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Abstract— In this paper we analyze model-based networked
control systems for a discrete-time nonlinear plant model,
operating in the presence of stochastic dropout of state
observations. The dropout is modelled as a Markov chain,
and sufficient conditions for stability are provided using the
stochastic version of Lyapunov’s second method.

I. INTRODUCTION

In several recent works, the problem of networked control
systems (NCS) has been posed and partially investigated
[2], [6], [9], [13], to [15]. This new problem deals with
the possibility of controlling a system remotely via a com-
munication network and as such, instantaneous and perfect
signals between controller and plant are not achievable.

In [11] a model for the networked control of linear time
invariant systems was proposed. The network is modelled as
a sampler placed between the plant and sensors on one side,
and the controller on the other side of the network. Utilizing
an approximate model of the process at the controller’s side,
the controller can maintain stability while receiving only
periodic updates of the actual state of the plant. Whenever
a new update is received, the model plant is initialized with
the new information. This idea was utilized in [1], where
the system evolved in discrete-time, and state updates were
either received or dropped at each sample due to the effect
of the network. The characterization of such a dropout is
achieved through the use of Markov chain that takes on
values of 0 or 1 depending on whether a sample was lost
or received, respectively. Recently in [12], the initial model
for a continuous-time plant and a network modelled with
a fixed rate sampler was extended to bounded yet random
variable sample times driven by a Markov chain.

In this paper, we present an extension of the discrete-time
systems in [1] into a nonlinear setting, i.e. our plant and
the model used for state estimation are both nonlinear. We
model the packets dropping as a Markov chain, and obtain
results that guarantee stability in a stochastic Lyapunov
setting.

The paper is organized as follows: In Section II, we refor-
mulate the model-based networked control problem in the
nonlinear setting with stochastic packet dropouts. Section
III treats the case where the current state of the Markov
chain is dependent on the previous state, while section IV
treats the independent state case. Finally in Section V some

examples are presented to illustrate the results, and some
concluding remarks are given in SectionVI.

II. PROBLEM FORMULATION

In [1] a discrete-time model-based control with observa-
tion dropouts is proposed for linear discrete-time systems.
Our objective in this paper is to propose a similar framework
in the case of nonlinear systems, and to study the stability
of the closed-loop system. As depicted in Figure 1, discrete-
time model-based control is comprised of a plant with the
network residing between the sensors of the plant and the
actuators.

xk+1 = f(xk) + g(xk)uk

x̂k+1 = f̂(x̂k) + g(x̂k)uk

Sensor

x̂k

xk

x̂k

Network

Controller

uk = K(x̂k)

Fig. 1. Model-Based NCS

The network is modelled as a Markov chain θk, where a
measurement is dropped if θk = 0, and a measurement is
received when θk = 1. Due to our inability to receive an
update of the plant’s state at each discrete instant of time,
we use an inexact model plant on the controllers side that
provides us with the missing measurement. Such a model
is given by

x̂k+1 = f̂(x̂k) + ĝ(x̂k)uk. (1)

In order to carry out the analysis, we define the estimation
error as ek = xk − x̂k, and augment the state vector with
ek so that the closed-loop state vector is given by zk =

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

ThB03.4

2365



(
xT

k ; eT
k

)T
. The closed-loop system evolves according to

zk+1 =

⎛
⎝ f(xk)

(f(xk) − f̂(xk)) + ..

(1 − θk)((f̂(xk) − f̂(x̂k)))

⎞
⎠

+

⎛
⎝ g(xk)K(x̂k)

(g(xk) − ĝ(xk))K(x̂k) + ..

(1 − θk)(ĝ(xk) − ĝ(x̂k))K(x̂k)

⎞
⎠ .(2)

In the above model θk ∈ {0, 1} is a Markov chain that
indicates the reception (θk = 1) or the loss (θk=0) of the
packet containing the state measurement xk. If a packet is
received, it is used as an initial condition for the next time
step in the model, otherwise the previous state of the model
is used. We then classify the NCS errors as follows:

(I) Model structure errors

ef1(xk) = f(xk) − f̂(xk) (3)

eg1(xk) = g(xk) − ĝ(xk). (4)

These are the errors between the plant and the model
evaluated at the plant’s state, and are therefore depen-
dent on the system’s structure.

