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Proceedings of the American Control Conference 
San Diego, California June 1999 

Advances in Undergraduate Control Education: The Analytical 
Design Approach 

P. Dorato and C.T. Abdallah 
EECE Department, 

University of New Mexico, 
Albuquerque, NM 87131, USA. 

Abstract 
Introductory undergraduate control courses in the 

USA are generally limited to trial-and-error design 
techniques, based largely on the Nyquist stability 
criterion and root-locus analysis. The correspond- 
ing theory is well over fifty years old. Very little 
is presented on analytic design, where one has an 
existence theorem, and a computable algorithm to 
find a solution when one exists. One reason for the 
lack of analytic design in introductory courses is the 
level of mathematics required to understand much of 
this theory. Here we summarize some of the existing 
analytic design techniques, and their mathematical 
pre-requisites, and then we propose the interpola- 
tion approach for analytic design, as one requiring 
the least amount of mathematics. 

1. Introduction 
In this paper, we focus on one aspect of un- 

dergraduate control education which has been 
ignored in most undergraduate textbooks. One of 
the standard tools used for the design of feedback 
control systems is the Nyquist  stability criterion. 
While this tool provides considerable insight into 
the analysis of feedback systems, it suffers from one 
very important limitation, that is it can be used 
only in an trial-and-error way in the design of a 
compensator, essentially because of the complicated 
way magnitude and phase are related for rational 
transfer functions. For example, given the Nyquist 
diagram of an unstable plant, it is difficult to answer 
even the simple question, does a stable compensator 
exist that will stabilize the closed-loop system? The 
compensator design problem is further complicated 
in the multivariable case where the criterion involves 
the computation of a determinant at each frequency 

e Conditions for the existence of a solution. 

An algorithm which is guaranteed t o  f ind the so- 

While analytical techniques appear to be very ap- 
propriate for design, they do have some limitations. 
One important limitation is that the compensator 
is generally more complex than that obtained by 
trial-and-error methods. Another is that most 
analytical techniques deal only with limited perfor- 
mance measures. Thus it is to the advantage of the 
designer to be familiar with both design techniques. 
It should be noted that analytical design techniques 
are also often referred to as synthesis techniques. 

lution, when it exists. 

We will present one particular analytical ap- 
proach to the design of compensators for feedback 
systems, the so-called interpolation approach. This 
approach has been successfully presented to our 
undergraduates students at the EECE Department 
of the University of New Mexico for the last five 
years. In the interpolation approach various feed- 
back design problems are converted into problems of 
finding special rational functions which interpolate 
t o  given values at given points in the complex 
s-domain. We assume here that the plant (sys- 
tem being controlled) can be characterized by a 
rational transfer function in the Laplace-transform 
variable s (or in the 2-transform variable z ,  in 
the discrete-time case). This approach can be 
introduced with a minimal amount of mathematics, 
e.g. Laplace-transform theory and the concept of 
bounded-input-bounded-output (BIBO) stability. We 
outline in the next section some other analytical 
design techniques, which although requiring more 
mathematical background, have been introduced in 
some undergraduate textbooks and courses. 

2. Some Analytical Design Methods point. 

e Mean-Square Design. This approach is based on 
In contrast to trial-and-error techniques, analytical 
design techniques, always include the following two 

the minimization of the mean-square error 

0-7803-4990-6/99 $70.00 0 1999 AACC 470 



or equivalently an integral of the form 

The analytical solution of the problem requires 
the spectral factorization of a polynomial, that is 
the factorization of a polynomial into the prod- 
uct of a stable polynomial and an anti-stable 
polynomial. This is the approach taken in one 
of the first books on analytical feedback design, 
i.e. the text of Newton, Gould, and Kaiser 
[9] published in 1957. This approach requires 
knowledge of stochastic processes and complex 
variables, but allows one to design feedback sys- 
tems which can deal with random disturbances 
and control-effort constraints. The level of com- 
plex variable analysis required for this approach 
is beyond most undergraduate engineering pro- 
grams in the USA. 

State-space Design. This approach is based on 
a state-space representation of the plant, i.e. a 
representation of the form 

X=Ax+Bu,  y = C x  (2) 

where x, y, and U represent the plant state, out- 
put, and input, respectively. A basic result here 
is that if the system is controllable there exists a 
state-feedback controller , u(t)  = -Kx( t ) ,  such 
that the poles (eigenvalues) of the closed-loop 
system can be located arbitrarily. State-space 
theory for feedback design was introduced by 
Kalman in the early sixties [8]. Many textbooks 
are now available on this approach, see for ex- 
ample [7]. 
One state-space design methodology, which is 
especially well suited for multivariable feedback 
systems, is the so-called linear-quadratic (LQ) 
theory. In the LQ theory the problem is to find 
a state-feedback control law which minimizes an 
integral quadratic performance measure of the 
form 

V = ~”(.‘Qx + U’&) d t  

It can be shown that this problem can be re- 
duced to a solution of a matrix Riccati equa- 
tion. See, for example, [2]. However a rather 
extensive knowledge of matrices (linear algebra) 
is required for this theory. Outside the USA 
undergraduate students generally have a good 
linear algebra background, and indeed this unit 
on analytic design is often taught in the first 
control course. However in the USA only about 

0 

We 

25 % of undergraduate engineering programs re- 
quire a course in linear algebra (See reference 
[l]) so that state-space methods would be diffi- 
cult to cover in a first control course in the USA. 
However state-space methods is an analytic ap- 
proach which is often included in a second con- 
trol course. 

