
University of New Mexico
UNM Digital Repository
Electrical & Computer Engineering Faculty
Publications Engineering Publications

6-27-2005

Model-based networked control for finite-time
stability of nonlinear systems: the stochastic case
Chaouki T. Abdallah

S. Mastellone

P. Dorato

Follow this and additional works at: https://digitalrepository.unm.edu/ece_fsp

This Article is brought to you for free and open access by the Engineering Publications at UNM Digital Repository. It has been accepted for inclusion in
Electrical & Computer Engineering Faculty Publications by an authorized administrator of UNM Digital Repository. For more information, please
contact disc@unm.edu.

Recommended Citation
Abdallah, Chaouki T.; S. Mastellone; and P. Dorato. "Model-based networked control for finite-time stability of nonlinear systems: the
stochastic case." Proceedings of the 2005 IEEE International Symposium on Intelligent Control (2005): 1091-1096.
doi:10.1109/.2005.1467167.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151577251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


Model-based Networked Control for Finite-Time Stability of
Nonlinear Systems: The Stochastic case

S. Mastellone∗, C.T. Abdallah§, P. Dorato§
∗Coordinated Science Laboratory, University of Illinois, 1308 W. Main St., Urbana, IL 61801, USA

smastel2@control.csl.uiuc.edu
§ ECE Department, MSC01 1100, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA

{chaouki,peter}@eece.unm.edu

Abstract— In this paper we analyze model-based networked
control systems for a discrete-time nonlinear plant model,
operating in the presence of stochastic dropout of state
observations. The dropout is modeled as a Markov chain,
and sufficient conditions for finite-time stochastic stability are
provided using the stochastic version of Lyapunov second
method. In a companion paper we model the dropout as a
deterministic sequence.

I. INTRODUCTION

In several recent works, the problem of networked control
systems (NCS) has been posed and partially investigated [2],
[4], [5], [3]. This new problem deals with the possibility of
controlling a system remotely via a communication network
and as such, instantaneous and perfect signals between
controller and plant are not achievable.

In [6] a model for the networked control of linear time
invariant systems was proposed. The network is modelled as
a sampler placed between the plant and sensors on one side,
and the controller on the other side of the network. Utilizing
an approximate model of the process at the controller’s side,
the controller can maintain stability while receiving only
periodic updates of the actual state of the plant. Whenever
a new update is received, the model plant is initialized with
the new information. This idea was utilized in [1], where
the system evolved in discrete-time, and state updates were
either received or dropped at each sample due to the effect
of the network. The characterization of such a dropout is
achieved through the use of Markov chain that takes on
values of 0 or 1 depending on whether a sample was lost
or received, respectively. Recently in [7], the initial model
for a continuous-time plant and a network modelled with
a fixed rate sampler was extended to bounded yet random
variable sample times driven by a Markov chain.

In this paper, we present an extension of the discrete-time
systems in [1] into a nonlinear setting, i.e. our plant and
the model used for state estimation are both nonlinear. We
utilize the same model of packets being dropped according
to a Markov chain, and obtain results that guarantee finite-
time stability in a stochastic Lyapunov setting.

The paper is organized as follows: In Section II, we refor-
mulate the model-based networked control problem in the
nonlinear setting with stochastic packet dropouts. Section III

The research of C.T. Abdallah is partially supported by NSF-0233205
and and ANI- 0312611.

briefly describe some finite-time stochastic stability results,
that are then used in section IV in a networked control set-
ting, sufficient conditions for finite-time stochastic stability
of the networked control system are provided. Section V
extends the previous result to design. Finally in Section VI
we present some examples to illustrate our results, and our
conclusion in section VII.

A companion paper titled “Model-based Networked Con-
trol for Finite-Time Stability of Nonlinear Systems: The
Deterministic Case” has also been submitted to the confer-
ence and deals with the same problem using deterministic
models. The first two sections of the current paper and the
companion paper are identical in order to make them as
self-contained as possible.

