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Abstract  

This paper reviews the static output feedback problem in the 
control of linear, time-invariant (LTI) systems. It includes an- 
alytical and computational methods and presents in a unified 
fashion, the knowledge gained in the decades of research into 
this most important problem. 

1 Introduction 
The output feedback problem is probably the most important 
open question in control engineering. Simply stated, the prob- 
lem is as follows: Given a linear, time-invariant system, find 
a static output feedback so that the closed-loop system has 
some desirable characteristics, or determine that such a feed- 
back does not exist. This paper attempts to survey the state 
of knowledge concerning the output feedback problem. The 
paper has two main parts: the first involves the study of the 
time-invariant plant described by 

i ( t )  = A z ( t )  f Bu( t ) ;  y ( t )  = C z ( t )  (1.1) 

under the influence of static output feedback of the form 

The closed-loop system is 

S = ( A  f B K C ) z ( t )  + B v ( t )  s A,z( t )  + B v ( t ) .  (1.3) 

We take the state ~ ( t )  E R", the control input ~ ( t )  E IR", 
and the output y ( t )  E IRP. The case where a dynamical out- 
put compensator of order nf < n is used may be brought 
back to  the static output feedback case as discussed in 111. 
The second part of this paper involves the solution of vari- 
ous coupled matrix design equations of the sort obtained in 
pole-placement and LQ design using output feedback, game 
theory, and elsewhere. Such coupled systems of equations are 
currently "solved" using iterative numerical techniques. 

We recall here a few mathematical definitions which will 
be used in this paper. We say that a rational function H ( s )  is 
Bounded-Input-Bounded-Output-Stable (BIBO) stable or that 
it belongs to  H" if it is proper, with all its poles in the left- 
half-plane (LHP). We let S denote the set of matrices whose 
entries are in H". A Unit in S is a member of S whose inverse 
is also in S.  A matrix is said to be epic if it has full row rank 
and monk if it has full column rank. In what follows, A' or 
AT denote the transpose of any matrix A ,  and the controller 
is either U = - K y  f v or U = K y  t v ,  as introduced in any 
given section. 

The paper is organized as follows: Section 2 contains a 
discussion of stabilizability using static output feedback. The 
section also includes design procedures such as the Covariance 
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assignment and the decision methods. The Pole placement 
problem is presented in Section 3 and the eigenstructure as- 
signment is discussed in section 4. Section 5 is devoted to 
the Linear Quadratic Regulator problem with output feedback. 
Our conclusions are presented in section 6 

2 Stabilizability By Static Output Feed- 
back 

In this section, we discuss the problem of stabilizing an open- 
loop unstable system with static output feedback. 

2.1 Necessary Conditions 
We first identify the cases where static output feedback can 
not stabilize an open-loop unstable system. In order to state 
these conditions, we recall the following theorems. 

Theorem 2.1 [2] T h e  Parity-Interlacing-Property ( P I P )  
A linear system H ( s )  is stabilizable with a stable compensator 
C ( s )  or strongly stabilizable with C ( s )  if and only if the num- 
ber of real poles of H ( s ) ,  counted according to  their McMillan 
degree, between any pair of real blocking zeros in the right- 
half-plane is even. We then say that the plant H ( s )  satisfies 
the PIP. 

Note that in the S E 0  case, the PIP fails to  hold for many real 
systems. On the other hand, as observed in [2], the PIP holds 
generically in the MIMO case. 

Theorem 2.2 [3] A linear system H ( s )  is stabilizable with a 
stable compensator C(s)  which has no real unstable zeros if 
and only if 1) H ( s )  satisfies the PIP, and 2) The number of 
real blocking zeros of H ( s )  between any two real poles of B(5) 
is even. We then say that H ( s )  satisfies the even PIP. 

Using Theorem 2.2, a necessary condition for static output sta- 
bilizability is that the plant H ( s )  satisfies the even PIP. 

2.2 Sufficient Conditions 
We start out by discussing the simple case of SISO systems, 
of relative degree n* 5 1, and which are minimum phase. A 
simple root-locus argument then shows that such systems are 
stabilizable with a large enough static output feedback. 