H a  Design. Recently a new theory for analyt- 
ical feedback system design has evolved, based 
on the minimization of a performance measure 
of the form 

(3) v = sup J E ( j w ) /  
w 

where, for example, E(s )  may be the Laplace 
transform of the error signal e( t ) .  When E(s)  is 
analytic in the RHP, then the value of V given 
in equation (3) is also called the HO” n o m  of 

This H” theory for feedback system design was 
developed by Zames and Francis in 1983 [16]. 
An early book on the approach is the text of 
Vidyasagar [13]. This theory requires rather ad- 
vanced concepts in complex variables and matri- 
ces, and is generally not included in introductory 
courses in feedback design. For single-input- 
single-output (SISO) systems, a more mathe- 
matically accessible version of this theory, based 
largely on interpolation methods, may be found 
in the monograph of Doyle et.al. [5]. Unfortu- 
nately this text is now out of print. 

propose an interpolation approach for a unit 
of analytic design to be included in a first control 
course. The mathematics for this approach should 
be available to most undergraduate engineering stu- 
dents in the USA. Basically all one needs are the con- 
cepts of transfer function, bounded-input-bounded- 
output (BIBO) stability, and “good” pole-zero can- 
cellations. A “book supplement” monograph is un- 
der preparation which presents this approach to  an- 
alytic design (See Dorato [4]). 

3. Internal Stability 
A key concept in the design of feedback control 

systems using analytical methods, and interpolation 
theory in particular, is that of internal stability. Un- 
fortunately this is a concept which is often not dis- 
cussed in introductory texts. The basic idea is to 
insure that the closed-loop system is stable, not only 
between the command input and the controlled out- 
put, but also between internal points. This is im- 
portant because disturbance signals can arise a t  all 
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D(\) is riot propel, hence not BIBO stable. One bad 
consequence of internal instability in this particular 

- C(b)  - J P(>) case is that a step input reference signal r ( t )  will 
result in an unbounded (impulse) control input u(t) .  

R ( b )  E(s) U(\) , Y(r) 

+- I 

Internal stability also guarantees that there are - __ ._ _ _  - - __ 

no “bad” pole/zero cancellations between controller 
C(s) and plant P(s) .  “Bad cancellations” are can- Figure 1: Block Diagram Of Feedback System 

. ,  . ,  

cellations of unstable poles and zeros. An example of 
the bad effects of unstable pole/zero cancellation is 
to use the compensator c ( ~ )  = ( s - l ) / ( s+l )  to “Sta- 

bilize” the plant P(s)  = l /(s  - 1). This compensator 
does yield the stable transfer Y ( s ) / R ( s )  = l / ( s + 2 ) ,  
however it results in the unstable transfer function 

Points in the closed-looP system. T O  define the con- 
cept, consider the feedback system shown in Figure 
1. 

Definition: The feedback system in Figure 1 

functions: 
is said to  be internally stable if the three transfer P(s )  - (s + 1) 

y ( s ) / D ( s )  = 11- C(s)P(s)  - (s - l ) ( s  + 2) 

(4) which means that a bounded disturbance signal d(t) 
will result in an unbounded error signal e ( t ) .  

1 
= 1 + C(s)P(s)  

P(s> 
y(s)’D(s) = 1 + C(s)P(s)  (5) 4. Origins of The Interpolation 

C(s )  Approach 
U ( s ) / R ( s )  = 1 + C(s )P(s )  (6) One of the first discussions on what is now called 

published-in 1955. The basic idea presented there 
(which nuxal refers to as Guillemin,s method), is to 
use the equation 

Recall that a rational transfer function G(s) is 
BIBO stable if and only if it is proper (the degree of 
the denominator polynomial is greater than or equal 
to the numerator polynomial), and its denominator 
polynomial is Hurwitz (all its roots have negative 
real-parts). 

In the sequel we will let the “error” transfer 
function E(s) /R(s)  be denoted S(s), and the 
“external” transfer function Y ( s ) /R ( s )  be denoted 
T(s) .  Note that S(s) is also the sensitivity func t ion  
for the closed-loop system, i.e. 

(7) 
1 dT/T - S(s) = - - 

dG/G 1 + C(s)P(s)  

Since T ( s )  = 1 - S(s), the exterior transfer function 
T(s)  is often called the complementary sensitivity 
function. 