II. PROBLEM FORMULATION

In [1] a discrete-time model-based control with observa-
tion dropouts is proposed for linear discrete-time systems.
Our objective in this paper is to propose a similar framework
in the case of nonlinear systems, and to study finite-time
stochastic stability of the closed-loop system. As depicted
in Figure 1, discrete-time model-based control is comprised
of a plant with the network residing between the sensors of
the plant and the actuators.

xk+1 = f(xk) + g(xk)uk

x̂k+1 = f̂(x̂k) + g(x̂k)uk

Sensor

x̂k

xk

x̂k := xk

Network

Controller

uk = K(x̂k)

Fig. 1. Model-Based NCS

The network is modelled as a Markov chain θk, where a
measurement is dropped if θk = 0, and a measurement is
received when θk = 1. Due to our inability to receive an
update of the plant’s state at each discrete instant of time,
we use an inexact model plant on the controllers side that
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provides us with the missing measurement. Such a model
is given by

x̂k+1 = f̂(x̂k) + ĝ(x̂k)uk. (1)

In order to carry out the analysis, we define the estimation
error as ek = xk − x̂k, and augment the state vector with
ek so that the closed-loop state vector is given by zk =(
xT

k ; eT
k

)T
. The closed-loop system evolves according to

zk+1 =

⎛
⎝ f(xk)

(f(xk) − f̂(xk)) + ..

(1 − θk)((f̂(xk) − f̂(x̂k)))

⎞
⎠

+

⎛
⎝ g(xk)K(x̂k)

(g(xk) − ĝ(xk))K(x̂k) + ..
(1 − θk)(ĝ(xk) − ĝ(x̂k))K(x̂k)

⎞
⎠ .(2)

In the above model θk ∈ {0, 1} is a Markov chain that
indicates the reception (θk = 1) or the loss (θk=0) of the
packet containing the state measurement xk. If a packet is
received, it is used as an initial condition for the next time
step in the model, otherwise the previous state of the model
is used. We then classify the NCS errors as follows:
(I). Model structure errors

ef1(xk) = f(xk) − f̂(xk) (3)

eg1(xk) = g(xk) − ĝ(xk). (4)

These are the errors between the plant and the model
evaluated at the plant’s state, and are therefore depen-
dent on the system’s structure.

(II). State dependent errors

ef2(xk, x̂k) = f̂(xk) − f̂(x̂k) (5)

eg2(xk, x̂k) = ĝ(xk) − ĝ(x̂k). (6)

These represent the errors between the model evaluated
at the plant’s state and at its own state, i.e. the error
introduced by the difference in the states.

(III). Structure and state dependent errors

ef3(xk, x̂k) = f(xk) − f̂(x̂k) (7)

eg3(xk, x̂k) = g(xk) − ĝ(x̂k), (8)

which include both model structure and state depen-
dent errors.

With the new notation, the system (2) becomes

zk+1 =

⎛
⎝ f(xk) + g(xk)K(x̂k)

ef1(xk) + eg1(xk)K(x̂k) + ..
(1 − θk)(ef2(xk, x̂k) + eg2(xk, x̂k)K(x̂k))

⎞
⎠

Based on the value of θk we have two possible situations:
1. for θk = 1 the system will be

zk+1 =
(

f(xk) + g(xk)K(x̂k)
ef1(xk) + eg1(xk)K(x̂k)

)
(9)

2. for θk = 0

zk+1 =
(

f(xk) + g(xk)K(x̂k)
ef3(xk, x̂k) + eg3(xk, x̂k)K(x̂k)

)
(10)

For the remainder of this paper we use the following
compact form to represent the system above, which also
highlights the fact that θk represents packet dropouts,

zk+1 = H1(zk) + H2(zk)(1 − θk), k ≥ 0 (11)

with

H1(zk) = F1(zk) + G1(zk)K(x̂) (12)

H2(zk) = F2(zk) + G2(zk)K(x̂). (13)

F1(zk) =
(

f(xk)
ef1(xk)

)
, F2(zk) =

(
0

ef2(xk, x̂k)

)

G1(zk) =
(

g(xk)
eg1(xk)

)
, G2(zk) =

(
0

eg2(xk, x̂k)

)

While the control law has no access to the plant’s state,
we assume in the analysis of the global system full-state
availability (i.e. both xk and x̂k available). Moreover, we
assume that the control law uk = K(x̂k) stabilizes the
model plant and in the case of full-state availability, it also
stabilizes the plant.

