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Abstract

In this chapter, we extend some recent results regarding the stability of continuous-time and
discrete-time Takagi-Sugeno (T-S) fuzzy systems to the case where the system’s states are not
available for measurement. We introduce the notion of a fuzzy observer, and show that the
separation of closed-loop observer/controller holds. In other words, we show that the observer
and controller design problems can be formulated as two separate LMI feasibility problems.
Finally, we present a numerical example to show the effectiveness of our approach and discuss

some future research directions.
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1 Introduction

There has recently been a rapidly growing interest in using Takagi-Sugeno (T-S) fuzzy models

to approximate nonlinear systems. This interest relies on the fact that dynamic T-S models are



easily obtained by linearization of the nonlinear plant around different operating points. Once
the T-S fuzzy models are obtained, linear control methodology can be used to design local state
feedback controllers for each linear model. Aggregation of the fuzzy rules results in a generally
nonlinear model, but in a very special form known as a Polytopic Linear Differential Inclusion
(PLDI) [1]. Fortunately, the stability conditions for these type of systems can be formulated
in a Linear Matrix Inequality framework, which can then be solved using convex optimization
methods. However, the resulting stability conditions might be conservative, because they require
the existence of a common Lyapunov matrix.

In a recent paper, Petterson and Lennartson [2] have studied a similar problem and have
come up with stability conditions that do not require a single Lyapunov matrix for the solution
of the Linear Matrix Inequalities (LMIs), but has some extra assumptions on the different
Lyapunov functions.However, these are analysis results only. Our approach is based on the
LMI formulation of the stability conditions for closed-loop T-S systems given in [7, 3]. We
extend these results to the case when states are not available for measurement and feedback by
introducing the notion of a fuzzy observers.

This chapter is organized as follows: In Section 2, we give an overview of Takagi-Sugeno
fuzzy systems and sufficient stability conditions for both continuous-time and discrete-time
cases. Section 3 deals with the LMI formulation of the stability results given in Section 2. In
Section 4, we introduce the notion of a fuzzy observer for both continuous-time and discrete-
time systems. We also state and prove the separation property of the closed-loop observer and
controller, i.e.;, we show that in both continuous-time and discrete-time cases, we can design
the observer and controller gains by solving two separate sets of LMI feasibility problems. We
present a numerical example in Section 5, to illustrate our approach. Finally, we present our

conclusions in Section 6.

2  Takagi-Sugeno Models

2.1 Continuous-Time T-S Models

A continuous-time T-S model is represented by a set of fuzzy If - - - Then rules written as follows :



ith  Plant Rule: IF a2,(t) is My and ...,z2,(t) is M, THEN i =

AZ'CU

where z € R"*! is the state vector, i = {1,---,r}, r is the number of rules, M;; are input
fuzzy sets, and the matrices A; € IR"*".

Using singleton fuzzifier, product inference and weighted average deffuzifier [4, 5], the aggregated
fuzzy model can be written as follows:

_ Y wilx)(Aiz)
22:1 w; ()

(1)

and w; is defined as

wi(z) = H wij(z5) (2)

where ;5 is the membership function of jth fuzzy set in the ith rule. Now, defining

a;(z) = _wilm)
) = s g
we can write (1) as
= Zai(m)Azm, i=1 T (4)

where a;(z) > 0 and

The interpretation of equation (4) is that the overall system is a “fuzzy” blending of the impli-
cations. It is evident that the system (4) is generally nonlinear due to the nonlinearity of a;s.
In the next section, we present sufficient conditions based on Lyapunov stability theory for the
stability of open-loop system (4). The following theorem, due to Sugeno and Tanaka, is first

presented [6]:

Theorem 1 The continuous-time T-S system (4) is globally asymptotically stable if there exists

a common positive definite matriz P > 0 which satisfies the following inequalities:




ATP+PA; <0; Vi=1,-,r (5)

where r is the number of T-S rules.