2.3 Design Approaches and Limitations 
In the case of SISO systems, graphical approaches (root-locus, 
Nyquist) are used to  answer both the existence and the design 
questions of stabilizing static output controllers. In addition, 
there exist some necessary and sufficient algebraic tests [4], [5] 
for the existence of stabilizing output feedbacks. These tests 
however, require some preliminary derivations (finding roots, 
eigenvalues) which are just as complicated as the graphical 
methods. In addition, they are not easily extendable to the 
MIMO case, although some specialized cases may be resolved 
using the Multivariable Nyquist criterion [6]. The work in 
[7], also presents a complete characterization of strictly-proper 
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S E 0  systems related t o  each other with static output feed- 
back. Ln fact, it  states that such systems must share the same 
zeros and the same breakaway points. 

2.3.1 Paramete r i za t ion  M e t h o d s  

In this section, we list some parameterization results that are 
potentially useful in solving the static output feedback prob- 
lem. 

T h e o r e m  2.3 [2] A compensator C(5) = Nc(5)D,(5)-' where 
N 4 5 )  and DJ5)  are in S internally stabilizes the plant H ( 5 )  = 
N,(s)D,(s)-' if and only if Nc(5)Np(5) + D,(5)DP(5) is a Unit 
of S.  Moreover, the set of all stabilizing compensators of H ( 5 )  
is given by 

It can then be argued that a necessary and sufficient condition 
for the static output stabilizability problem is that there ex- 
ists a &(.) E S such that K = [Nc(s) + D,(s )Q(s) ] [D, (s )  - 
N,(s)Q(s)]-' is a constant matrix. Unfortunately, this and 
other so-called necessary and sufficient conditions are non- 
testable. We illustrate this point using the next approach: 
In [ E ]  another necessary and sufficient condition was stated as 
follows. 

T h e o r e m  2.4 Given the system ( l . l ) ,  and let E; = CtC, 
where superscript ''t" denotes the Moore-Penrose inverse. Then, 
the system is stabilizable with static output feedback K = 
R-'(L + B'P)E; if and only if, there exist matrices Q > 0, 
R > 0 and L of compatible dimensions such that the algebraic 
equation 

A'P + P A  - E;(PB + L')R-'(B'P + L)E; + Q = 0 (2.4) 

has a unique solution P > 0. 

The problem resides in the fact that one can not easily choose 
the matrices Q > 0, R > 0 and L, nor can we easily solve for 
P .  

2.3.2 Covariance Assignment  a n d  Stabilizability 

The basic idea behind the covariance assignment methods [9], 
[lo], is that given a stochastic system x = Ax + Bu + r w ;  y = 
Cx and a static output feedback U = K y  the steady-state co- 
variance matrix X = limt,, E { z ( t ) z ( t ) * }  can be assigned a 
given matrix value by looking for solutions for K in the Lya- 
punov equation 

( A  + B K C ) X  + X ( A  + B K C ) ~  + rwrT = o (2.5) 

where W > 0 is the covariance matrix of the zero-mean, white- 
noise process w ( t ) ,  i.e. E { w ( ~ ) w ( T ) ~ }  = W6(t - T ) .  The key 
point is that for a given X ,  equation (2.5) is linear in the 
unknown output feedback matrix K. From Lyapunov stability 
theory, we also know that if P > 0, then any K which satisfies 
the matrix inequality 

( A  + B K C ) T P  + P ( A  + B K C )  < 0 (2.6) 

results in a closed-loop system which is asymptotically stable. 
For a fixed P ,  inequality (2.6) is a Linear  Matrix Inequal- 
i ty  (LMI) in the matrix K [ll]. The LMI in (2.6) is convex in 
K so that convex programming techniques can be used to  nu- 
merically find a K whenever P > 0 is given. From (2.6), one 
can easily show that a necessary condition for static output 
stabilizability is that the two matrix inequalities, 

B'(AP+ P A ~ ) ( B ~ ) *  < o (2.7) 
(CT)'(ATP-' + P-lA)((CT)')T < 0 (2.8) 

be satisfied by some P > 0, where B' and (CT)' are full-rank 
matrices, orthogonal to  B and CT respectively. In [12], it is 
shown that the converse is also true, that is if there exists a 
P > 0 which satisfies inequalities (2.7) and (2.8), then there 
exists a stabilizing static output feedback K, given by 

where S > 0, and L is any matrix which satisfies 11 L I \< 1, P 
is any positive-definite matrix which satisfies (2.7, 2.8), and 

(2.9) ATP + P A  + Q - P B R - ~ B ~ P  = o 
for some positive-definite Q and R.  Unfortunately, finding a 
positive-definite P ,  solution of (2.9) and which satisfies inequal- 
ities (2.7) and (2.8) is an open problem. 

