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Observer-Based Controller Synthesis for Model-BasedFuzzy Systems via Linear Matrix InequalitiesAli Jadbabaiey, Mohammad Jamshidi�, Andre Titliz, and Chaouki T. Abdallah�y Control and Dynamical SystemsMail Code 107-81, California Institute of Technology, Pasadena, CA 91125�Department of Electrical and Computer EngineeringUniversity of New Mexico, Albuquerque, NM 87131z LAAS du CNRS and INSA, Tolouse, Francealij@cds.caltech.eduAbstractIn this chapter, we extend some recent results regarding the stability of continuous-time anddiscrete-time Takagi-Sugeno (T-S) fuzzy systems to the case where the system's states are notavailable for measurement. We introduce the notion of a fuzzy observer, and show that theseparation of closed-loop observer/controller holds. In other words, we show that the observerand controller design problems can be formulated as two separate LMI feasibility problems.Finally, we present a numerical example to show the e�ectiveness of our approach and discusssome future research directions.Key words: Takagi-Sugeno, fuzzy systems, LMIs, observer, separation property.1 IntroductionThere has recently been a rapidly growing interest in using Takagi-Sugeno (T-S) fuzzy modelsto approximate nonlinear systems. This interest relies on the fact that dynamic T-S models are1



easily obtained by linearization of the nonlinear plant around di�erent operating points. Oncethe T-S fuzzy models are obtained, linear control methodology can be used to design local statefeedback controllers for each linear model. Aggregation of the fuzzy rules results in a generallynonlinear model, but in a very special form known as a Polytopic Linear Di�erential Inclusion(PLDI) [1]. Fortunately, the stability conditions for these type of systems can be formulatedin a Linear Matrix Inequality framework, which can then be solved using convex optimizationmethods. However, the resulting stability conditions might be conservative, because they requirethe existence of a common Lyapunov matrix.In a recent paper, Petterson and Lennartson [2] have studied a similar problem and havecome up with stability conditions that do not require a single Lyapunov matrix for the solutionof the Linear Matrix Inequalities (LMIs), but has some extra assumptions on the di�erentLyapunov functions.However, these are analysis results only. Our approach is based on theLMI formulation of the stability conditions for closed-loop T-S systems given in [7, 3]. Weextend these results to the case when states are not available for measurement and feedback byintroducing the notion of a fuzzy observers.This chapter is organized as follows: In Section 2, we give an overview of Takagi-Sugenofuzzy systems and su�cient stability conditions for both continuous-time and discrete-timecases. Section 3 deals with the LMI formulation of the stability results given in Section 2. InSection 4, we introduce the notion of a fuzzy observer for both continuous-time and discrete-time systems. We also state and prove the separation property of the closed-loop observer andcontroller, i.e., we show that in both continuous-time and discrete-time cases, we can designthe observer and controller gains by solving two separate sets of LMI feasibility problems. Wepresent a numerical example in Section 5, to illustrate our approach. Finally, we present ourconclusions in Section 6.2 Takagi-Sugeno Models2.1 Continuous-Time T-S ModelsA continuous-time T-S model is represented by a set of fuzzy If � � � Then rules written as follows :2



ith Plant Rule: IF x1(t) is Mi1 and : : : ; xn(t) is Min THEN _x = Aix
where x 2 IRn�1 is the state vector, i = f1; � � � ; rg, r is the number of rules, Mij are inputfuzzy sets, and the matrices Ai 2 IRn�n .Using singleton fuzzi�er, product inference and weighted average de�uzi�er [4, 5], the aggregatedfuzzy model can be written as follows:_x = Pri=1 wi(x)(Aix)Pri=1 wi(x) (1)and wi is de�ned as wi(x) = nYj=1 �ij(xj) (2)where �ij is the membership function of jth fuzzy set in the ith rule. Now, de�ning�i(x) = wi(x)Pri=1 wi(x) (3)we can write (1) as _x = rXi=1 �i(x)Aix; i = 1; � � � ; r (4)where �i(x) > 0 and rXi=1 �i(x) = 1The interpretation of equation (4) is that the overall system is a \fuzzy" blending of the impli-cations. It is evident that the system (4) is generally nonlinear due to the nonlinearity of �is.In the next section, we present su�cient conditions based on Lyapunov stability theory for thestability of open-loop system (4). The following theorem, due to Sugeno and Tanaka, is �rstpresented [6]:Theorem 1 The continuous-time T-S system (4) is globally asymptotically stable if there existsa common positive de�nite matrix P > 0 which satis�es the following inequalities:3