(II) State dependent errors

ef2(xk, x̂k) = f̂(xk) − f̂(x̂k) (5)

eg2(xk, x̂k) = ĝ(xk) − ĝ(x̂k). (6)

These represent the errors between the model evaluated
at the plant’s state and at its own state, i.e. the error
introduced by the difference in the states.

(III) Structure and state dependent errors

ef3(xk, x̂k) = f(xk) − f̂(x̂k) (7)

eg3(xk, x̂k) = g(xk) − ĝ(x̂k), (8)

which include both model structure and state depen-
dent errors.

With the new notation, the system (2) becomes

zk+1 =

⎛
⎝ f(xk) + g(xk)K(x̂k)

ef1(xk) + eg1(xk)K(x̂k) + ..

(1 − θk)(ef2(xk, x̂k) + eg2(xk, x̂k)K(x̂k))

⎞
⎠

Based on the value of θk we have two possible situations:

1. for θk = 1 the system will be

zk+1 =

(
f(xk) + g(xk)K(x̂k)

ef1(xk) + eg1(xk)K(x̂k)

)
(9)

2. for θk = 0

zk+1 =

(
f(xk) + g(xk)K(x̂k)

ef3(xk, x̂k) + eg3(xk, x̂k)K(x̂k)

)
(10)

For the remainder of this paper we use the following
compact form to represent the system above, which also
highlights the fact that θk represents packet dropouts,

zk+1 = H1(zk) + H2(zk)(1 − θk), k ≥ 0 (11)

with

H1(zk) = F1(zk) + G1(zk)K(x̂) (12)

H2(zk) = F2(zk) + G2(zk)K(x̂). (13)

F1(zk) =

(
f(xk)

ef1(xk)

)
(14)

F2(zk) =

(
0

ef2(xk, x̂k)

)
(15)

G1(zk) =

(
g(xk)

eg1(xk)

)
(16)

G2(zk) =

(
0

eg2(xk, x̂k)

)
(17)

While the control law has no access to the plant’s state,
we assume in the analysis of the global system full-state
availability (i.e. both xk and x̂k available). Moreover, we
assume that the control law uk = K(x̂k) stabilizes the
model plant and in the case of full-state availability, it also
stabilizes the plant.

Next we define a particular class of NCS for which we
characterize the accuracy of the model in representing the
plant’s dynamics, and describe how the model discrepancy
affects the NCS structure.

Definition 1: A model-based NCS of the form
(11), belongs to a class CB−NCS with the bounds
(Bf , Bg, Befi, Begi;Bhi

), i = 1, 2 if for all k ∈ N and for
all xk ∈ S ⊂ IRn, the system structure and error norms are
bounded as follows

||f(xk)|| ≤ Bf (18)

||g(xk)u(x̂k)|| ≤ Bg(x̂k)

||ef1(xk)|| ≤ Bef1

||ef2(xk, x̂k)|| ≤ Bef2(x̂k)

||eg1(xk)u(x̂k)|| ≤ Beg1(x̂k)

||eg2(xk, x̂k)u(x̂k)|| ≤ Beg2(x̂k)

where Bf , Bef1 are constant bounds and
Bg(x̂k), Bef2(x̂k), Beg1(x̂k), Beg2(x̂k) are bounds
that depend on the model state. Such NCS are called
bounded model-based NCS (B-MB-NCS).

