev

inequality [24]. In the following, I is the indicator function,

for brevity I = I{supN≥j≥0 ||xj ||>β}. Also recalling that

P (x ≤ t) = E[Ix≤t], then

Pex(xk;α, β,N) = P{ sup
N≥k≥0

||xk|| > β; ||x0|| ≤ α}

= E

[
I( sup

N≥j≥0
||xj ||); ||x0|| ≤ α

]

≤ E

[
I( sup

N≥j≥0
||xj ||)

supN≥k≥0 ||xk||
β

; ||x0|| ≤ α

]

≤ E

[
supN≥k≥0 ||xk||

β
; ||x0|| ≤ α

]

Again the bound on Pex(xk;α, β,N) is directly related to

the bounds on the state α, β, to the state dynamics, and to

the time interval.

B. Stochastic Finite-Time Stability Analysis

In the previous section we showed how the exit probabil-

ity relative to the state dynamics xk and to the associated

function V (xk, k) can be bounded and how the bound de-

pends on the parameters describing the finite-time stability

objective. In this section we use the described bound to

provide sufficient conditions for FTSS stability of system

(5).

Theorem 4: Consider the dynamical system (5) and a

function Vk such that for given δ1, δ2 we have δ1||xk|| ≤
V (xk, k) ≤ δ2||xk||, and γ = βδ1, γ0 = αδ2, V0 ≤ γ0,

δ1 > 0, δ2 > 0. Then the system is finite-time stochasti-

cally stable with respect to (α, β,N, ||.||, λ), if any of the

following three conditions is satisfied

(i)

Exk
[Vk+1] ≤ ∞ (9)

Exk
[∆Vk] ≤ φk+1

[αδ2 + ΦN ]
βδ1

≤ λ

ΦN =
N∑

k=1

φk, ∀xk ∈ Sγ , φk ≥ 0

(ii)

E

[
supN≥k≥0 ||xk||

β
; ||x0|| ≤ α

]
≤ λ (10)

(iii)

P{∆Vk ≤ ρkVk} ≥ (1 − λ) (11)

γ

γ0
≥ sup

k

k−1∏
i=0

(1 + ρi) (12)

∀xk ∈ Sγ , ρk > −1, ∀k = 0, . . . , N
Proof: In order to prove the above statements we

verify that (i) − (iii) imply finite-time stability for the

system. Finite-time stability easily follows from point (i)
considering that for δ1||xk|| ≤ V (xk, k) ≤ δ2||xk||, ∀k =
0, . . . , N and γ0 = δ2α, γ = δ1β we have

Pex(xk;α, β,N) ≤ Pex(Vk; γ0, γ,N) (13)

and therefore from theorem 2 and (i)

Pex(xk;α, β,N) ≤ λ (14)

Now recalling that Pex(xk;α, β,N)+Pin(xk;α, β,N) = 1
we have that finite-time stability for the system (5) with

respect to (α, β,N, ||.||, λ) i.e.

Pin(xk;α, β,N) ≥ (1 − λ) (15)

For point (ii), from the upper bound on Pex(xk;α, β,N)
provided in theorem 3, with the same principle as before

directly follows that

Pex(xk;α, β,N) ≤ λ (16)

and therefore

Pin(xk;α, β,N) ≥ (1 − λ) (17)

Finally for the proof of point (iii) let us consider the

following for ρk > −1 and ∀k = 0, . . . , N

P{∆Vk ≤ ρkVk} = P{Vk+1 − (1 + ρk)Vk ≤ 0} (18)

then iterating the partial difference inequalities and consid-

ering the upper bound on V0 ≤ γ0 we get ∀k = 0, . . . , N

P{∆Vk ≤ ρkVk} ≤ P{Vk ≤ γ0

k−1∏
i=0

(1 + ρi)} (19)

then using the condition (12) from (iii) it follows that ∀k =
0, . . . , N

P{∆Vk ≤ ρkVk} ≤ P{Vk ≤ γ} (20)

and moreover ∀k = 0, . . . , N

(1 − λ) ≤ P{∆Vk ≤ ρkVk} ≤ P{Vk ≤ γ} (21)

that implies finite time stability with respect to

(α, β,N, ||.||, λ)
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C. Relations of FTS Conditions