Next we define a particular class of NCS for which we
characterize the accuracy of the model in representing the
plant’s dynamics, and describe how the model discrepancy
affects the NCS structure.

Definition 1: A model-based NCS of the form
(11), belongs to a class CB−NCS with the bounds
(Bf , Bg, Befi, Begi;Bhi

), i = 1, 2 if for all k ∈ N and for
all xk ∈ S ⊂ IRn, the system structure and error norms are
bounded as follows

||f(xk)|| ≤ Bf , ||g(xk)u(x̂k)|| ≤ Bg(x̂k)
||ef1(xk)|| ≤ Bef1, ||ef2(xk, x̂k)|| ≤ Bef2(x̂k)
||eg1(xk)u(x̂k)|| ≤ Beg1(x̂k)
||eg2(xk, x̂k)u(x̂k)|| ≤ Beg2(x̂k)

where Bf , Bef1 are constant bounds and
Bg(x̂k), Bef2(x̂k), Beg1(x̂k), Beg2(x̂k) are bounds
that depend on the model state. Such NCS are called
bounded model-based NCS (B-MB-NCS).

The above definition describes the class of NCS, for
which it is possible to define bounds on the plant and the
NCS errors, and where such bounds depend only on the
model’s state.

Next we state a lemma that describes properties of class
CB−NCS . In particular the lemma describes how bounds
on the norm of the B-MB-NCS errors imply bounds on the
norm of the NCS dynamics.

Lemma 1: Consider the NCS (11) and assume the system
belongs to class CB−NCS . Then the following bounds hold
on the norm of the NCS dynamics for

i, j = {1, 2}, j �= i, k ∈ N and for all xk ∈ S ⊂ IRn,

HT
i Hj ≤ BHi,j

(x̂k), HT
i Hi ≤ BHi

(x̂k) (14)
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where the bounds on the vector functions are related to the
bounds on the errors as follows:

BH1(x̂k) = (Bf + Bg(x̂k)) + (Bef1 + Beg1(x̂k))
+2(BfBg(x̂k)) + 2(Bef1Beg1(x̂k))

BH1,2(x̂k) = (Bef1Bef2(x̂k) + Beg1(x̂k)BT
eg2(x̂k))

+BfBg(x̂k) + (Bef1Beg2(x̂k)
+Beg1(x̂k)BT

ef2(x̂k))
BH2(x̂k) = (Bef2 + Beg2(x̂k)) + 2((Bef2Beg2(x̂k))

The proof of the above lemma can be found in [13].
Lemma 2: Consider the NCS (11), belonging to class

CB−NCS(Bf , Bg, Befi, Begi;Bhi
), i = 1, 2 then for all

xk ∈ S ⊂ IRn,∀k ∈ N

||xk|| ≤ Bx(x̂), ||ek|| ≤ Be(x̂), ||zk|| ≤ Bz(x̂) (15)

where

Bx(x̂) = Bf + Bg(x̂k), Bz(x̂) = Bx(x̂) + Be(x̂)
Be(x̂) = Bef1 + Beg1(x̂k) + Bef2(x̂k) + Beg2(x̂k)

Proof: The first two inequalities just follow from
(2), (14). The second part trivially follows from ||zk|| =
(||xk|| + ||ek||) ≤ (Bx(x̂) + Be(x̂)) = Bz(x̂)

III. STOCHASTIC FINITE-TIME STABILITY

Next, we describe how finite-time stability, which was
originally defined for deterministic systems may be ex-
tended to stochastic systems. Consider a discrete time,
stochastic dynamical system

xk+1 = f(xk, θk), x ∈ IRn, x(0) = x0 (16)

Where x is the system state, and f : IRn × B → IRn is a
vector function, B is the family of Borel subsets of points on
IR; also {θk} is a stationary independent random sequence,
with mean µθ = E[θk] = E[θ2

k] and variance σθ, which
makes xk a Markov process in IRn. In stochastic dynamical
systems it is meaningful to consider the probability for the
trajectory not to exceed a given bound over a finite time
interval. Therefore we consider the following definitions

