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On the Relative Degree of Simultaneously Stabilizing

Controllers

M. Bredemann

Sandia National Laboratories

Div. 9222, Mail Stop 0972

Albuquerque, NM 87185, USA

and

C. Abdallah, P. Dorato

Department of EECE

University of New Mexico

Albuquerque, NM 87131, USA

ABSTRACT

In this brief paper 1 we present new necessary and sufficient conditions on the controller for

the existence of a single controller to stabilize a set of n SISO plants: P1, P2, ..., Pn. As

1This result was first published in (Bredemann, 1995).
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is well known this is equivalent to the existence of a single stable controller that stabilizes

n − 1 plants (strong stabilization). It was shown in (Blondel, 1994) that the simultaneous

stabilization problem is transcendental and cannot be solved using algebraic functions. Our

only hope in approaching the general solution to the simultaneous stabilization problem

using algebraic functions is either to enlarge the class of controllers for which sufficient

conditions exist, or to restrict the class of controllers from which a controller must exist.

This paper restricts the search for existence of simultaneously stabilizing controllers to the

class of exactly proper controllers.

Key Words. Simultaneous stabilization, linear systems, improper controllers.
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1 Introduction

The problem of stabilizing n different plants is a longstanding problem in the robust control

literature. The problem is relevant in applications where the plant is only known to belong

to a set of n different plants, or where the failure of sensors or actuators will drastically

change the plant from its current description. The problem has been studied in conjunction

with the problem of stabilizing a nonlinear plant, which is linearized about n operating

points.

It has been shown (Vidyasagar, 1985) that simultaneously stabilizing n plants with any

controller is equivalent to simultaneously stabilizing n − 1 plants with a stable controller

C(s), i.e. the strong simultaneous stabilization of n − 1 plants. Unfortunately, this lat-

ter problem is yet unsolved except in the case where n = 1 (Vidyasagar, 1985). There

exists necessary and sufficient conditions and a synthesis procedure for solving the strong

stabilization of one plant as described in (Youla et al., 1974). Namely, a plant is strongly

stabilizable if and only if it satisfies the Parity-Interlacing-Property (PIP).

For the case, where n > 2 few results have appeared in the direction of a general

solution to the simultaneous stabilization problem. In (Ghosh, 1986) for example, the

simultaneous stabilization of 3 different plants are shown to be equivalent to the the partial

pole placement of a single plant with a stable minimum phase controller. In (Blondel,

1994), Blondel extended Ghosh’s result to more than 3 plants. When one of the difference

plants is minimum phase and exactly proper, then stabilizing k ≥ 3 SISO plants with any

controller is equivalent to stabilizing (k − 2) SISO plants with a bistable controller, a stable
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controller, whose inverse is also stable. Unfortunately, stabilizing even one plant with a

bistable controller remains an open problem.

Recently, Yao, Schaefers and Darouach restated the necessary and sufficient conditions

for the simultaneous stabilization of 3 or more plants using observers with state feedback

in (Yao et al., 1994). They showed that simultaneously observing n plants is equivalent to

strongly simultaneously observing n−1 plants, i.e. to simultaneously observing n−1 plants

with a stable functional observer. This is analogous to the results in (Vidyasagar, 1985) for

which general solutions for more than 2 plants do not exist.

There are several results with sufficient conditions for simultaneous stabilization. In

(Barmish and Wei, 1985), the case, where n minimum-phase plants have the same sign in

their high-frequency gains, is shown to be sufficient for simultaneous stabilization. A similar

sufficient condition was treated in (Chapellat and Bhattacharyya, 1988). Emre arrived

at sufficient conditions in (Emre, 1983) to stabilize n plants with the same closed loop

characteristic polynomial. The sufficient conditions in (Emre, 1983) are very restrictive.