2.3.3 Decision M e t h o d s  

In [13], the usage of decision methods to  the study of the output 
feedback problem was introduced. These methods can also be 
modified in order to  find stabilizing compensators. The basic 
idea behind this approach can be decomposed into the follow- 
ing steps: First obtain a set of inequalities to  be satisfied by 
the elements k;j of the unknown gain matrix K .  These inequal- 
ities may be obtained from the usual stability tests. Second, 
successively eliminate k;, by introducing more inequalities and 
equalities, until we finally end up with a set of inequalities and 
equalities to  be satisfied by one entry of K, e.g. krs. Third, 
check the truth of these one variable sentences and find a range 
of possible values (if possible) for kTs. Then, one can unfold 
back using the range just found, in order to find possible ranges 
of values for all entries k,j of K. There are two main criticisms 
of the decision methods: the first being that these and other 
algorithmic approaches do not provide any insight into the so- 
lution, and the second being that they are time-consuming and 
complicated even for simple problems. 

3 Pole Placement With Output Feed- 
back 

Here, it is desired to  select the gain K to place the poles in the 
closed-loop system (1.3) at desired symmetric locations (i.e. 
closed under complex conjugation). 

3.1 Suff ic ient  C o n d i t i o n s  

In [14] it was shown that if (1.1) is minimal, then almost any 
K will yield a cyclic A = ( A  + BKC), i.e. one such that 
5 1  - A - B K C  has only one non-unity invariant polynomial. 
Moreover, for almost any choice of a vector q, we can make 
{ A , B q }  controllable. Then, we can apply the scalar design 
formulae t o  obtain a gain matrix k such that det(s1 - A + 
Bqk) is the desired closed-loop polynomial. In [15, 161, this 
approach was exploited to  show that if ( A ,  B ,  C )  is minimal 
with B and C offull rank, then max(m,p) poles are assignable. 
Davison and Wang [17] and Kimura [18] showed that indeed, 
under these conditions, min(n, m + p - 1) poles are assignable 
generically (i.e. for almost all B and C). This translates into 
the sufficient condition for generic pole assignability that 

m + p  2 + 1. (3.10) 

An alternate proof of this was offered in (6, 191. Another suffi- 
cient condition for generic pole assignability was given in [20] 
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as m + p + p > n + 1; m > p; p 2 a, with a and 0 the 
controllability and observability indices respectively. If (1.1) 
is minimal with E of full rank and Ad is the desired closed- 
loop plant matrix, then another sufficient condition for pole 
assignability was given in [21] as (A  - &)(I - CtC) = 0. This 
may be interpreted as a condition that any differences between 
the actual and the desired plant matrices occur in the perpen- 
dicular of N ( C )  (with N(.) representing the Null space). 

3.2 Necessary Conditions 
In [22] a necessary and sufficient condition for generic pole 
assignability with a complex gain matrix K was established 
as 

mp L n, (3.11) 
however, simple counter-examples show that this is only nec- 
essary for the case of real K. In [23], the necessary condi- 
tion was strengthened to  (3.11) plus full rank of the so-called 
Plucker matrix. Reference [24] defined (1.1) as locally com- 
pletely assignable (for a given K )  if, for every desired set of 
small changes 6u, in the poles U, of ( A  + E K C ) ,  there exists 
a 6 K  such that [ A  f B(K + 6 K ) C ]  has poles at (U* + 66,). A 
necessary and sufficient (but non-testable) condition for this to 
occur was given in terms of the independence of the closed-loop 
Markov parameter matrices. 