The above definition describes the class of NCS, for
which it is possible to define bounds on the plant and the
NCS errors, and where such bounds depend only on the
model’s state. Introducing such class of system overcomes
the problem of unknown plant in the stability analysis
of NCS, we can now reformulate the stability analysis
problem, in term of accuracy of the model and amount of
information lost. We want to recall the reader attention on
the fact that definition (1), is not itself very restrictive, in
fact is more or less restrictive depending on the choice of
the bounds associated with it and on the domain S. Next we
state a lemma that describes properties of class CB−NCS .
In particular the lemma describes how bounds on the norm
of the B-MB-NCS errors imply bounds on the norm of the
NCS dynamics.
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Lemma 1: Consider the NCS (11) and assume the system
belongs to class CB−NCS . Then the following bounds hold
on the norm of the NCS dynamics for

i, j = {1, 2}, j �= i, k ∈ N and for all xk ∈ S ⊂ IRn,

HT
i Hj ≤ BHi,j

(x̂k) (19)

HT
i Hi ≤ BHi

(x̂k)

where the bounds on the vector functions are related to the
bounds on the errors as follows:

BH1(x̂k) = (Bf + Bg(x̂k)) + (Bef1 + Beg1(x̂k))

+2(BfBg(x̂k)) + 2(Bef1Beg1(x̂k))

BH1,2(x̂k) = (Bef1Bef2(x̂k) + Beg1(x̂k)BT
eg2(x̂k))

+BfBg(x̂k) + (Bef1Beg2(x̂k)

+Beg1(x̂k)BT
ef2(x̂k))

BH2(x̂k) = (Bef2 + Beg2(x̂k)) + 2((Bef2Beg2(x̂k))
The proof of the above lemma can be found in [10].

Lemma 2: Consider the NCS (11), belonging to class
CB−NCS(Bf , Bg, Befi, Begi;Bhi

), i = 1, 2 then for all
xk ∈ S ⊂ IRn,∀k ∈ N

||xk|| ≤ Bx(x̂) (20)

||ek|| ≤ Be(x̂)

||zk|| ≤ Bz(x̂)

where

Bx(x̂) = Bf + Bg(x̂k) (21)

Be(x̂) = Bef1 + Beg1(x̂k) + Bef2(x̂k) + Beg2(x̂k)

Bz(x̂) = Bx(x̂) + Be(x̂)
Proof: The first two inequalities just follow from (2),

(18). The second part trivially follows from

||zk|| = (||xk|| + ||ek||) ≤

(Bx(x̂) + Be(x̂)) = Bz(x̂) (22)

III. STOCHASTIC DEPENDENT MODEL FOR PACKET

DROP

Consider the discrete-time jump nonlinear system or
Markovian Jumping System [3]

zk+1 = H(zk, θk), k ≥ 0 (23)

where {θk} is a finite-state time-homogeneous Markov
chain with state space S of dimension N , transition prob-
ability matrix P = (pi,j)N×N and initial distribution p =
(p1, . . . , pN ). If the Markov chain is ergodic then it will
have a unique invariant probability distribution.

Definition 2: [4] Consider the probability space
(Ω, F, P ), in which Ω is the sample space, F is a σ-
algebra, and P is a probability measure. Let Ξ be the
collection of all probability distributions on S. Then the
Markovian Jumping system (23) with Markovian process
{θk} described above is said to be (asymptotically )

mean square stable (or second moment stable) if for any
z0 ∈ IRn and θ0 ∈ Ω

lim
k→∞

E[||zk(z0, θ0)||
2] = 0 (24)

Now we proceed to analyze the stability of the system
based on the described model (11), in which the variable
θk is a Markov chain that models packet dropping. We
consider two possible scenarios for the packet dropouts: in
the first scenario, packet dropout is at each step dependent
on the previous step according to the following conditional
probabilities

pij = P{θk = i | θk−1 = j}, ∀k ≥ 0, i, j = 0, 1 (25)

In the second scenario, independent increments are used,
i.e. p10 = p11 = p, p00 = p01 = (1 − p), where p is the
probability of getting a packet. In the following sections we
will separately deal with the two described scenarios.

A. Mean Square Stability of Nonlinear NCS

We are now ready to study mean-square stability of the
networked discrete-time nonlinear jump system

zk+1 = H1(zk) + H2(zk)(1 − θk), k ≥ 0 (26)

We will use the stochastic version of Lyapunov’s second
method to study stochastic stability [5], [7].