Debowski and Kurylowicz showed in (Debowski and Kurylowicz, 1986) that if there are

three minimum phase plants such that the two difference plants, formed from the difference

of one of the plants with the other two, are minimum phase and exactly proper, then the

three plants can be simultaneously stabilized. Blondel, Champion and Gevers extended

these results in (Blondel et al., 1993). They showed that if there exists one plant, such that

its differences formed with all other plants, are minimum phase and exactly proper, then

all plants can be simultaneously stabilized.
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Efforts toward the general solution of the problem found necessary and sufficient condi-

tions for a plant to be stabilized by a stable controller with no real unstable zeros in (Wei,

1990). In the spirit of (Wei, 1990), Blondel et al. have presented necessary conditions in

(Blondel et al., 1991) to simultaneously stabilize more than 2 plants.

Unfortunately, the necessary and sufficient conditions to simultaneously stabilize more

than two plants are not computable. These conditions effectively translate the problem

into another unsolved problem. Blondel showed in (Blondel, 1994) that the existence of

a compensator which strongly simultaneously stabilizes two second order plants is “ratio-

nally undecidable”. There are an infinite number of steps of elementary operations, such as

addition, subtraction, multiplication, division, logical AND, logical OR, etc., required to de-

termine existence of the solution. Therefore, the solution to the simultaneous stabilization

problem for three or more plants, which is equivalent to the strong simultaneous stabiliza-

tion of two or more plants, is also in general rationally undecidable. Our only hope in

approaching the general solution to the simultaneous stabilization problem using algebraic

functions is either to enlarge the class of systems for which sufficient conditions for simulta-

neous stabilization exist, or to restrict the class of controllers from which a simultaneously

stabilizing controller must exist. This paper does the latter.

Several papers have addressed the requirements on the relative degree of the controller,

which stabilizes one or more plants. In (Vidyasagar et al., 1982), Vidyasagar, Schneider

and Francis showed that a strictly proper plant can be stabilized by a proper controller

and that every controller that stabilizes a strictly proper plant must be proper. Toker and
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Ozcaldiran (Toker and Ozcaldiran, ) showed that if a plant can be strongly stabilized with

an improper controller, then it can be strongly stabilized with a proper controller. Blondel

showed in (Blondel, 1994) that if k ≥ 3 plants can be stabilized by an improper controller,

then the plants can be stabilized by a proper controller.

In this paper, one more non-tractable necessary and sufficient condition is presented.

This new condition restricts the class of controllers, from which the question of existence

may be addressed. If any controller exists, which simultaneously stabilizes a collection of

plants, then there must exist an exactly proper controller, a controller with equal numerator

and denominator order, which simultaneously stabilizes these plants.

This paper is organized in the following manner. Section 2 defines the problem and

presents modifications to a lemma initially published by Barmish and Wei in (Barmish

and Wei, 1985), which is used in the proof of the main result in section 3. Finally, our

conclusions are presented in section 4.

2 Problem Statement and Useful Lemmas

The problem addressed in this paper is the following: Given n single-input-single-output

(SISO) plants P1(s); P2(s); · · · ;Pn(s), does there exist a single stable compensator C(s)

such that the closed-loop (unity feedback) system is internally stable for any of the given

plants. As is well known, see for example (Vidyasagar, 1985), the closed-loop systems are

internally stable if and only if each of the three transfer functions
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1

1 + Pi(s)C(s)
,

Pi(s)

1 + Pi(s)C(s)
, (1)

are bounded-input-bounded-output (BIBO) stable. The strong simultaneous stabilizing

compensator C(s) must then make all of the above transfer functions stable.

Let us first recall an available result to be used in the sequel. The new results in this

paper are based upon the lemma proved by Barmish and Wei in (Barmish and Wei, 1985).

Lemma 1 (Barmish and Wei (Barmish and Wei, 1985)) Given two polynomials,

g(s) and h(s), of finite degree, o(g) and o(h) respectively, with fixed real coefficients, where

1. h(s) is strictly Hurwitz with positive coefficients,

2. g(s) is monic,

3. o(g) ≤ o(h) + 1,

then there exists εmax > 0 such that ∀ε : 0 < ε < εmax, the polynomial f(s) = h(s) + εg(s)

is strictly Hurwitz with positive coefficients.