2.2 Continuous-Time T-S Controllers and Closed-Loop Stability

In the previous section, we discussed the open-loop T-S fuzzy systems as well as sufficient con-
ditions for the stability of the open-loop system. Now, we introduce the notion of the Takagi-
Sugeno controller in the same fashion as the T-S system. The controller consists of fuzzy If ...
Then rules. Each rule is a local state-feedback controller, and the overall controller is obtained
by the aggregation of local controllers. A generic non-autonomous T-S plant rule can be written

as follows:

ith Plant Rule: IF z1(t) is M;; and ... x,(t) is M;, THEN & = A;z + Bju

The overall plant dynamics can be written as

T = Z a;(z)(Aiz + Bju) (6)

in the same fashion, a generic T-S controller rule can be written as:

i"Controller Rule: IF zy(t) is M;; and ... z,(t) is M;, THEN u = -Kz

The overall controller, using the same inference method as before, is given as

u(t) = — Z i () Kiz(t) (7)



where the «;s are defined in (3). Note that we are using the same fuzzy sets for the controller

rules and the plant rules. Replacing (7) in (6), and keeping in mind that

Zai(m) =1

we can write the closed-loop equation as follows:

T T

i =YY i@ ()(4; -~ Bik) ®)

i=1 j=1

The following theorem presents sufficient conditions for closed-loop stability [7].

Theorem 2 The closed-loop Takagi-Sugeno fuzzy system (8) is globally asymptotically stable if
there exists a common positive-definite matriz P which satisfies the following Lyapunov inequal-

ities:

(A; = BiK))"P+ P(A; — B;K;) < 0; VYi=1,---,r

GP+PG; < 0; j<i<r (9)
where G;; is defined as
Gij:Ai—Bin-FAj—BjKi; j<i<r (10)

Proof: The proof can be easily obtained by multiplying the first set of inequalities in (9) by o

and the second set of inequalities by a;a; and summing them up. |

2.3 Discrete-Time T-S Controllers

We can define the non-autonomous discrete-time T-S system in the same fashion as the continuous-

time. The non-autonomous discrete-time T-S system can be written as:
2(k+1) =Y ai(2)(Ax(k) + Biu(k)) (11)
i=1

We define the discrete-time T-S controller as a set of fuzzy implications. A generic implication

can be written as



i'"  Controller Rule: IF zy(k) is M;; and ...z,(k) is M;, THEN wu(k) = -—Kz(k)

where K; € R™*™. The overall controller will be

u(k) = - Z ai(z)K;z(k) (12)
i=1
Replacing (12) in (11) we obtain the following closed-loop equation
a(k+1) =Y Y ai(@)a;(@)(A; - BK;)z(k) (13)
i=1 j=1

Sufficient conditions for the stability of the closed-loop system are given by the following theorem

[7]-

Theorem 3 The closed-loop system (18) is globally asymptotically stable if there exists a com-

mon positive-definite matriz P that satisfies the following matrixz inequalities:
(AlfBlKl)TP(AlfBlKl)*P < 0, izl,"',T
G PGy —P < 0; i<j<r (14)
where G;; is the same as in (10).

Proof: The proof is similar to that of Theorem 2. |

3 LMI Stability Conditions for T-S Fuzzy Systems

3.1 Continuous-Time Case

Sufficient stability conditions for open-loop continuous time T-S systems were derived in The-
orem 1. These conditions, as discussed earlier, are LMIs in the matrix variable P. Note that
equation (4) is the equation for a Polytopic Linear Differential Inclusions. [1].

On the other hand, the closed-loop case is different. Theorem 2 provides sufficient conditions

for the stability of the closed loop. But these Lyapunov inequalities are not LMIs in P and Kj;,



since they contain the product of P and K;. However, using a clever change of variables due to

Bernussou et. al. [8], we can recast the matrix inequalities in (9) as LMIs. In fact, let:
P! =Y

X, = KV (15)

Then pre-multiplying and post-multiplying the inequalities in (9) by Y and using the above

change of variable, we obtain the following LMIs [7]:

0 < Y
0 < vAl'+ Ay -BX, - XI'By vi=1,---,r (16)

0 < Y(Ai+A)" + 4+ A)Y —(B:X; + B;jX;) — (B:X; + B;Xy)";,  j<i<r

If the above LMIs have a solution, stability of the closed-loop T-S system is guaranteed. We

can find the T-S controller gains by reversing the transformations in (15), i.e.
Ki=X;y~!

Again, we point out the fact that the resulting T-S controller is conservative, because we are
searching for a common quadratic Lyapunov function. In the next section we derive the LMI

conditions for stability of discrete-time T-S fuzzy systems.

3.2 Discrete-Time Case

The closed-loop stability conditions in (14) can be recast as the following LMIs [7, 3].