Theorem 1: Assume θk ∈ Ω = {0, 1} is a two-state
time homogenous Markov chain with probability transition
matrix P = (pi,j), then the discrete-time nonlinear jump
system (26) is mean-square stochastically stable if there
exists positive definite matrices Q(0), Q(1) such that, for
i = 0, 1,

zT Q(i)z >

1∑
j=0

pi,j [H12(z, i)]T Q(j)[H12(z, i)]

H12(z, i) = H1(z) + H2(z)(1 − i)

Proof: To prove the above result we use as Lya-
punov function candidate the quadratic form V (zk, θk) =
zT

k Q(θk)zk. Then, the discrete increment of the function
will be

∆V (zk, θk) = V (zk+1, θk+1) − V (zk, θk) (27)

Using the stochastic version of Lyapunov’s second method,
the condition for the system (11) to be mean-square stochas-
tic stable is that

E[∆V (zk, θk)|zk = z, θk = i] < 0 (28)
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or that

E[∆V (zk, θk); zk = z, θk = i]

= E[V (zk+1, θk+1) − V (zk, θk); zk = z, θk = i]

= E[zT
k+1Q(θk+1)zk+1|zk = z, θk = i] − zT Q(i)z

= E[(H12(zk, θk))T Q(θk+1)(H12(zk, θk));

zk = z, θk = i] − zT Q(i)z

= E[(H12(z, θk))T Q(θk+1)(H12(z, θk)); θk = i]

− zT Q(i)z

=
1∑

j=0

pij [(H12)
T Q(j)(H12(z, i))]

− zT Q(i)z < 0 (29)

which implies that

1∑
j=0

pij [(H12(z, i))T Q(j)(H12(z, i))] < zT Q(i)z,

i = 0, 1 (30)

Next we provide some sufficient conditions in order to
guarantee stability in probability for system (26).

IV. STOCHASTIC INDEPENDENT MODEL FOR PACKET

DROP

Next we consider the case in which the dropping of
packets is independent from instant to instant so that the
Markov chain θk is actually a binary independent random
process. In this case we have p10 = p11 = p, p00 = p01 =
(1 − p).

Theorem 2: Consider the system described in (11)

zk+1 = H1(zk) + H2(zk)ϕk, k ≥ 0 (31)

Where H1, H2 are defined as before. Assume ϕk =
(1 − θk) is an invariant random sequence of independent
elements, with mean µϕ = (1 − p) = q. Also assume
that such NCS belongs to class CB−NCS with the bounds
(Bf , Bg, Befi, Begi;Bhi

), i = 1, 2. Then the discrete-time
nonlinear system (26) is second moment stochastically
stable if we have

Bh1 + Bh2q + (Bh12 + Bh21)q ≤ Bz(x̂) (32)

Proof: To prove the above result we use once again
the stochastic version of Lyapunov’s second method [7]
with a Lyapunov function candidate the quadratic form
V (zk, θk) = zT

k zk. Then the discrete increment of the
function will be

∆V (zk, θk) = V (zk+1, θk+1) − V (zk, θk)

The system (11) is mean-square stochastic stable if

E[∆V (zk, θk)] ≤ 0, ∀k = 0, 1, 2, . . .

evaluating V (zk) we obtain

E[∆V (zk, θk)] = E[V (zk+1, θk+1) − V (zk, θk)]

= E[zT
k+1zk+1] − zT

k zk

= E[(H(zk, θk))T (H(zk, θk))] − zT
k zk

= E[(H1(zk))T (H1(zk)) + (H2(zk))T (H2(zk))ϕ2
k +

H1(zk)T H2(zk) + H2(zk)(H1(zk)ϕk] − zT
k zk

evaluating the expectation and using the bounds on the we
obtain the following

E[∆V (zk, θk)] ≤

Bh1 + Bh2q + (Bh12 + Bh21)q − Bz(x̂) (33)

which, along with the assumptions (32) gives

E[∆V (zk, θk)] ≤ 0, ∀zk ∈ IR (34)

and therefore the mean-square stability of the system fol-
lows.