ATi P + PAi < 0; 8 i = 1; � � � ; r (5)where r is the number of T-S rules.2.2 Continuous-Time T-S Controllers and Closed-Loop StabilityIn the previous section, we discussed the open-loop T-S fuzzy systems as well as su�cient con-ditions for the stability of the open-loop system. Now, we introduce the notion of the Takagi-Sugeno controller in the same fashion as the T-S system. The controller consists of fuzzy If ...Then rules. Each rule is a local state-feedback controller, and the overall controller is obtainedby the aggregation of local controllers. A generic non-autonomous T-S plant rule can be writtenas follows:ith Plant Rule: IF x1(t) is Mi1 and : : : xn(t) is Min THEN _x = Aix+Biu
The overall plant dynamics can be written as_x = rXi=1 �i(x)(Aix+Biu) (6)in the same fashion, a generic T-S controller rule can be written as:ithController Rule: IF x1(t) is Mi1 and : : : xn(t) is Min THEN u = �Kix
The overall controller, using the same inference method as before, is given asu(t) = � rXi=1 �i(x)Kix(t) (7)

4



where the �is are de�ned in (3). Note that we are using the same fuzzy sets for the controllerrules and the plant rules. Replacing (7) in (6), and keeping in mind thatrXi=1 �i(x) = 1we can write the closed-loop equation as follows:_x = rXi=1 rXj=1 �i(x)�j(x)(Ai �BiKj)x (8)The following theorem presents su�cient conditions for closed-loop stability [7].Theorem 2 The closed-loop Takagi-Sugeno fuzzy system (8) is globally asymptotically stable ifthere exists a common positive-de�nite matrix P which satis�es the following Lyapunov inequal-ities: (Ai �BiKi)TP + P (Ai �BiKi) < 0 ; 8 i = 1; � � � ; rGTijP + PGij < 0 ; j < i � r (9)where Gij is de�ned asGij = Ai �BiKj +Aj �BjKi ; j < i � r (10)Proof: The proof can be easily obtained by multiplying the �rst set of inequalities in (9) by �2iand the second set of inequalities by �i�j and summing them up.2.3 Discrete-Time T-S ControllersWe can de�ne the non-autonomous discrete-time T-S system in the same fashion as the continuous-time. The non-autonomous discrete-time T-S system can be written as:x(k + 1) = rXi=1 �i(x)(Aix(k) +Biu(k)) (11)We de�ne the discrete-time T-S controller as a set of fuzzy implications. A generic implicationcan be written as 5



ith Controller Rule: IF x1(k) is Mi1 and : : : xn(k) is Min THEN u(k) = �Kix(k)
where Ki 2 IRm�n . The overall controller will beu(k) = � rXi=1 �i(x)Kix(k) (12)Replacing (12) in (11) we obtain the following closed-loop equationx(k + 1) = rXi=1 rXj=1 �i(x)�j(x)(Ai �BiKj)x(k) (13)Su�cient conditions for the stability of the closed-loop system are given by the following theorem[7].Theorem 3 The closed-loop system (13) is globally asymptotically stable if there exists a com-mon positive-de�nite matrix P that satis�es the following matrix inequalities:(Ai �BiKi)TP (Ai �BiKi)� P < 0 ; i = 1; � � � ; rGTijPGij � P < 0 ; i < j � r (14)where Gij is the same as in (10).Proof: The proof is similar to that of Theorem 2.
3 LMI Stability Conditions for T-S Fuzzy Systems3.1 Continuous-Time CaseSu�cient stability conditions for open-loop continuous time T-S systems were derived in The-orem 1. These conditions, as discussed earlier, are LMIs in the matrix variable P . Note thatequation (4) is the equation for a Polytopic Linear Di�erential Inclusions. [1].On the other hand, the closed-loop case is di�erent. Theorem 2 provides su�cient conditionsfor the stability of the closed loop. But these Lyapunov inequalities are not LMIs in P and Ki,6