In this section we compare the above results for FTS

analysis. First we study how the two upper bounds presented

in section (III-A) are related. In particular let us consider

(recall theorem 2) the following

Pex(Vk; γ0, γ,N) ≤ [V0 + ΦN ]
γ

(22)

where ΦN =
∑N

i=1 φi and from theorem 3, and from the

definition of function Vk, we have

Pex(xk;α, β,N) ≤ E

[
supN≥k≥0 Vk

γ
;V0 < γ0

]

then using the fact that δ1||xk|| ≤ V (xk) ≤ δ2||xk|| and

γ = δ1β we have

Pex(xk;α, β,N) ≤ Pex(Vk; γ0, γ,N) (23)

and moreover, by Chebychev inequality

Pex(Vk; γ0, γ,N) ≤ E

[
supN≥k≥0 Vk

γ
;V0 < γ0

]
(24)

from inequalities (23,24) we conclude that, to find a the least

conservative upper bound on Pex(xk;α, β,N), we only

need to compare the two bounds on Pex(Vk; γ0, γ,N), in

(22) and (24). In particular we observe that in (22), starting

from V0, pessimistic bounds are set on the trajectory of Vk

at each step by φk’s. In (24) we are actually considering

the expected value of supremum over all Vk in the studied

interval. In principle the bound in (24) is less conservative

than the one in (22) and does not require evaluation of the

increment at each step, but on the other hand it is not easy

to directly calculate the value of the supremum of Vk.

Now let us consider part (iii) of theorem 4 from which

we have for k = 0, . . . , N

P{∆Vk ≤ ρkVk} ≤ P{Vk ≤ γ0 sup
k

k−1∏
i=0

(1 + ρi)}

≤ P{Vk ≤ γ}
= 1 − P{ sup

N≥k≥0
Vk > γ}

we then observe how the last term (the inclusion probabil-

ity), is the complement of the exit probability for Vk, and

then a bound analogous to the one in (24) applies.

Since the three parts of theorem 4 are comparable, from

now on we will just focus on the first part (i), since it is

more general and does not directly require the knowledge

of the state of the system.

D. Finite-Time Stochastic Stability Design

The previous section focused on analysis but may be

extended to designing controllers that stochastically stabi-

lize a system over a finite time. Consider the discrete-time,

stochastic dynamical system in which the state is a Markov

process in IRn

xk+1 = f(xk, θk) + g(xk)uk, x ∈ IRn, x(0) = x0 (25)

Where x is the system state, uk is a one-dimensional

control input, f and g are vector functions, and {θk} is

an independent stationary random sequence with mean µθ.

In particular, we consider systems in which the random se-

quence {θk} appears linearly in the system i.e. f(xk, θk) =
f(xk)θk. In order to simplify notation, we will use the

following forms g(xk) = gxk
and f(xk) = fxk

.

We aim to design a state-feedback control law uk =
u(xk), such that the closed-loop system is FTSS with

respect to the parameters (α, β,N, ||.||, λ). The proposed

design technique is based on part (i) of theorem 4. In

particular the control law has to guarantee the finite-time

stochastic stability condition (i) is satisfied. From now on,

we also restrict our study to the choice of Vk = xT
k xk,

which will lead to conservative results.

Theorem 5: Let us consider the Markov process defined

in (25), and denote with µθ the mean of each random

variable θk, k = 0, . . . , N . Consider the FTSS condition

(9), and let us choose φk = γλ−γ0
N , ∀k = 0, . . . , N , and

therefore ΦN = γλ − γ0. Then, the system is stabilizable

over a finite time with respect to (α, β,N, ||.||, λ) and

V (xk) = xT
k xk, if there exists an input law u(xk) such

that, ∀k = 0, . . . , N,∀xk ∈ Sγ = {xk : V (xk) ≤ γ}
if gT

xk
gxk

= (fT
xk

gxk
+ gT

xk
fxk

) = 0

then (fT
xk

fxk
− xT

k xk) < φk (26)

orelse

Exk
[V (xk+1, k + 1)] ≤ ∞ (27)

µθf
T
xk

fxk
− xT

k xk + gT
xk

gxk
u2

k

+µθ(fT
xk

gxk
+ gT

xk
fxk

)uk ≤ φk; (28)