Definition 2: [9] Consider the dynamical stochastic sys-
tem (16), the associated inclusion probability with respect
to (α, β,N, ||.||) is defined as follows:

Pin(xk;α, β,N) = P{||xk|| ≤ β : 0 ≤ k ≤ N ; ||x0|| ≤ α}
Definition 3: Consider the dynamical stochastic sys-

tem (16), the associated exit probability with respect to
(α, β,N, ||.||) is defined as follows:

Pex(xk;α, β,N) = P{ sup
N≥k≥0

||xk|| > β; ||x0|| ≤ α}

Note that Pex(xk;α, β,N) = 1 − Pin(xk;α, β,N). There-
fore, we define stochastic finite-time stability:

Definition 4: The dynamical system (16) is Finite Time
Stochastic Stable (FTSS) with respect to (α, β,N, λ, ||.||)
if Pin(xk;α, β,N) ≥ (1 − λ), orPex(xk;α, β,N) < λ.

We will show next how FTSS can be indirectly deter-
mined by studying the exit and inclusion probabilities asso-
ciated with a function V (xk, k) defined for the dynamical
system.

A. Bounds on Exit Probability

In order to analyze and to eventually design for the finite-
time stability of a process, we provide in this section upper
bounds on the exit probability of the process (16) and on
the associated function Vk. These upper bounds will allow
us to indirectly study the FTSS of the system. The first
theorem we present is from [8].

Theorem 1: [8] Consider a discrete-time Markov process
xk, k = 0, 1, . . . . Also consider the function V (xk, k) =
Vk ≥ 0 and the open set Sγ = {xk : Vk ≤ γ}. If the
following conditions are satisfied ∀xk ∈ Sγ , φk ≥ 0

Exk
[V (xk+1, k + 1)] ≤ ∞∀xk ∈ Sγ ,

Exk
[V (xk+1, k + 1) − V (xk, k)] ≤ φk+1

Then for the initial condition x(0) = x0 we have

Pex(Vk; γ0, γ,N) ≤
[V0 + ΦN ]

γ
(17)

where ΦN =
∑N

i=1 φi

Proof: See [8].
The last theorem gives an upper bound for the exit probabil-
ity of Vk. This upper bound depends on the initial conditions
through V0, on the desired bound through γ, and on the time
interval and state dynamics indirectly through ΦN . Next,
we bound the exit probability of the state dynamics of (16)
directly.

Theorem 2: Consider the dynamical system (16)
and its exit probability with respect to (α, β,N, ||.||),
Pex(xk;α, β,N), also consider the function Vk as
described previously, we have the following upper bound

Pex(xk;α, β,N) ≤ E

[
supN≥k≥0 ||xk||

β
; ||x0|| ≤ α

]
Proof: The proof easily follows from Chebychev

inequality [12]. In the following, I is the indicator function,
for brevity I = I{supN≥j≥0 ||xj ||>β}. Also recalling that
P (x ≤ t) = E[Ix≤t], then

Pex(xk;α, β,N) = P{ sup
N≥k≥0

||xk|| > β; ||x0|| ≤ α}

= E

[
I( sup

N≥j≥0
||xj ||); ||x0|| ≤ α

]

≤ E

[
supN≥k≥0 ||xk||

β
; ||x0|| ≤ α

]

Again the bound on Pex(xk;α, β,N) is directly related to
the bounds on the state α, β, to the state dynamics, and to
the time interval.

B. Stochastic Finite-Time Stability Analysis

In the previous section we showed how the exit probabil-
ity relative to the state dynamics xk and to the associated
function V (xk, k) can be bounded and how the bound de-
pends on the parameters describing the finite-time stability
objective. In this section we use the described bound to
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provide sufficient conditions for FTSS stability of system
(16).