A minor variation, which allows subtraction of the two functions, is given in the following

lemma.

Lemma 2 Given two polynomials, g(s) and h(s), of finite degree, o(g) and o(h) respectively,

with fixed real coefficients, where

1. h(s) is strictly Hurwitz with positive coefficients,
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2. g(s) is monic,

3. o(g) ≤ o(h),

then there exists εmax > 0 such that ∀ε, f(s) = h(s)− εg(s) is strictly Hurwitz with positive

coefficients.

Proof of Lemma 2:

Hurwitz testing matrices H−

ε , H, and H” are generated for f(s), h(s), and g(s) respec-

tively, as in Case 1 of the proof given by Barmish and Wei, but using H−

ε = H − εH” rather

than H+
ε = H + εH”.

The norm of a matrix is understood to be the square root of the maximum eigenvalue

of the product of the matrix multiplied by its conjugate transpose. Observing that ‖H−

ε ‖ =

‖H − εH”‖ ≥ ‖H‖ − ε‖H”‖, and ‖H+
ε ‖ = ‖H − εH”‖ ≥ ‖H‖ − ε‖H”‖ the remainder of the

proof is identical.

A useful corollary, which minimizes the complexity of theorem proofs that follow, relaxes

the monic requirements on g(s) and the sign of the coefficients of h(s).

Corollary 1 Given two polynomials, g(s) and h(s), of finite degree, o(g) and o(h) respec-

tively, with fixed real coefficients, where

1. h(s) is strictly Hurwitz,

2. o(g) ≤ o(h),

then there exists εmax > 0 such that ∀ε f(s) = h(s) + εg(s) is strictly Hurwitz and the sign

of all of the coefficients of f(s) are the same as the sign of all of the coefficients of h(s).
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Proof of Corollary 1:

Let g0 represent the highest order coefficient of g(s). Define q(s) and r(s) as

q(s) =
1

g0

g(s), r(s) =
1

g0

h(s)

Then q(s) is monic, r(s) is strictly Hurwitz, and dq ≤ dr, where dq and dr represent the

degree of q(s) and r(s) respectively. If the sign of g0 is the same as the sign of the coefficients

of h(s), then from Lemma 1, there exists εmax > 0, such that p(s) = q(s) + εr(s) is strictly

Hurwitz with positive coefficients ∀ε : 0 < ε < εmax. If the sign of g0 is the opposite of

the sign of all the coefficients of h(s), then from Lemma 2, there exists εmax > 0, such

that p(s) = q(s) − ε[−r(s)] = q(s) + εr(s) is strictly Hurwitz with positive coefficients

∀ε : 0 < ε < εmax. Therefore, f(s) = g0 · p(s) is also strictly Hurwitz and the sign of all

of the coefficients of f(s) are the same as the sign of all of the coefficients of h(s). This

completes the proof.

3 Main Results

The theorems in this section show that a necessary and sufficient condition for simultaneous

stabilization is that there must exist an exactly proper simultaneously stabilizing controller.

Theorem 1 If the n proper plants: Pi = ni

di

, are stabilized by an improper controller, Cnp,

then the n plants are simultaneously stabilized by an exactly proper controller, Cep.

Proof of Theorem 1:
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Assume there exists an improper controller, Cnp = nc

dc
, of relative degree rc = o(dc) −

o(nc) < 0, which simultaneously stabilizes the n plants. Then PiCnp have no RHP pole-zero

cancellations and each of the following three closed loop transfer functions are proper with

a common strictly Hurwitz denominator polynomial, ninc + didc, for each plant, Pi.