µ2
θ(f

T
xk

gxk
+ gT

xk
fxk

)2 ≥
4gT

xk
gxk

(µθf
T
xk

fxk
− xT

k xk − φk) (29)

The set of possible control laws is given by

u1 ≤ uk ≤ u2, for gT
xk

gxk
�= 0, and

(fT
xk

gxk
+ gT

xk
fxk

) �= 0;

uk = 0, for gT
xk

gxk
= (gT

xk
fxk

+ fT
xk

gxk
) = 0

Next, let A1 = (fT
xk

gxk
+ gT

xk
fxk

), B1 = (µθf
T
xk

fxk
−

xT
k xk − φk),

u1,2 =
−µθA1 ±

√
µ2

θ(A
2
1) − 4gT

xk
gxk

B1

2gT
xk

gxk

Proof: Consider condition (28). Because of the choice

of φk we have

Exk
[Vk+1 − Vk] ≤ γλ − γ0

N
, ∀k = 0, . . . , N (30)

and also

ΦN =
N∑

k=0

γλ − γ0

N
= γλ − γ0, (31)

from theorem 2 the above conditions imply

Pex(Vk; γ0, γ,N) ≤ [V0 + ΦN ]
γ

≤ [γ0 + γλ − γ0]
γ

= λ (32)

2575



and therefore finite-time stability follows.

The proposed design technique guarantees closed-loop

finite-time stability under the theorem’s assumptions. How-

ever, we actually designed to meet the specified bound

by fixing φk. This is a constraint that makes the above

conditions on the existence of the controller only sufficient.

E. Minimization of the Exit Bound

In the previous section we designed a controller in order

to meet given bounds on the inclusion probability Pin of

the stochastic system (25). Here we proceed to develop

design techniques to maximize the inclusion probability of

the system. Instead of directly designing for the objective

Pin, we base our design on the minimization of some

upper bound on the objective Pex. Consider the following

optimization problem

max
u

Pin(xk;α, β,N) = (33)

max
u

P{||x(k)|| ≤ β : k ∈ [0, N ]; ||x0|| ≤ α}
given the system (25). This objective can be achieved also

by considering the equivalent problem

min
u

Pex(xk;α, β,N) = (34)

min
uk

P{ sup
0≤k≤N

||xk|| > β; ||x0|| ≤ α}

We can indirectly solve this problem by minimizing an

upper bound on the function i.e.

min
u

L(xk, uk) (35)

where L(xk, uk) is a cost function such that, ∀k =
0, . . . , N,∀xk ∈ Sγ

Pex(xk;α, β,N) ≤ L(xk, uk) (36)

In section (III-A) we provided some bounds on

Pex(Vk; γ0, γ,N) and consequently on Pex(xk;α, β,N).
Here we use those bounds in order to design for

finite-time stability for the system (25) with respect to

(α, β,N, ||.||, λ), with λ as small as possible.

Theorem 6: Consider the system (25), and a function

V (xk) = xT
k xk. Then there exists a control law uopt(xk)

that minimizes Pex(Vk; γ0, γ,N) i.e. stabilizes the system

over a finite time with respect to (α, β,N, ||.||) if for

gT
xk

gxk
�= 0, uk minimizes the cost function L(xk, uk), i.e.

L(xk, uk,opt) ≤ L(xk, uk), ∀u, ∀k = 0, . . . , N (37)

where ∀k = 0, . . . , N

L(xk, uk) = µθf
T
xk

fxk
− xT

k xk + gT
xk

gxk
u2

k + µθ(A1)uk

Moreover, the optimal control law is given by

uk =

{
0 gT

xk
gxk

= 0

−µθ(gT
xk

fxk
+fT

xk
gxk

)

(2gT
xk

gxk
)

gT
xk

gxk
�= 0

(38)

for all k = 0, . . . , N .

Proof: The control law that minimizes λ can be found

by considering once again the upper bound on the exit

probability presented in theorem 2. The following sufficient

conditions are given for the existence of such upper bound

Pex(xk; γ0, γ,N) ≤ [V0 + ΦN ]
γ

Exk
[Vk+1 − Vk] ≤ φk+1, ∀xk ∈ Sγ , φk ≥ 0 (39)

where ΦN =
∑N

k=0 φk. Since our objective is to maximize

the inclusion probability or, equivalently, minimize the exit

probability, we may minimize the upper bound on the exit

probability since γ, γ0, N are independent of the input uk.