Y > 0
| Y (A4Y — B X))T
> 0; =1 ,T

[MJ—&&) Y |

y A+ A)Y — MyT |
{ I ) 2 > 0; j<i<r (17)

[ (Az +A]')Y—Mij Y ]

where, Y, and X; are defined in (15), and M;; is given by
Mz'j = BZ‘X]' + B]'Xz' (18)



If the LMIs are feasible, the controller gains can be obtained from
K;=X;Y "

Once the controller gains are obtained, we can write the control action as (7) for the continuous-
time case and as (12) in the discrete-time case. In the next section, we generalize our design

methodology and present T-S output feedback controllers using an asymptotic observer method-

ology.

4 Fuzzy Observers

4.1 Why Output Feedback?

So far, we have developed a systematic framework for the design of T-S state feedback controllers.
An implicit assumption in all previous sections was that the states are available for measurement.
However, we know that measuring the states can be physically difficult and costly. Moreover,
sensors are often subject to noise and failure. This motivates the question: “How can we design
output feedback controllers for T-S fuzzy systems?”

We already know from classical control theory that using an observer, we can estimate the
states of an observable LTI system from output measurements the output. In fact, we even know
how to estimate the states of linear time-invariant (LTT) system in the presence of additive noise
in the system, and measurement noise in the output, using a Kalman filter [9]. Our attempt is
to generalize the observer methodology to the case of a PLDI instead of a single LTI system,
or more specifically, to the case of T-S fuzzy systems. We present a new approach, which is
to design an observer based on fuzzy implications, with fuzzy sets in the antecedents, and an
asymptotic observer in the consequents. Each fuzzy rule is responsible for observing the states
of a locally linear subsystem. The following section will describe the observer design in the

continuous-time case [10]

4.2 Continuous-Time T-S Fuzzy Observers

Consider the closed-loop fuzzy system described by r plant rules and r controller rules as follows:

&(t) = Zai(y)(Aiw(t)+BiU(t))



y(t) = Zm(y)cix(t) (19)

We define a fuzzy observer as a set of T-S If --- Then rules which estimate the states of the

system (19). A generic observer rule can be written as

ith Rule: If y; (¢) is M;; and --- y,(¢) is M;, THEN:

i = Aii + Bju+ Li(y — i)

where p is the number of measured outputs, y; = C;z is the output of ith T-S plant rule, g is
the global output estimate, and L; € R™*? is the local observer gain matrix. The deffuzified

global output estimate can be written as:
.
9t = Yoy (1) Cya (1)
j=1

where «;s are the normalized membership functions as in (3). The aggregation of all fuzzy

implications results in the following state equations:

=Y ai()(Aid + Bu) + Y ai(y)ey(y)LiCj(x — &) (20)
i=1 i=1 j=1
Since Z§:1 a;j(y) = 1, we can write equation (20) as
7= Z Z ai(y)a;(y) [(Ai — LiCj)2 + Biu + L;Cjx] . (21)
i=1 j=1

Note that we wrote the normalized membership functions as a function of y instead of x since
the antecedents are measured output variables, not states. The controller is also based on the

estimate of the state rather than the state itself, i.e., we have
u(t) = = 3 ay () Ki() (22)
j=1
Substituting (22) in (4) we get the following equation for the closed-loop system

i =YY aily)asy)(Asw  Bik ) (23)

i=1 j=1



Defining the state estimation error as

=
Il
8
|
>

and subtracting (23) from (21) we get

i= 03wy ) (A - LiCy)i (24)

i=1 j=1
To guarantee that the estimation error goes to zero asymptotically, we can use theorem 2. The
observer dynamics is stable if a common positive-definite matrix P, exists such that the following
matrix inequalities are satisfied:
(A4 = LiC)) " Py + Py(A; — LiC;) < 05 i=1,---,r
HP,+ PH;; < 0; j<i<r (25)
where H;; is defined as:
Hij = Al — LZC] + Aj — L]CZ (26)

Although the inequalities in (25) are not LMIs, they can be recast as LMIs by the following
change of variables:

W; = P, L; (27)
Using the above variable change in (25) and utilizing the LMI Lemma [12], we obtain the
following LMIs in P, and W;:
P > 0
AT Py + Py A, —W,C; —CTW! < 0; i=1,---,r
(Ai+A]')TP2+P2(AZ‘+A]')—(WZ’C]"FW]‘CZ')—(WiC]'—FWjCi)T < 0; g<i<r
(28)
The observer gains are obtained from:
L; =Py, 'w; (29)

By augmenting the states of the system with the state estimation error, we obtain the following

2n dimensional state equations for the observer/controller closed-loop system:

[i] _ [ Di1 2o qie(A; — BiK;) ‘ i1 2oy @i BiK; ] [i]
B 0 S e LGy | | #

10



y = | Y a0

0] {4 | (30)

We then have the following theorem for the stability of the closed-loop observer/controller

system.