3.3 Design Approaches and Limitations 
In [15,16,17], an explicit "Ackermann-type" formula was given 
for K in terms of various matrices constructed from ( A ,  E ,  C )  
and the desired poles. In 120, 181 a different approach which 
relates closely to  the eigenstructure assignment techniques in 
the next section was used. References [6] and [23] used the 
Grassman space (i.e. exterior algebra). In [25] an algorithm 
was given to  assign the eigenvalues arbitrarily close to  desired 
values for the case m f p > n. The Hessenberg form was used 
to solve two single-input problems. First, p - 1 poles were 
placed, then n - p + 1 poles were placed without disturbing 
the first poles assigned (c.f. [26]). A discussion on the relation 
between the pole-assignment problem and transmission zeros 
is also given. A related algorithm was given in [27] t o  assign 
max(m,p) poles. If condition (3.10) fails to  hold, then the 
techniques of this subsection generally allow the assignment of 
m + p - 1 < n poles. There are no guarantees however, on the 
locations of the remaining closed-loop poles, which may often 
be unstable. A nice geometric framework involving lattices 
is provided in [28]. It is however difficult to translate that 
framework into computational techniques. 

In the following, we present yet another set of the so-called 
necessary and sufficient (but non-testable) conditions for pole 
placement using output feedback. For notational ease assume 
that E is monic, C is epic. We suppose p 2 m; the other case 
is handled in a similar way. The open-loop input-coupling, 
output-coupling, and transfer relations are revealed in matrix- 
fraction description (MFD) form by 

( 5 1  - A)-'B = Ni(S)D-'(S) (3.12) 
C(51- A)-' = F-'(s)Gi(s) (3.13) 

CNl(S)D-'(S) = N ( S ) D - ' ( s )  (3.14) 
F-'(s)Gl(s)B = F-'( s)G(s)  (3.15) 

with (3.12, 3.14) normalized right MFDs (e.g. right coprime, 
D ( 5 )  column-reduced and column-degree ordered), and (3.13, 
3.15) normalized left MFDs (e.g. left coprime, F ( s )  row-reduced 
and row-degree ordered). The next result was shown in [29]. 

Theorem 3.1 Let [ N ( s ) , D ( s ) ]  be a normalized right MFD 
for H ( s ) .  There exists a feedback K that assigns the invariant 
polynomials if and only if the equation 

is satisfied for some &(s) and R,(s) ,  both having the desired 
closed-loop nonunit invariant polynomials. The solution must 
satisfy the conditions: 1) [G(s), F(s)] left coprime, F ( s )  row 
reduced and row-degree ordered and 2) X,, Y,, X,, Yp con- 
stant matrices with Xm and X, nonsingular. Then the output 
feedback is given by K = -XGiY, = -YPX;' 

The condition of the theorem is in terms of coupled Diophan- 
tine equations, which should be contrasted with the coupled 
LMI equations in the previous section. 

4 Eigenstructure Assignment With Out- 
put Feedback 

First, we review eigenstructure assignment by state-variable 
feedback u(t )  = -F+(t)+v(t). While the pole-placement prob- 
lem for multivariable systems is fairly complicated, Moore [30] 
showed that the problem of assigning both eigenvalues and 
eigenvectors has a straightforward solution. Given a symmet- 
ric set of desired closed-loop poles {pi}, i = 1 , .  . .q, vectors 

{v,} and (21;) are found such that 

[ p ; I - A  E][:] = O  (4.16) 

Then a feedback gain F defined by 

F [VI . . . vq] = [U1 . . . uq] (4.17) 

results in the closed-loop structure 

[ p ; I - ( A - B F ) ] v ; = O  (4.18) 

so that the v; are assigned as the closed-loop eigenvectors for 
eigenvalues p ; .  There is a certain freedom in the choice of 
the v;, but for a real F to  exist they must satisfy 1) v; E 
(p.1 - A)- 'R(B) ,  2 )  v; = v; when p;  = mu;, (where U*" 

means complex conjugation) , and 3) {vi} is a linearly inde- 
pendent set. The integer q may be taken equal to n, but any 
uncontrollable poles must be included in {mu;}, with the asso- 
ciated v; satisfying wTv; # 0, where w; is the left eigenvector 
associated with k .  Note that we may write (4.16) as the gen- 
eralized Lyapunov equation 