since they contain the product of P and Ki. However, using a clever change of variables due toBernussou et. al. [8], we can recast the matrix inequalities in (9) as LMIs. In fact, let:P�1 = YXi = KiY: (15)Then pre-multiplying and post-multiplying the inequalities in (9) by Y and using the abovechange of variable, we obtain the following LMIs [7]:0 < Y0 < Y ATi +AiY �BiXi �XTi BTi ; 8 i = 1; � � � ; r (16)0 < Y (Ai +Aj)T + (Ai +Aj)Y � (BiXj +BjXi)� (BiXj +BjXi)T ; j < i � rIf the above LMIs have a solution, stability of the closed-loop T-S system is guaranteed. Wecan �nd the T-S controller gains by reversing the transformations in (15), i.e.Ki = XiY �1Again, we point out the fact that the resulting T-S controller is conservative, because we aresearching for a common quadratic Lyapunov function. In the next section we derive the LMIconditions for stability of discrete-time T-S fuzzy systems.3.2 Discrete-Time CaseThe closed-loop stability conditions in (14) can be recast as the following LMIs [7, 3].Y > 024 Y (AiY �BiXi)T(AiY �BiXi) Y 35 > 0 ; i = 1; � � � ; r24 Y [(Ai +Aj)Y �Mij ]T(Ai +Aj)Y �Mij Y 35 > 0 ; j < i � r (17)where, Y , and Xi are de�ned in (15), and Mij is given byMij = BiXj +BjXi (18)7



If the LMIs are feasible, the controller gains can be obtained fromKi = XiY �1:Once the controller gains are obtained, we can write the control action as (7) for the continuous-time case and as (12) in the discrete-time case. In the next section, we generalize our designmethodology and present T-S output feedback controllers using an asymptotic observer method-ology.4 Fuzzy Observers4.1 Why Output Feedback?So far, we have developed a systematic framework for the design of T-S state feedback controllers.An implicit assumption in all previous sections was that the states are available for measurement.However, we know that measuring the states can be physically di�cult and costly. Moreover,sensors are often subject to noise and failure. This motivates the question:\How can we designoutput feedback controllers for T-S fuzzy systems?"We already know from classical control theory that using an observer, we can estimate thestates of an observable LTI system from output measurements the output. In fact, we even knowhow to estimate the states of linear time-invariant (LTI) system in the presence of additive noisein the system, and measurement noise in the output, using a Kalman �lter [9]. Our attempt isto generalize the observer methodology to the case of a PLDI instead of a single LTI system,or more speci�cally, to the case of T-S fuzzy systems. We present a new approach, which isto design an observer based on fuzzy implications, with fuzzy sets in the antecedents, and anasymptotic observer in the consequents. Each fuzzy rule is responsible for observing the statesof a locally linear subsystem. The following section will describe the observer design in thecontinuous-time case [10]4.2 Continuous-Time T-S Fuzzy ObserversConsider the closed-loop fuzzy system described by r plant rules and r controller rules as follows:_x(t) = rXi=1 �i(y)(Aix(t) +Biu(t))8