Theorem 3: Consider the dynamical system (16) and a
function Vk such that for given δ1, δ2 we have δ1||xk|| ≤
V (xk, k) ≤ δ2||xk||, and γ = βδ1, γ0 = αδ2, V0 ≤ γ0,
δ1 > 0, δ2 > 0. Then the system is finite-time stochasti-
cally stable with respect to (α, β,N, ||.||, λ), if any of the
following three conditions is satisfied
(i) ∀xk ∈ Sγ , φk ≥ 0

Exk
[Vk+1] ≤ ∞, Exk

[∆Vk] ≤ φk+1

[αδ2 + ΦN ]
βδ1

≤ λ, ΦN =
N∑

k=1

φk,

(ii)

E

[
supN≥k≥0 ||xk||

β
; ||x0|| ≤ α

]
≤ λ (18)

(iii) ∀k = 0, . . . , N, ∀xk ∈ Sγ , ρk > −1

P{∆Vk ≤ ρkVk} ≥ (1 − λ) (19)

γ

γ0
≥ sup

k

k−1∏
i=0

(1 + ρi) (20)

Proof: In order to prove the above statements we ver-
ify that (i)− (iii) imply finite-time stability for the system.
Finite-time stability easily follows from point (i) consider-
ing that for δ1||xk|| ≤ V (xk, k) ≤ δ2||xk||, ∀k = 0, . . . , N
and γ0 = δ2α, γ = δ1β we have Pex(xk;α, β,N) ≤
Pex(Vk; γ0, γ,N), and therefore from theorem 1 and
(i) follows Pex(xk;α, β,N) ≤ λ. Now recalling that
Pex(xk;α, β,N) + Pin(xk;α, β,N) = 1 we have that
finite-time stability for the system (16) with respect to
(α, β,N, ||.||, λ) i.e. Pin(xk;α, β,N) ≥ (1 − λ). For
point (ii), from the upper bound on Pex(xk;α, β,N)
provided in theorem 2, with the same principle as before
directly follows that Pex(xk;α, β,N) ≤ λ, and therefore
Pin(xk;α, β,N) ≥ (1 − λ). Finally for the proof of point
(iii) let us consider the following for ρk > −1 and ∀k =
0, . . . , N , P{∆Vk ≤ ρkVk} = P{Vk+1 − (1 + ρk)Vk ≤
0}. Then iterating the partial difference inequalities and
considering the upper bound on V0 ≤ γ0 we get ∀k =
0, . . . , N P{∆Vk ≤ ρkVk} ≤ P{Vk ≤ γ0

∏k−1
i=0 (1 + ρi)}.

Then using the condition (20) from (iii) it follows that
∀k = 0, . . . , N , P{∆Vk ≤ ρkVk} ≤ P{Vk ≤ γ} and
moreover ∀k = 0, . . . , N (1 − λ) ≤ P{∆Vk ≤ ρkVk} ≤
P{Vk ≤ γ}, that implies finite time stability with respect
to (α, β,N, ||.||, λ)

The above results can be considered comparable, however
a more detailed description of their relations can be found
in [13].

IV. FINITE-TIME STOCHASTIC STABILITY FOR

NETWORKED CONTROL SYSTEMS

Consider the model-based NCS subject to the random
loss of packets as described previously

zk+1 = H1(zk) + H2(zk)ϕk, zk ∈ IR2n, k = 0, 1, . . . (21)

in which the dropping sequence ϕk = (1−θk) is a stationary
independent random sequence, with mean µϕ = (1−p) = q
and µϕ2 = q, where q is the probability of dropping a
packet.

We defined finite time stochastic stability for a
generic discrete-time dynamical system with respect to
(α, β,N, λ, ||.||). Here we reformulate the FTSS definition

for NCS (11). In the following we let ||zk|| =
√

zT
k zk be

the Euclidian norm.
Definition 5: The NCS (11) is FTSS with respect to

(α, β,N, λ, ||.||) if

Pin(zk;α, β,N) = (22)

P{zT
k zk < β : k ∈ [0, N ] | zT

0 z0 ≤ α} ≥ (1 − λ)
Let V (zk, k) = zT

k M(k)zk be a quadratic func-

tion where M(k) =
[

m1(k) m2(k)

m3(k) m4(k)

]
, is a given

2n × 2n time-varying real-valued matrix, with mi(k) ∈
IRn×n, m2(k)T = m3(k), M(k) > 0. Then consider the
following definition