We can then meet this requirement from the inequality (39)

by minimizing each of the terms Exk
[Vk+1 − Vk] for xk ∈

Sγ or equivalently for Vk = xT
k xk

L(xk, uk) = E[(θ2
kfT

xk
fxk

− xT
k xk + gT

xk
gxk

u2
k

+θk(gT
xk

fxk
+ fT

xk
gxk

)uk)]

that is an upper bound on Exk
[∆(V (xk))]. Since γ, γ0 and

E[θ2
k] = E[θk] = µθ are fixed positive values we have

L(xk, uk) = [(µθf
T
xk

fxk
− xT

k xk + gT
xk

gxk
u2

k

+µθ(gT
xk

fxk
+ fT

xk
gxk

)uk)]
∀k = 0, . . . , N (40)

We then obtain uk in (38) that minimize L(xk, uk) by

finding the solution to ∂
∂uk

L(xk, uk) = 0

IV. FINITE-TIME STABILITY DESIGN EXAMPLE

In this section we present an example to illustrate our

design techniques.

Example 1: Consider the system

xk+1 = 0.5e(xk)θk + sin(2π
xk

5
− 7)uk

where θk ∈ {0, 1} is a process of i.i.d. random variables,

with mean µθ = 0.5. We would like to choose uk in such

a way that the closed-loop system is finite-time stable with

respect to (α = 0.25, β = 1, N = 10, ||.||, λ = 0.3). We

also want to minimize a bound on the exit probability Pex.

By applying theorem 5 with δ1 = 1, δ2 = 1 and therefore

φk = 0.005 and choosing in the admissible range of

controller uk = −1.3, for sin(2π xk

5 − 7) �= 0, and uk = 0,

for sin(2π xk

5 − 7) = 0, we obtain the closed-loop system

xk+1 = 0.5e(xk)θk

+ sin(2π
xk

5
− 7)(−1.3sign(|sin(2π

xk

5
− 7)|)

Also applying the input uopt that minimizes λ we obtain

the closed-loop dynamics,

xk+1 = 0.5e(xk)θk + sin(2π
xk

5
− 7))uopt(k)

uopt(k) = sign(|(sin(2π
xk

5
− 7))|)M(k)

M(k) =
−0.5e(xk)sin(2π xk

5 − 7)
2(sin(2π xk

5 − 7))2
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In Figure (2) we compare a simulation of the closed-loop

system, with the first controller uk designed for FTSS with

respect to (α = 0.25, β = 1, N = 10, ||.||, λ = 0.3), with

the open-loop controller, and finally the closed-loop system

with the second controller uopt. Notice how in the open-loop

case the bound β = 1 is exceeded for more than three times

over the first 10 seconds of simulation, while in the second

case the bound is exceeded 3 times over the 10 seconds

(i.e. Pex = 0.3) and in the third case is never exceeded,

that shows how the design goals have been satisfied.
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Fig. 2. Open loop system versus closed loop systems with exit probability
Pex ≤ 0.3 and minimal exit probability.

V. CONCLUSION

We presented in this paper new results on finite-time

stability for stochastic discrete-time nonlinear systems.

Moreover, we explored how finite-time stability analysis

techniques can be extended to control design.

After discussing deterministic FTS, and a new approach

to its analysis, we considered a stochastic system and ex-

plored its finite-time stability. In particular, we described the

concepts of “inclusion probability” and “exit probability”.

We also showed how these quantities can be bounded by

bounds that depend on the required finite-time stability

parameters and that may be used to analyze FTSS, and to

design for closed-loop FTSS. We finally described how an

upper bound on the exit bound can be minimized, that is

design for minimizing the probability of exceeding a bound

over a finite time.

The most difficult aspect of applying our results is the

checking the inequalities in the various theorems. It might of

future value to study specific structures such as polynomial

systems to alleviate such problems. It is also of interest to

apply the FTSS results presented here to packet-dropping

problems in networked control systems, and to study the

effects of time delay.
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