y(t) = rXi=1 �i(y)Cix(t) (19)We de�ne a fuzzy observer as a set of T-S If � � � Then rules which estimate the states of thesystem (19). A generic observer rule can be written asith Rule: If y1(t) is Mi1 and � � � yp(t) is Mip THEN:_̂x = Aix̂+Biu+ Li(y � ŷ)
where p is the number of measured outputs, yi = Cix is the output of ith T-S plant rule, ŷ isthe global output estimate, and Li 2 IRn�p is the local observer gain matrix. The de�uzi�edglobal output estimate can be written as:ŷ(t) = rXj=1 �j(y)Cj x̂(t)where �is are the normalized membership functions as in (3). The aggregation of all fuzzyimplications results in the following state equations:_̂x = rXi=1 �i(y)(Aix̂+Biu) + rXi=1 rXj=1 �i(y)�j(y)LiCj(x� x̂) (20)Since Prj=1 �j(y) = 1, we can write equation (20) as_̂x = rXi=1 rXj=1 �i(y)�j(y) [(Ai � LiCj)x̂+Biu+ LiCjx] : (21)Note that we wrote the normalized membership functions as a function of y instead of x sincethe antecedents are measured output variables, not states. The controller is also based on theestimate of the state rather than the state itself, i.e., we haveu(t) = � rXj=1 �j(y)Kjx̂(t) (22)Substituting (22) in (4) we get the following equation for the closed-loop system_x = rXi=1 rXj=1 �i(y)�j(y)(Aix�BiKjx̂) (23)9



De�ning the state estimation error as ~x = x� x̂and subtracting (23) from (21) we get_~x = rXi=1 rXj=1 �i(y)�j(y)(Ai � LiCj)~x (24)To guarantee that the estimation error goes to zero asymptotically, we can use theorem 2. Theobserver dynamics is stable if a common positive-de�nite matrix P2 exists such that the followingmatrix inequalities are satis�ed:(Ai � LiCi)TP2 + P2(Ai � LiCi) < 0 ; i = 1; � � � ; rHTijP2 + P2Hij < 0 ; j < i � r (25)where Hij is de�ned as: Hij = Ai � LiCj +Aj � LjCi: (26)Although the inequalities in (25) are not LMIs, they can be recast as LMIs by the followingchange of variables: Wi = P2Li (27)Using the above variable change in (25) and utilizing the LMI Lemma [12], we obtain thefollowing LMIs in P2 and Wi: P2 > 0ATi P2 + P2Ai �WiCi � CTi W Ti < 0 ; i = 1; � � � ; r(Ai +Aj)TP2 + P2(Ai +Aj)� (WiCj +WjCi)� (WiCj +WjCi)T < 0 ; j < i � r (28)The observer gains are obtained from: Li = P�12 Wi (29)By augmenting the states of the system with the state estimation error, we obtain the following2n dimensional state equations for the observer/controller closed-loop system:24 _x_~x 35 = 24 Pri=1Prj=1 �i�j(Ai �BiKj) Pri=1Prj=1 �i�jBiKj0 Pri=1Prj=1 �i�j(Ai � LiCj) 3524 x~x 3510



y = h Prj=1 �jCj 0 i24 x~x 35 (30)We then have the following theorem for the stability of the closed-loop observer/controllersystem.Theorem 4 The closed-loop observer/controller system (30) is globally asymptotically stable, ifthere exists a common, positive-de�nite matrix ~P such that the following Lyapunov inequalitiesare satis�ed: ATii ~P + ~PAii < 0 ; i = 1; � � � ; r(Aij +Aji)T ~P + ~P (Aij +Aji) < 0 ; j < i � r (31)where Aij can be de�ned asAij = 24 Ai �BiKj BiKj0 Ai � LiCj 35 (32)Proof: The proof follows directly from Theorem 2.Note that the above matrix inequalities are not LMIs in ~P , Kis, and Lis. We would like toknow if, with the same change of variables as in (15) and (27), we can rewrite the inequalitiesin (31) as LMIs. In fact, we would like to check if we can extend the separation property of theobserver/controller of a single LTI system to the case of (30). We will show in the next section,that in the case of (30), we indeed have the separation property, resulting in two separate setsof LMIs for the observer and the controller [10].4.3 Separation Property of Observer/ControllerTo show that the separation property holds, we have to prove that ~P , the common positive-de�nite solution of the inequalities in (31), is a block diagonal matrix with �P = �Y �1 and P2as diagonal elements. Where P is the positive-de�nite solution of inequalities in (9), and P2 isthe solution of (25), and � > 0. We now express our main result as the separation property inthe following theorem: 11