Internal stability implies external stability 
(that is the stability of the transfer function 
T ( s )  = Y ( s ) / R ( s ) ) ,  but not conversely. For exam- 
ple, the PD compensator C(s )  = s + 1 externally 
stabilizes the plant P(s )  = l/s2, however it does not 
internally stabilize the closed-loop system since the 
transfer function 

1 U s )  C(S) = -- P(s )  1 - T ( s )  

to  design a compensator C(s )  which could be realized 
with an RC network. In those (pre-reliable op-amp) 
days, RC networks were considered the most practi- 
cal way to electronically realize an analog compen- 
sator. The interpolation issue arises, for example, 
from equation (8) when one tries to  avoid unstable 
pole zero cancellations. In particular if the plant has 
an unstable zero, i.e. a zero with positive real part, 
then, as can be seen from equation (8), the exterior 
transfer function T(s)  must “interpolate” to  zero at 
the plant zero to  avoid unstable pole/zero cancella- 
tion. This basic idea was expanded and applied to 
the design of digital control systems by Ragazzini 
and Franklin in their text [ll], published in 1958. 

5. Reduction of Feedback Design 
Problems to Interpolation 

Problems 
We will focus on the problems of stability design 

with stable and unstable compensators. Other design 
problems e.g. gain-margin design, robust stabiliza- 
tion for unstructured plant perturbations, etc. may 
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be found in [4]. It is interesting to note that no ex- 
isting introductory control text considers the basic 
question, are there plants that cannot be stabilized 
with stable compensators? Indeed most introductory 
texts are limited to trial-and-error techniques, where 
answering any existence question is very difficult. 
To simplify the presentation it will be assumed that 
unstable poles and zeros are all simple. Also it is 
assumed that plant transfer functions have no un- 
stable hidden modes and that all transfer functions 
are rational. 

Stabilization with Stable Compensators. The 
presentation here follows that in reference [13]. 
We assume that the plant is written as a ratio of 
two stable rational functions Np(s)  and Dp(s) ,  
i.e. 

(9) 

Let the unstable zeros of the plant, including 
infinity, be denoted bi. Consider now the com- 
pensator 

If the function W ( s )  is a BIBO stable function 
with a BIBO stable inverse (referred to a BIBO- 
unit) which interpolates to Dp(s) at the unstable 
zeros of N p ( s ) ,  i.e. 

W ( b i )  = Dp(bi) (11) 

then the compensator given by (10) is stable and 
this stable compensator makes the closed-loop 
system internally stable. Internal stability is ev- 
ident when C(s) given in (10) is substituted into 
equations (4)-(6), resulting in 

The existence condition for this analytic design 
problem was first presented in reference [14] 
and may be stated as follows: 

A stable internally stabilizing compensator 
exists for any plant where the number of poles 
between any pair of zeros on the non-negative 
real axis is even 

This condition is referred to as the parity- 
interlacing-property, or the p . i . p  condition. 
Most trial-and-error methods are based on the 
assumption that the compensator is stable. e.g. 
stable lag/lead. This critical result can save the 
designer a lot of time, yet is not to be found in 
existing introductory control texts. 
In general interpolating with BIBO-units is 
not trivial. However for a a limited number of 
unstable poles and zeros, interpolation may be 
possible with a low-order unit. 

Stabilization with Possibly Unstable Compen- 
sators. To design with a compensator which 
may have to be unstable, consider the following 
compensator structure (See reference [16]) 

If this compensator is substituted into equations 
(4)-(6) on obtains, 

E(s) /R(s )  = 1 - P(s)&(s> (16) 
Y ( s ) l D ( s )  = P(S)P - P ( S ) & ( S ) )  (17) 
U(s)lR(s) = (18) 

jF'rom these equations it is clear the C(s)  
given by (15) will internally stabilize the closed- 
loop system, if Q(s )  is any BIBO stable func- 
tion which interpolates to &(ai) = 0 and 1 - 
P ( a i ) & ( a i )  = 0 at the unstable poles ai of 
the plant P(s) .  Interpolating with BIBO-stable 
functions can be reduced to  solving a system of 
linear equations (See, for example, [4]), hence 
this is an easy interpolation problem. It can 
be shown that the compensator which results is 
never of degree greater that n - 1 where n is the 
degree of the plant, and that a possibly unsta- 
ble compensator (when p . i . p  is not satisfied the 
compensator must be unstable) always exists! 

6. Conclusions 
The main conclusion of this paper is that it is 

possible to introduce a unit of analytic design in the 
first undergraduate control course here in the USA, 
using the interpolation approach. Some of the time 
spent on trial-and-error techniques can be reduced 
to make room for this unit. The interpolation ap- 
proach also provides a transfer-function alternative 
to analytic state-space techniques which are gener- 
ally covered in a second control course in the USA. 
For the same reason the interpolation approach may 
be of value outside the USA (where state-space meth- 
ods are normally covered in a first course) to  balance 
transfer-function methods with state-space methods. 
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