V J  - A V  = -EU (4.19) 

with V = [vl ...vq], U = [u1 ... us], J = diag(p;). Then (4.17) 
reduces to FV = U .  Turning t o  the case of output feedback 
(1.2), Reference [31] assumes that a state-variable feedback F 
which places both eigenvalues and eigenvectors has been se- 
lected by some procedure. Then, a method is given to  find 
an output feedback K that preserves some of the poles of 
( A  - B F ) .  Although eigenvector assignment was not specifi- 
cally addressed, the technique involves in fact preserving the 
eigenvectors v; associated with the modes {pi,; = 1, ...,q). In- 
deed, although KC = F ,  may have no solution K ,  the reduced 
equation K C V  = FV may have a solution, so that (4.18) be- 
comes b.1- ( A  - E K C ) ] v ;  = 0 .  In [26], the technique of 
[30] was extended t o  output feedback, essentially by replac- 
ing (4.17) with K C V  = U. From that work, it is clear that 
max(m,p) poles are assignable by this method. The algorithm 
given assigns p - 1 poles, and an additional (interesting but 
fairly complicated) procedure was given to  assign a total of 
min(n,m + p - 1) poles generically. The case of constrained 
output feedback (i.e. where some of the entries of K are set to  
zero) was covered in [32]. 
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A major breakthrough occurred in [33], which we feel has 
not received the acclaim it deserves. There, some techniques 
of [20] were extended t o  show that, in some cases, m + p poles 

may be assigned. This is a better result than those associated 
with (3.10). It was obtained by considering the closed-loop 
right and left eigenstructure. A design example demonstrates 
the assignment of m + p poles. However, it is not clear in the 
paper what is actually going on in terms of system structure. 
A somewhat streamlined description of the main result is as 
follows. Let the desired closed-loop structure be described by 
the (possibly non-simple) Jordan matrix J .  If there exist a 
direct sum decomposition J = J1 @ J2 and matrices V I ,  W2, 
U, and Z such that 

VIJ1 - AV1 = -BU (4.20) 
JzW,T-W,TA = -ZTC (4.21) 

WTVl = 0 (4.22) 

then K = U(CV1)-' makes J the Jordan matrixof (A+BKC). 
Moreover, the right eigenvectors corresponding to  the poles in 
J1 are the columns of VI, and the left eigenvectors correspond- 
ing t o  the poles in J2 are the columns of W,. It should now be 
noted that p poles may be placed by using equation of (4.20) 
(c.f. (4.19)), and possibly m by using the dual relation, equa- 
tion of (4.21). The construction of the required matrices in 
(4.20)-(4.22) may be confronted by using the right Nullspace 
of k I  - A B] and the left Nullspace of 

with X = z(0)~(0)~ and A, = A - BKC. Generally, opti- 
mal control with reduced information results in such coupled 
nonlinear matrix equations. If it is desired to  eliminate the 
dependence of (5.24)-(5.26) on the specific initial conditions, 
then expected values may be taken of the performance index 
(5.23) so that X = E{z(0)z(O)T} in (5.25). It is generally as- 
sumed that z(0) is uniformly dstributed on the unit sphere so 
that X = I [39]. The tracking problem with output feedback 
was also solved in [42]. The totally singular problem ( R  = 0) 
was discussed in [43]. In this case (5.24) and (5.25) become 
the two Lyapunov equations 

0 = ATS + SA, + Q ;  0 = A,P + PAT + X (5.27) 

but (5.26) becomes 0 = BTSPCT,  which may not be readily 
solved for K in an iterative algorithm. In [43], (5.26) was 
replaced by the condition 

H(K* ,  S', P') 5 H (  K ,  S', P') (5.28) 

with superscript "*" denoting the optimal values, and the solu- 
tion was carried out numerically. Equations (5.27) are also one 
formulation of the solution in the case where only the deriva- 
tives of the state are weighted, that is when (5.23) is replaced 
hv 

(5.29) 

In this case, X in (5.27) is replaced by X E z(0)z(O)T. An 
alternative solution in the case of state derivative weighting is 

provided, of course, by substituting (1.1) into (5.29) to obtain 
the performance index with state-input cross- weighting terms, 

with {p,} the desired poles [33]. Unfortunately, the proposed 
solution algorithm is derived from only a sufficient condition, 
and relies on selecting some vectors t o  guarantee various con- 
ditions, so that some artistic ability and intuition is needed, 
along with a bit of luck, t o  apply the technique. In the case 
where p + m > n a computationally efficient algorithm is pro- 
posed in [34] for the solution of the coupled Sylvester equations 
(4.20)-(4.22). 