Theorem 5 (Main Result: Separation Theorem for T-S fuzzy systems): The closed-loop system(30) is globally asymptotically stable if the inequalities in (9) and (25) are satis�ed independently.Proof: We choose ~P as a block diagonal matrix with �P and P2 as the block diagonal elements,i.e. we have the following: ~P = 24 �P 00 P2 35 (33)We show that there always exists a � > 0 such that ~P satis�es the inequalities in (31), provided(9) and (25) are satis�ed. Substituting for ~P and Aij in (31) we obtain the following:24 � �(Ai �BiKi)TP + P (Ai �BiKi)� �P (BiKi)�(BiKi)TP (Ai � LiCi)TP2 + P2(Ai � LiCi) 35 < 0 (34)Using the LMI lemma [12], (34) is negative-de�nite if and only if the following conditions aresatis�ed: � �(Ai �BiKi)TP + P (Ai �BiKi)� < 0�P (BiKi) �(Ai � LiCi)TP2 + P2(Ai � LiCi)��1 (BiKi)TP� �(Ai �BiKi)TP + P (Ai �BiKi)� > 0 (35)Since (9) is satis�ed, the �rst inequality is already true. The second condition is satis�ed forany � > 0 such that � min1�i�r �i > max1�i�r �iwhere �i = �minfP (BiKi) �(Ai � LiCi)TP2 + P2(Ai � LiCi)��1 (BiKi)TPgand �i = �max �(Ai �BiKi)TP + P (Ai �BiKi)�and where �min; �max are the minimum and maximum eigenvalues. Since (9) and (25) arealready satis�ed, such � always exists. Using the same argument, we can show also show thatthe second set of inequalities in (31) is satis�ed. Therefore, the two sets of inequalities can besolved independently, and the separation property holds.In the next section, we present the dual case of discrete-time Takagi-Sugeno observers.12



4.4 Discrete-Time T-S Fuzzy ObserversWe can de�ne the T-S fuzzy observer in the same fashion as the continuous-time [11]. A genericrule for the discrete-time T-S fuzzy observer is:ith Rule: IF y1(k) is Mi1 and � � � yp(k) is Mip THEN:x̂(k + 1) = Aix(k) +Biu(k) + Li(y(k)� ŷ(k))
where p is the number of measured outputs, and yi(k) = Cix(k) is the output of each T-Splant rule, ŷ is the global output estimate, and Li 2 IRn�p is the local observer gain matrix.The de�uzi�ed output estimate can be written as:ŷ(k) = rXj=1 �jCj x̂(k)where �i are the normalized membership functions as in (3). The overall output can also bewritten in a similar manner: y(k) = rXj=1 �jCjx(k)The aggregation of all fuzzy implications results in the following state equation:x̂(k + 1) = rXi=1 �i(y)(Aix̂+Biu) + rXi=1 rXj=1 �i(y)�j(y)LiCj(x� x̂): (36)Since rXj=1 �j(y) = 1we can write equation (36) asx̂(k + 1) = rXi=1 rXj=1 �i(y)�j(y) [(Ai � LiCj)x̂+Biu+ LiCjx] (37)By de�ning the estimation error as before, we can write the estimation error ~x(k) as follows:_~x = rXi=1 rXj=1 �i(y)�j(y)(Ai � LiCj)~x (38)13