CLTF1i =
PiCnp

1 + PiCnp

=
ninc

(ninc + didc)

CLTF2i =
Cnp

1 + PiCnp

=
dinc

(ninc + didc)

CLTF3i =
Pi

1 + PiCnp

=
nidc

(ninc + didc)

In order for CLTF2i to be proper, Pi must be exactly proper or improper ∀i = 1, 2, . . . , n.

Otherwise, if Pi is strictly proper, the degree of the numerator exceeds the degree of either

term in the denominator and this closed loop transfer function is improper. Since Pi is

assumed to be proper, it must be exactly proper ∀i = 1, 2, . . . , n.

Let r1i, r2i, and r3i represent the relative degree of the closed loop transfer functions

CLTF1i, CLTF2i, and CLTF3i respectively. Then

r1i = 0, r2i = 0, r3i = −rc

Consider the modified controller,

C1
np = Cnp ·

1

(ε1s + 1)
=

nc

dc(ε1s + 1)
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The relative degree of C1
np, r1

c = rc + 1, is one degree closer to being exactly proper than

Cnp. There are uncountably many choices of ε1 to prevent any pole-zero cancellations with

any of the plant numerators. Therefore, in any continuous interval, ε1 can be chosen to

avoid such cancellations.

The new common denominator polynomial of the closed loop transfer functions is

h1
i = (ninc + didc) + ε1didcs = hi + ε1didcs

where

hi = (ninc + didc)

The degree of hi is greater than or equal to the degree of didcs. Therefore, from Corollary

1, ε1 can be chosen sufficiently small so that h1
i is strictly Hurwitz ∀i = 1, 2, . . . , n.

It will next be shown that each of the closed loop transfer functions remain proper. The

closed loop transfer functions formed with the modified controller, C 1
np are

CLTF 1
1i =

PiC
1
np

1 + PiC1
np

=
ninc

h1
i

CLTF 1
2i =

C1
np

1 + PiC1
np

=
dinc

h1
i

CLTF 1
3i =

Pi

1 + PiC1
np

=
nidc(ε1s + 1)

h1
i

The degree of h1
i remains the same as the degree of hi. Therefore, CLTF 1

1i and CLTF 1
2i

remain exactly proper. The relative degree of CLTF 1
3i, r1

3i, is one less than the relative
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degree of CLTF3i.

r1
3i = r3i − 1 = −rc − 1 ≥ 0

Therefore, C1
np simultaneously stabilizes the n plants.

If C1
np is exactly proper, r1

c = 0, then the proof is complete. If C1
np is still improper, r1

c <

0, then this procedure is repeated until an exactly proper compensator, C−rc

np , is reached.

With this compensator, all three closed loop transfer functions are exactly proper and the

denominator polynomials, h−rc

i , are strictly Hurwitz. The exactly proper simultaneously

stabilizing controller is of the form

Cep = Cnp ·
−rc∏

k=1

1

(εks + 1)

where εk is chosen as described above ∀k = 1, 2, . . . ,−rc. This completes the proof.

Theorem 2 If the n proper plants: Pi = ni

di
, are stabilized by a strictly proper controller,

Csp, then the n plants are simultaneously stabilized by an exactly proper controller, Cep.

Proof of Theorem 2:

Assume there exists a strictly proper controller, Csp = nc

dc
, of relative degree rc =

o(dc) − o(nc) > 0, which simultaneously stabilizes the n plants. Then PiCsp have no RHP

pole-zero cancellations and each of the following three closed loop transfer functions are

proper with a common strictly Hurwitz denominator polynomial, ninc + didc, for each

12



plant, Pi.

CLTF1i =
PiCsp

1 + PiCsp

=
ninc

(ninc + didc)

CLTF2i =
Csp

1 + PiCsp

=
dinc

(ninc + didc)

CLTF3i =
Pi

1 + PiCsp

=
nidc

(ninc + didc)

It is interesting to note that in order for CLTF3i to be proper, Pi must be proper ∀i =

1, 2, . . . , n. Otherwise, if Pi is improper, the degree of the numerator exceeds the degree

of either term in the denominator and this closed loop transfer function is improper. Pi is

assumed to be proper ∀i.