4.1 Design Approaches and Limitations 
Although a given number of poles is generically assignable 
by the above approaches, nothing is known of the remaining 
closed-loop poles, which may be unstable. In [35] a technique 
was given for approximate pole assignment which gives some 
idea of the location of all of the closed-loop poles. Eigenstruc- 
ture assignment with output feedback was treated for some 
special cases in [36, 371. Note that the condition expressed 
in terms of (4.20)-(4.22) is sufficient only. A necessary and 
sufficient condition for eigenstructure assignment using output 
feedback was also given in [33]; however, it was not used as the 
basis of any design algorithm. 

5 LQR With Static Output Feedback 

It is desired here to  select K t o  minimize, subject to  the con- 
straint (1.3), the performance index 

J = Lm(zTQz  + uTRu)dt (5.23) 

with Q 2 0 and R > 0, while stabilizing the closed-loop system. 
In [38, 39, 40, 411, sufficient conditions for optimality were 
given as 

o = ATS + SA,  + Q + C ~ K ~ R K C  (5.24) 
0 = A,P+PAT+X (5.25) 

o = R K C P C ~ - B ~ S P C ~ ,  (5.26) 

m 
J = 1 (zTQz + 2zTWu + uTRu)dt, (5.30) 

with Q = ATQA,W = ATQB, and R = BTQB. 
approach the necessary conditions for solution become 

0 = 

By this 

ATS + SA, + Q + CTKTRKC - W K C  - CTKTWT 
o = A , P + P A T + X  
o = R K C P C ~  - ( w  + S B ) ~ S P C = .  

5.1 Design Approaches and Limitations 
Algorithms for the solution of (5.24)-(5.26) and their discrete 
counterparts were proposed in [44, 39, 41, 45, 461. These al- 
gorithms are all iterative in nature. Convergent iterative algo- 
rithms for the continuous case were finally presented in 1985 
[41, 46). The algorithm in [41] requires repetitive solution of 
(5.24) and (5.25) for fixed values of K so that they are con- 
sidered as two Lyapunov (i.e. linear matrix) equations, and 
the form K = R-'BTSPCT(CPCT)-' as a candidate for the 
next choice for K .  Compare this expression with that in Sec- 
tion 2.3.2 when L = 0. Note however, that it guarantees only 
a local minimum. Unfortunately, iterative algorithms such as 
these require the selection of an initial stabilizing gain. A di- 
rect procedure for finding such a K is unknown as discussed in 
section 2. 

Conditions for the existence and global uniqueness of solu- 
tions to  (5.24)-(5.26) such that P and S are positive definite 
and (1.3) is stable are not known. It has been shown [47] 
that in the discrete case there exists a gain that minimizes 
(5.23) locally and also stabilizes the system if Q 2 0, R > 0 ,  
rank(C) = p ,  X > 0 ,  and ( A ,  B ,  C )  is output stabilizable; that 
is, there exists a K such that A, is stable. However, there may 
be more than one local minimum, so that solution of (5.24)- 
(5.26) may not yield the global minimum. Similar sufficient 
conditions were given in [41]. 
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6 Conclusion 

We hope to  have shown by the discussion just completed that 
the state of affairs in output-feedback design is indeed a marginal 
one. Various unconnected necessary conditions, sufficient con- 
ditions, and ad hoc solution techniques abound. The so-called 
necessary and sufficient conditions are not testable and as such 
only succeed in transforming the problem into another un- 
solved problem or into a numerical search problem with no 
guarantee of convergence to  a solution. A common thread 
throughout these methods however, is the fact that the prob- 
lem is equivalent to  obtaining the solution of a coupled set of 
matrix (Lyapunov, Riccati, LMI, Bezout, etc) equations. 
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