Theorem 4 The closed-loop observer/controller system (30) is globally asymptotically stable, if
there exists a common, positive-definite matriz P such that the following Lyapunov inequalities

are satisfied:

AP+ PA; < 0;i=1, ---r

where A;; can be defined as

Proof: The proof follows directly from Theorem 2. |

Note that the above matrix inequalities are not LMIs in P, K;s, and L;s. We would like to
know if, with the same change of variables as in (15) and (27), we can rewrite the inequalities
in (31) as LMIs. In fact, we would like to check if we can extend the separation property of the
observer/controller of a single LTT system to the case of (30). We will show in the next section,
that in the case of (30), we indeed have the separation property, resulting in two separate sets

of LMIs for the observer and the controller [10].

4.3 Separation Property of Observer/Controller

To show that the separation property holds, we have to prove that P, the common positive-
definite solution of the inequalities in (31), is a block diagonal matrix with AP = A\Y ! and P,
as diagonal elements. Where P is the positive-definite solution of inequalities in (9), and P, is
the solution of (25), and A > 0. We now express our main result as the separation property in

the following theorem:

11



Theorem 5 (Main Result: Separation Theorem for T-S fuzzy systems): The closed-loop system

(80) is globally asymptotically stable if the inequalities in (9) and (25) are satisfied independently.

Proof: We choose P as a block diagonal matrix with AP and P, as the block diagonal elements,

i.e. we have the following:

P:[AP 0 ] (33)

Lo |r]

We show that there always exists a A > 0 such that P satisfies the inequalities in (31), provided
(9) and (25) are satisfied. Substituting for P and A;; in (31) we obtain the following:

[ A[(A; = BiK;)"P + P(A; — BiK;)] ‘ AP(B;K;) -I

<0 (34)
[ MB;K)TP ‘ (A; — LiCi)T Py + Py(A; — L;C;) J

Using the LMI lemma [12], (34) is negative-definite if and only if the following conditions are

satisfied:

AP(B;K;) [(A; — LiC)) " Py + Py(A; — LiCy)] " (BiK:)" P

—[(4 — BiK;)" P+ P(4; — B;K;)] > 0 (35)

Since (9) is satisfied, the first inequality is already true. The second condition is satisfied for
any A > 0 such that

A min p; > max v;
1<i<r 1<i<r

where
11 = Amin{ P(BiK;) [(A; — LiCi)" Py + Py(A; — L;,Cy)] ' (B;K;)" P}

and

Vi = Amaz [(4i — BiK;)" P+ P(4; — BiK;)]

and where Apin, Amaz are the minimum and maximum eigenvalues. Since (9) and (25) are
already satisfied, such A always exists. Using the same argument, we can show also show that
the second set of inequalities in (31) is satisfied. Therefore, the two sets of inequalities can be
solved independently, and the separation property holds. [ ]

In the next section, we present the dual case of discrete-time Takagi-Sugeno observers.

12



4.4 Discrete-Time T-S Fuzzy Observers

We can define the T-S fuzzy observer in the same fashion as the continuous-time [11]. A generic

rule for the discrete-time T-S fuzzy observer is:

ith Rule: IF y; (k) is M;; and - -- y,(k) is M;, THEN:

T(k +1) = Ax(k) + Biu(k) + Li(y(k) — 9(k))

where p is the number of measured outputs, and y;(k) = C;z(k) is the output of each T-S
plant rule, ¢ is the global output estimate, and L; € R™*? is the local observer gain matrix.

The deffuzified output estimate can be written as:

j(k) = Zajcj.f:(k)

where «; are the normalized membership functions as in (3). The overall output can also be

written in a similar manner:
.
= E Oéj C]’I‘(k)
i=1

The aggregation of all fuzzy implications results in the following state equation:

#(k+1) Zal )(A;& + B;u) +ZZO[Z y)L;Cj(z — 7). (36)

i=1 j=1

Since
> ajly) =
j=1

we can write equation (36) as

= Z Z a;(y)a;(y) [(Ai — LiCy)2 + Bju + L;Cjx] (37)

i=1 j=1

By defining the estimation error as before, we can write the estimation error Z(k) as follows:

= > aiy)a;(y)(Ai — LiC))E (38)

i=1 j=1

13



To guarantee that the estimation error goes to zero asymptotically, we can use Theorem 3.
The observer dynamics is stable if a common positive-definite matrix P, exists such that the

following matrix inequalities are satisfied:
(A; — LiC)TPy(A; — LC;)) — P, < 0; i=1,---,r
HIP,Hj;—-Py < 0; j<i<r (39)
where H;; is defined as in (26). Although the inequalities in (39) are not LMIs, they can be

recast as LMIs using the change of variables of equation (27). Using the above variable change

and also utilizing the LMI lemma, we obtain the following LMIs in P, and W;:

P, > 0
P ‘ (PoA; — W,C)T ]
> 0; =1, r
PA; — W,C, P, |
[ Py ‘ (P2(A; + Aj) = WiCj + W;Ci)" .
> 0; j<i<r
[ PQ(Ai+Aj)7WiCj+WjCi P ]
(40)
The closed-loop observer/controller system can be written as:
’I‘(k + ].) . Z::l Z;:l OziOéj (Al — BZK]) ‘ Z::l Z;:1 aiajBin ’I‘(k)
ZINS(]C + 1) 0 ‘ 22:1 Z;:1 ;0 (Az — LZC]) 53(](2)

0 } [ o (k) ] (41)

) |

Using Theorem 3, the system (41) is globally asymptotically stable, if there exists a positive

y = | X a0

definite matrix P > 0 such that :

Az;pAufp < 0, izl,"',T

(A + A;)TP(Ay + A;)—P < 0; j<i<r (42)

where A;; is the same as in (32).
As in the continuous-time case, we can show that the Lyapunov matrix P is indeed block
diagonal, i.e., the discrete-time version of Theorem 5 holds, and the observer and controller

gains can be found via separate LMI feasibility problems. A proof of the separation property in

the discrete-time case is given in [11].

14



5 Numerical Example

We present a numerical example to illustrate the results obtained in this paper. We use a two-
rule T-S fuzzy model which approximates the motion of an inverted pendulum on a cart. This
system has been studied in [7, 13]. The T-S fuzzy rules are obtained by approximation of the
nonlinear system around 0° and 88°. The T-S rules can be written as:

Plant Rule 1: If y is around 0 Then & = Az + Byu

Plant rule 2: If y is around £7/2 Then & = Asx + Bou

Controller Rule 1: If y is around 0 Then u = — K, x

Controller Rule 2: If y is around £7/2 Then v = — Koz

Observer Rule 1:If y is around 0 Then i =A13+ Biu+ Ly C(x — )

Observer Rule 2: If y is around £m/2 Then %= As? + Bou + L,C(x — %)

where y = x; is the measured angle from the vertical point and A, Ay, By, By, C are given as

follows:

[0 1] [0 ]

A1 = B, =
| 17.3 0 | i —0.177J
[0 1] 0 ]

A, = B, = (43)
| 945 0 | i —0.03J

c = [10] (44)

The membership functions p; and us for the two fuzzy sets close to zero, and close to £ /2 are
plotted in Figure 1. We design the observer and controller gains by local pole placement, and
look for common Lyapunov matrices P, and P,. We place the closed-loop poles of the system
at —2,—2, and the poles of the observer dynamics at —6, —6.5 respectively. The observer and

controller gains are:

K,

{ —120.67 —66.67 ] K, = [ —2551.6 —764.0

T

Ly [ 125 57.3 ]T Ly = [ 12,5 50.0 ] (45)

Fortunately, the LMIs are feasible and we can find positive-definite Lyapunov matrices P and

P, as solutions to the LMIs in (16) and (28). The simulation results for the states of the system

15
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Figure 1: Membership functions for for the angle.

z(1) and z(2) as well as the estimation error z(3), and x(4) are depicted in Figures 2 through
5. Although we were able to solve for positive-definite Lyapunov matrices P and P, using local
pole placement, this might not always be possible. This is the reason why we need to design for

performance in addition to stability. The details are discussed in [13]

6 Conclusion

The purpose of this chapter was to extend the current methods of designing stabilizing state
feedback controllers for T-S fuzzy systems to the output feedback case for continuous-time and
discrete-time. We stated and proved a separation theorem which makes it possible to design
for the observer and controller gains separately. Future research can be done in this area by
extending these results to the case where performance is needed in addition to stability. Using
a guaranteed-cost framework developed in [13], we can design an observer/controller system
which minimizes an upper bound on a quadratic performance index . Another extension would

be to include additive noise and develop a Kalman filter for T-S fuzzy systems.

16
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Figure 4: Estimation error for angle.
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. . . . .
o] 0.5 1 1.5 2 2.5 3
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Figure 5: Estimation error for angular velocity.
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