Definition 6: The NCS (11) is quadratically FTSS with
respect to (α, β,N, λ,M) if for the quadratic function
V (zk, k) = zT

k M(k)zk the following holds

Pin(Vk; γ0, γ,N) =
P{zT

k M(k)zk < γ : k ∈ [0, N ] | zT
0 M(k)z0 ≤ γ0}

≥ (1 − λ) (23)

where δ1||zk||
2 ≤ V (zk, k) ≤ δ2||zk||

2, δ1(k) =
λmin{M(k)}, δ2(k) = λmax{M(k)} are the minimum and
maximum eigenvalue of M(k) respectively. In addition we
have δ2(k)α ≥ γ0 and δ1(k)β ≥ γ.
It is easily proved that quadratic finite-time stability implies
finite-time stability.

Next we denote the sets of states with bounded V as
follows

Sγ = {zk : Vz(zk, k) ≤ γ}, Sβ = {xk : Vx(xk, k) ≤ β}

We aim to study the behavior of the system over a finite time
in the presence of packet dropping. In particular, assuming
that with full information available, the system’s state is
constrained within a bound β over a finite time N , we want
to find conditions for which the state remains within the
given bound over the time interval when packets are being
dropped. Moreover, we want these conditions to depend on
the model’s state and on the amount of packets dropped.

We are now ready to state the following theorem that
considering a class CB−NCS NCS, gives sufficient condi-
tions on the bounds defined on the NCS for which FTSS
holds.

Theorem 4: Consider the NCS (11), and assume it
belongs to class CB−NCS , also consider the function
Vz(zk, k) = zT

k M(k)zk, in which M(k), is a real-valued
2n × 2n matrix, where m1(k) > 0, m4(k) > 0. Assume
that ∀zk ∈ Sγ and k ∈ [0, N ]

BH1(x̂k) + 2BH1,2(x̂k)q + BH2(x̂k)q ≤ φk+1
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αδ2 + ΦN

βδ1
≤ λ (24)

where ΦN =
∑N

k=1 φk. Then the system is FTSS with
respect to (α, β,N,M(k), λ).
Proof. The proof follows from theorem 1 and using lemma
1. The conditions in the theorem

Ezk
[∆Vz(zk, k)] = Ezk

[(H1(zk) + H2(zk)ϕk)T

M(k + 1)(H1(zk) + H2(zk)ϕk) − zT
k zk] ≤

BH1(x̂k) + 2BH1,2(x̂k)q + BH2(x̂k)qφk+1,

∀k = 0, . . . , N, zk ∈ Sγ (25)

and

αδ2 + ΦN

βδ1
≤ λ (26)

from which FTSS follows.
Roughly speaking, the theorem restates the conditions for

FTSS described in theorem 3, in a NCS context. Moreover,
in order to make the analysis dependent only on the model’s
state that is assumed to be always available, it uses the
fact that the NCS belongs to class CB−NCS . Finally those
bounds are used to specify FTSS conditions.

V. FINITE-TIME STOCHASTIC STABILITY DESIGN

In the previous section we presented sufficient conditions
for FTSS of the NCS in the presence of packet dropping.
We now investigate the possibility of designing a controller
to guarantee the FTSS of the system. We therefore consider
a network model in which the input function uk = K(x̂k)
is not fixed i.e.

zk+1 = (F1(zk) + F2(zk)ϕk) + (G1(zk) + G2(zk)ϕk)uk,

k ≥ 0 (27)

Where the functions F1, F2, G1, G2 were previously de-
fined and uk : IRn → IR is a scalar input. Although we will
only focus on the case of scalar inputs, the results may be
easily extended to multidimensional inputs.

Theorem 5: The class CB−NCS NCS (27), is quadrati-
cally finite-time stochastically stabilizable with respect to
(α, β,M,N, λ) and φk = φ = γλ−γ0

N
if for the function

V (zk, k) = zT
k M(k)zk, where M(k) is as in definition 5,

there exists an input law uk = K(x̂k) such that

1. The system is FTSS with respect to (α, β,M,N, λ)
for the time in which the input cannot affect it, i.e. if

Ezk
[(G1(zk) + G2(zk)q)T M(k + 1)

(G1(zk) + G2(zk)q)] = 0, (28)

Ezk
[(F1(zk) + F2(zk)q)T M(k + 1)