V. NUMERICAL EXAMPLES

In this section we present three examples to illustrate
the main results of this paper. The stabilizability of the
system through the network using a model-based approach
is mainly dependent on two factors: the number of packets
received to reconstruct the state, and the precision with
which the model approximates the original plant. Each of
the examples studies a particular model, and for each model,
different packets-dropping probability are considered. In
the first example we use an exact model of the original
plant, and study how the system reacts to different packets-
dropping probabilities. In the second example the original
model is perturbed in amplitude, and again the stability
of the system is investigated for different values of the
probability of dropping a packet. Finally, the last example
analyzes the case of a polynomial model that approximates
the original system locally around the origin. We will
show how in this last case the performance of the system
degenerates due to the approximation error between the
model and the original plant.

A. Example 1: Exact Model

The first example is based on a model that exactly
reproduces the plant. Our goal is to show how the dropped
packets affect the controller performance. Consider the plant

xk+1 = sin(xk) + e(−xk)uk (35)

and the model

x̂k+1 = sin(x̂k) + e(−x̂k)uk (36)

We study the stability of the system for different values
of the packet-dropping probability. With the previous as-
sumption and considering that K(x̂) = −.53x̂k stabilizes
the system in case of full information, we apply theorem 2
to obtain that in case of exact model the errors between the
model and the plant are zeros and the error on the state is
zero as well. In this case it is irrelevant whether there is or
not packet dropping as we can see in Figure 2.
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Fig. 2. System response for different values of p with exact model.

B. Example 2: Model with Parameter Variation

The next step is to investigate how imperfections in the
model affect the stability of the system. At first we will
consider a change only in the amplitude of the model.
Consider the plant

xk+1 = sin(xk) + e(−xk)uk (37)

and the model

x̂k+1 = 0.7sin(x̂k) + 0.3e(−x̂k)uk (38)

We then proceed to study the inequality E[∆V (zk, θk)] ≤ 0
for different values of q. In Figure 3 the plots resulting
from the system simulation show how the system stability
degenerate as the information became limited (50% of
packets dropped).

As we can see from the plots in Figure 3 the resulting
closed-loop system with the chosen controller,is robust with
respect to variations in the model, up to 20% of information
loss.

C. Example 3: Polynomial Approximation Model

We explore next how the controller performs in the case
of a polynomial approximation of the original system. Since
the approximation is not global, it is not reasonable to
expect global stability results. Consider the plant

xk+1 = sin(xk) + e(−xk)uk (39)

and the model

x̂k+1 = x̂k + uk (40)

As can be inferred from the plots in Figure 4, the system
can be stabilized through the network with no packet
dropouts by using a polynomial model. In the presence of
10% and 20% packet dropouts the stability of the system
starts to degenerate and with 50% of packet dropouts
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Fig. 3. System response for different value of p with non-polynomial
model.
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Fig. 4. System response for different value of p with polynomial model.

stability is lost before one second elapses. This result is
expected since the polynomial model only approximates the
real system in a neighborhood of the origin.

VI. CONCLUSION

We presented stochastic stability analysis results for
discrete-time nonlinear model based NCS. The main result
focuses on mean-square stability of the networked control
system. In one case, we considered the packet dropouts
modelled as a Markov chain and sufficient conditions for
mean-square stability of the NCS were obtained by using
a discrete stochastic version of Lyapunov second method.
Then the case of independent packet dropout was con-
sidered and its stability analysis was carried out. Several
examples were provided to illustrate our results. In future
work we aim to extend the proposed results to the design of
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stabilizing compensators, and to analytically show how the
packets loss affects the stability of the closed-loop system.
We also want to investigate the finite-time stability of the
networked system. Finally, we will consider a deterministic
model for the packet drop, so that the network dynamics
may be included in the model and the effects of network
traffic investigated.
Acknowledgements: The authors would like to acknowl-
edge fruitful discussions with Professors M. Hayat (UNM-
ECE) and V. Koltchinskii (UNM-Math & Statistics).
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