To guarantee that the estimation error goes to zero asymptotically, we can use Theorem 3.The observer dynamics is stable if a common positive-de�nite matrix P2 exists such that thefollowing matrix inequalities are satis�ed:(Ai � LiCi)TP2(Ai � LiCi)� P2 < 0 ; i = 1; � � � ; rHTijP2Hij � P2 < 0 ; j < i � r (39)where Hij is de�ned as in (26). Although the inequalities in (39) are not LMIs, they can berecast as LMIs using the change of variables of equation (27). Using the above variable changeand also utilizing the LMI lemma, we obtain the following LMIs in P2 and Wi:P2 > 024 P2 (P2Ai �WiCi)TP2Ai �WiCi P2 35 > 0 ; i = 1; � � � ; r24 P2 (P2(Ai +Aj)�WiCj +WjCi)TP2(Ai +Aj)�WiCj +WjCi P2 35 > 0 ; j < i � r(40)The closed-loop observer/controller system can be written as:24 x(k + 1)~x(k + 1) 35 = 24 Pri=1Prj=1 �i�j(Ai �BiKj) Pri=1Prj=1 �i�jBiKj0 Pri=1Prj=1 �i�j(Ai � LiCj) 3524 x(k)~x(k) 35y = h Prj=1 �jCj 0 i24 x(k)~x(k) 35 (41)Using Theorem 3, the system (41) is globally asymptotically stable, if there exists a positivede�nite matrix ~P > 0 such that : ATii ~PAii � ~P < 0 ; i = 1; � � � ; r(Aij +Aji)T ~P (Aij +Aji)� ~P < 0 ; j < i � r (42)where Aij is the same as in (32).As in the continuous-time case, we can show that the Lyapunov matrix ~P is indeed blockdiagonal, i.e., the discrete-time version of Theorem 5 holds, and the observer and controllergains can be found via separate LMI feasibility problems. A proof of the separation property inthe discrete-time case is given in [11]. 14



5 Numerical ExampleWe present a numerical example to illustrate the results obtained in this paper. We use a two-rule T-S fuzzy model which approximates the motion of an inverted pendulum on a cart. Thissystem has been studied in [7, 13]. The T-S fuzzy rules are obtained by approximation of thenonlinear system around 0� and 88�. The T-S rules can be written as:Plant Rule 1: If y is around 0 Then _x = A1x+B1uPlant rule 2: If y is around ��=2 Then _x = A2x+B2uController Rule 1: If y is around 0 Then u = �K1xController Rule 2: If y is around ��=2 Then u = �K2xObserver Rule 1:If y is around 0 Then _̂x = A1x̂+B1u+ L1C(x� x̂)Observer Rule 2: If y is around ��=2 Then _̂x = A2x̂+B2u+ L2C(x� x̂)where y = x1 is the measured angle from the vertical point and A1; A2; B1; B2; C are given asfollows: A1 = 24 0 117:3 0 35 B1 = 24 0�0:177 35A2 = 24 0 19:45 0 35 B2 = 24 0�0:03 35 (43)C = h 1 0 i (44)The membership functions �1 and �2 for the two fuzzy sets close to zero, and close to ��=2 areplotted in Figure 1. We design the observer and controller gains by local pole placement, andlook for common Lyapunov matrices P , and P2. We place the closed-loop poles of the systemat �2;�2, and the poles of the observer dynamics at �6;�6:5 respectively. The observer andcontroller gains are:K1 = h �120:67 �66:67 i K2 = h �2551:6 �764:0 iL1 = h 12:5 57:3 iT L2 = h 12:5 50:0 iT (45)Fortunately, the LMIs are feasible and we can �nd positive-de�nite Lyapunov matrices P andP2 as solutions to the LMIs in (16) and (28). The simulation results for the states of the system15
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Figure 1: Membership functions for for the angle.x(1) and x(2) as well as the estimation error x(3), and x(4) are depicted in Figures 2 through5. Although we were able to solve for positive-de�nite Lyapunov matrices P and P2 using localpole placement, this might not always be possible. This is the reason why we need to design forperformance in addition to stability. The details are discussed in [13]6 ConclusionThe purpose of this chapter was to extend the current methods of designing stabilizing statefeedback controllers for T-S fuzzy systems to the output feedback case for continuous-time anddiscrete-time. We stated and proved a separation theorem which makes it possible to designfor the observer and controller gains separately. Future research can be done in this area byextending these results to the case where performance is needed in addition to stability. Usinga guaranteed-cost framework developed in [13], we can design an observer/controller systemwhich minimizes an upper bound on a quadratic performance index . Another extension wouldbe to include additive noise and develop a Kalman �lter for T-S fuzzy systems.
16
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Figure 2: Initial condition response of the pendulum angle.
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Figure 3: Initial Condition response of the angular velocity.
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Figure 4: Estimation error for angle.17



0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

Time

x(
4)
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