(G1(zk) + G2(zk)q)] = 0
⇒ Ezk

[(F1(zk) + F2(zk)q)T M(k + 1)
(F1(zk) + F2(zk)q) − zT

k M(k)zk] ≤ φk

2. We have for all x̂k ∈ Sβ

Ezk
[∆Vzk

(zk, k)] = (BG1(x̂k) + BG2(x̂k)q)u2
k

2((BF1G2(x̂k) + BF2G1(x̂k) +
BF1G2(x̂k))q + BF1G1(x̂k))uk

+(BF2(x̂k))q + 2(BF1F2(x̂k)q) + BF1(x̂k)

≤
γλ − γ0

N

The set of controllers is given by:

u1(x̂k) ≤ u(x̂k) ≤ u2(x̂k),
for (BG1(x̂k) + BG2(x̂k)) �= 0 (29)

u = 0,
for (BG1(x̂k) + BG2(x̂k)) = 0 (30)

BFG = ((BF1G2(x̂k) + BF2G1(x̂k) +
BF1G2(x̂k))q + BF1G1(x̂k))
BF = BF2(x̂k))q + 2(BF1F2(x̂k)q) + BF1(x̂k)

u1,2 =
−|BFG|

(BG1(x̂k) + BG2q)

±
√

(BFG)2 − (BG1(x̂k) + BG2q)(BF − γλ−γ0
N

))

(BG1 + BG2q)

with

0 ≤ (BFG)
2 −

[BG1 + BG2q][(BF − x̂
T
k m4(k)x̂k −

γλ − γ0

N
)]

0 �= BG1(x̂k) + BG2(x̂k)q

Proof.
The proof follows from theorem 1. In particular the

control law with the conditions above imply

Ezk
[∆V (zk, k)] ≤ φk

αδ2 + ΦN

βδ1
≤ λ, (31)

∀k = 0, . . . , N, zk ∈ Sγ

and therefore FTSS follows.
The theorem uses the FTSS analysis result to set suffi-

cient conditions for the NCS, to generate a control law that
will satisfy those conditions, and therefore will stochasti-
cally stabilize the NCS in a finite time with respect to the
specified conditions.

VI. EXAMPLES

This section provides a set of examples of NCS, for which
we study FTSS for different amounts of dropped packets.
Though we only analyzed the case of scalar inputs, the
results presented can be easily extended to the vector input
case. In this section we present vector inputs examples. In
particular, we consider

x1(k + 1) = x1(k) + u1(k)
x2(k + 1) = x2(k) + u2(k) (32)

x3(k + 1) = x3(k) + (x1(k)u2(k) − x2(k)u1(k))
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which is the discrete-time version of the non-holonomic
integrator proposed by Brockett in [15]. Also consider its
approximate model

x̂1(k + 1) = 10x̂1(k) + 3u1(k)
x̂2(k + 1) = 50x̂2(k) + 7u2(k) (33)

x̂3(k + 1) = 50x̂3(k) − 8(x̂1(k)u2(k) + 7x̂2(k)u1(k))

We want to FT stabilize the system trough the network
by using a class (a) linear controller defined as u(k) =

−

[
a 0
0 b

] [
x̂1(k)
x̂2(k)

]
, where a1 = 1.7, a2 = 2.3. At

first we check using the multi-input version of theorem 3
that the proposed controller FT stabilizes the system trough
the network. With M = I3×3 we obtain Ezk

∆V (zk, k) ≤
λγ−γ0

N
= 0.0585, where zk is given as in (2) with θk being

an independent random sequence. In Figures 2, 3 and 4 we
show simulations of the system controlled across a network,
using a linear class (a) controller in which a1 = 1.7, a2 =
2.3, and with packets loss of 0%, 20%, 50% respectively.
Note how in the case of a class (a) controller with full
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Fig. 2. Brockett integrator controlled through the network with linear
class (a) controller with a1 = 1.7, a2 = 2.3 and 0% packets lost.

information available, finite-time stability is guaranteed for
every set of parameters (α, β,N,M, λ) since the system is
contracting. This property is however lost when the network
starts dropping packets.
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Fig. 3. Brockett integrator controlled through the network with linear
class (a) controller with a1 = 1.7, a2 = 2.3 and 20% packets lost.