Let r1i, r2i, and r3i represent the relative degree of the closed loop transfer functions

CLTF1i, CLTF2i, and CLTF3i respectively. Let ri represent the relative degree of the

plant Pi, ∀i = 1, 2, . . . , n. Then

r1i = ri + rc, r2i = rc, r3i = ri

Consider the modified controller,

C1
sp = Csp · (ε1s + 1) =

nc(ε1s + 1)

dc

The relative degree of C1
sp, r1

c = rc − 1, is one degree closer to being exactly proper than

Csp. There are uncountably many choices of ε1 to prevent any pole-zero cancellations with

13



any of the plant numerators. Therefore, in any continuous interval, ε1 can be chosen to

avoid such cancellations.

The new common denominator polynomial of the closed loop transfer functions is

h1
i = (ninc + didc) + ε1nincs = hi + ε1nincs

where

hi = (ninc + didc)

The degree of hi is greater than or equal to the degree of nincs. Therefore, from Corollary

1, ε1 can be chosen sufficiently small so that h1
i is strictly Hurwitz ∀i = 1, 2, . . . , n.

It will next be shown that each of the closed loop transfer functions remain proper. The

closed loop transfer functions formed with the modified controller, C 1
sp are

CLTF 1
1i =

PiC
1
sp

1 + PiC1
sp

=
ninc(ε1s + 1)

h1
i

CLTF 1
2i =

C1
sp

1 + PiC1
sp

=
dinc(ε1s + 1)

h1
i

CLTF 1
3i =

Pi

1 + PiC1
sp

=
nidc

h1
i

The degree of h1
i remains the same as the degree of hi. Therefore, the relative degree of

CLTF 1
3i, r1

3i, remains the same as the relative degree of CLTF3i.

r1
3i = r3i = ri
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The relative degree of CLTF 1
1i and CLTF 1

2i, r1
1i and r1

2i respectively, are each one less than

the relative degree of CLTF1i and CLTF2i respectively.

r1
1i = r1i − 1 = ri + rc − 1 ≥ 0

r1
2i = r2i − 1 = rc − 1 ≥ 0

Therefore, C1
sp simultaneously stabilizes the n plants.

If C1
sp is exactly proper, r1

c = 0, then the proof is complete. If C1
sp is still strictly

proper, r1
c > 0, then this procedure is repeated until an exactly proper compensator, C rc

sp,

is reached. With this compensator, the relative degree of CLTF rc

1i and CLTF rc

3i are equal

to the relative degree of Pi, ∀i, the relative degree of CLTF rc

2i is exactly proper, and the

common denominator polynomials, hrc

i , are strictly Hurwitz ∀i = 1, 2, . . . , n. The exactly

proper simultaneously stabilizing controller is of the form

Cep = Csp ·
rc∏

k=1

(εks + 1)

where εk is chosen as described above ∀k = 1, 2, . . . , rc. This completes the proof.

Theorem 3 The n proper plants: Pi = ni

di
, if and only if the n plants are simultaneously

stabilizable with an exactly proper controller.

Proof of Theorem 3:

The proof of sufficiency is obvious. For the proof of necessity, assume there exists a

controller that simultaneously stabilizes the n plants. If the controller is exactly proper,
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the proof is complete. If the controller is improper, then from Theorem 1, there exists an

exactly proper controller, which simultaneously stabilizes the n plants. If the controller

is strictly proper, then from Theorem 2, there exists an exactly proper controller, which

simultaneously stabilizes the n plants. This completes the proof.

Theorem 3 also holds for improper plants.

4 Conclusions

In this paper, we have established that if there exists any controller, which simultaneously

stabilizes 2 or more plants, then there must exist an exactly proper simultaneously stabiliz-

ing controller. This restricts the class of controllers from which the question of existence may

be addressed and indicates that simultaneous stabilization with strictly proper controllers

is a more difficult task.
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