VII. CONCLUSIONS

Finite-time stochastic stability of model based NCS has
been studied. In particular sufficient conditions for FTSS
of the NCS were given. We showed how the FTSS of
the system depends on three main factors: the stability
of the closed-loop system in the case of available full
information, the received information (packets transmitted),
and the accuracy of the model and the initial conditions.
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Fig. 4. Brockett integrator controlled through the network with linear
class (a) controller with a1 = 1.7, a2 = 2.3 and 50% packets lost.

We also investigated the possibility of designing for
FTSS, and a set of admissible controllers were proposed
for a specific system. In particular we presented a class
of controllers that only depends on the model state. Since
the conditions used for design are only sufficient, the set
of controllers might be conservative. Future work will be
focused on characterize the FTSS of the system in terms of
the amount of dropped packets.

REFERENCES

[1] P.F.Al-Hokayem Stability Analysis of Networked Control Systems
Ms. Thesis Electrical Engineering The University of New Mexico,
Albuquerque, New Mexico August 2003.

[2] B. Azimi-Sadjadi, Stability of Networked Control Systems in the
Presence of Packet Losses, IEEE Conference on Decision and Control
(Maui, Hawaii) December 2003.

[3] G. C. Walsh, Octavian Beldiman and Linda G. Bushnell Asymptotic
Behavior of Nonlinear Networked Control Systems IEEE Trans.
Automatic Control, Vol. 46, No. 7, pp. 1093-1097 July 2001.

[4] J. Hespanha, A. Ortega and L. Vasudevan, Towards The
Control of Linear Systems with Minimum Bit-Rate, Proceed-
ings of the International Symposium on the Mathematical
Theory of Networks and Systems, August 2002 (http :
//sipi.usc.edu/ ortega/Papers/HespanhaOrtV as02.pdf).

[5] D. Liberzon, Stabilizing a Nonlinear System with Limited Information
Feedback, IEEE Conference on Decision and Control (Maui, Hawaii)
December 2003

[6] L.A. Montestruque and P.J. Antsaklis, Model-Based
Networked Control System - Stability, ISIS Technical
Report ISIS-2002-001, Notre Dame, IN, January 2001.
{http://www.nd.edu/ pantsakl/elecpubs/298-ACC03.pdf}

[7] L.A. Montestruque and P.J. Antsaklis, Stochastic stability for model-
based networked control systems, Proceedings of the 2003 American
Control Conference, vol. 2, pp. 4119-4124, June 2003.

[8] H.J. Kushner, Stochastic Stability and Control Academic Press N.Y.
1967.

[9] L.J.Van Mellaert, Inclusion-Probability-Optimal Control Ph.D. dis-
sertation, Dep. Elec. Eng., Polytechnic Inst. Brooklyn, Brooklyn,
N.Y., June 1967.

[10] J.P. LaSalle, and S.Lefschetz Stability by Lyapunov’s Direct Method
with Applications New York: Academic Press, 1961. Chap.4, pp.121-
126.

[11] G. Kamenkov, On stability of motion over a finite interval of time [in
Russian]. Journal of Applied Math. and Mechanics (PMM), 17:529-
540, 1953.

[12] H.Stark, J.W.Woods, Probability and Random Processes with Appli-
cations to Signal Processing Third Edition, Prentice Hall, Englewood
Cliffs, NJ, 2002.

[13] S. Mastellone, Finite-time Stability of Nonlinear Networked Control
systems. Master’s thesis, ECE Department, University of New Mex-
ico, 2004.

[14] A. Michel and S.Wu, Stability of discrete-time systems over a finite
interval of time. Int. J. Control, 9, pp.679-694, 1969.

[15] R.W.Brockett Asymptotic stability and Feedback Stabilization , In
Differential Geometry Control Theory, pp. 181-191, 1983.

1096


	University of New Mexico
	UNM Digital Repository
	6-27-2005

	Model-based networked control for finite-time stability of nonlinear systems: the stochastic case
	Chaouki T. Abdallah
	S. Mastellone
	P. Dorato
	Recommended Citation


	Title

