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Performance of Game Theoretic Power Control Algorithms for Wireless Data in Fast Flat Fading
Channels
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Dept. of Electrical & Computer Engr., Univ. of New Mexico,

EECE Bldg., Albuquerque, NM 87131-1356, USA.
{hayajneh,chaouki}@ eece.unm.edu

Abstract—We consider a game-theoretic power control algorithm for
wireless data realistic channels. We study the performance of the al-
gorithm for wireless data in the fast, flat-fading channel mobile users
encounter in accessing the cellular system. The game-theoretic power
control algorithm depends on an average utility function that assigns
a numerical value to the quality of service (QoS) of users. The fading
coefficients under this channel model are studied for two appropriate
channel models that are used in CDMA cellular systems: Rayleigh fast
flat fading channel and Rician fast flat fading channel.

I. I NTRODUCTION

The mathematical theory of games was introduced by John
Von Neumann and Oskar Morgenstern in 1944 [8], and in the
late 1970’s game theory became an important tool in the an-
alyst’s hand whenever he or she faces a situation in which a
player’s decision depends on what the other players did or
will do. A core idea of game theory is the way strategic in-
teractions between rational agents (players), generates out-
comes according to the players’ utilities [4],[9]. A player in a
non-cooperative game responds to the actions of other players
by choosing a strategy (from his strategy space) in an attempt
to maximize his/her utility function that quantifies the quality
level, i.e. its level of satisfaction.

In a cellular system users desire to have a high SIR (signal-
to-interference ratio) at the BS (base station) coupled with
the lowest possible transmit power. It is very important in
such systems to have a high SIR, because this will be re-
flected in very low error rate, a more reliable system, and
high channel capacity, which means that users can be sent at
higher bit rates [5]. It is also important to decrease the trans-
mit power because low power levels lead to longer battery
life and helps alleviate the ever present near-far problem in
CDMA systems[7].

In power control algorithms exploiting game theory, the
tendency of each user is to increase his/her transmit power
in response to other users’ actions, leading to a sequence of
power vectors that converges to a point where no user has
incentive to increase his/her individual power. This operating
point is called a Nash equilibrium. In many cases, and due to
the lack of cooperation between the users (players), this point
is not efficient, in the sense that it is not the most desirable
social point [3]. The most desirable social point is called a
Pareto optimal point, and may be viewed as the equilibrium
point where no user can improve his utility function without
harming at least one other user in the network.

The power control problem for wireless data CDMA sys-
tems was first addressed in the game theoretic framework in

[2], then in a more detailed manner in [1] and [3]. In this pa-
per the work in [1], which only dealt with deterministic chan-
nels, is extended by considering two cases of fading channel
models: A Rayleigh fast flat fading channel model and a Ri-
cian fast flat fading channel model.

The remaining of this paper is organized as follows: In
section II we present the utility function used in this paper.
The signal model and the performance of the system under
the two channel models mentioned above are presented in
section III. Non-cooperative power control game (NPG) is
discussed in section IV. Simulation results are outlined in
section V. Finally, our conclusions and future work are pre-
sented in section VI.

II. U TILITY FUNCTION

We use the concept of a utility function to map the player’s
preferences onto the real line. A utility function is chosen
in a way that puts all the elements of the game taking place
between self-interested players in its most desired order. A
formal definition of utility functions is available from [4].

Definition 1: A functionu that assigns a numerical value
to the elements of the action setA :
u : A → R is a utility function if for all a, b ∈ A, a is at
least as preferred compared tob if and only ifu(a) ≥ u(b).
In a cellular CDMA system there are a number of users shar-
ing a spectrum and the air interface as a common radio re-
source. Henceforth, each user’s transmission adds to the in-
terference of all users at the receiver (BS). Each user desires
to achieve a high quality of reception at the BS, i.e., a high
SIR, by using the minimum possible amount of power to ex-
tend the battery’s life. The goal of each user to have a high
SIR at the BS produce conflicting objectives that make the
framework of game theory suitable for studying this problem
and proposing solutions. Let us consider a single-cell system
with N users, where each user transmits frames (packets) of
M bits with L information bits [1]. The rate of transmis-
sion isR bits/sec for all users. LetPc represents theaverage
probability of correct reception of all bits in the frame at the
BS, in other words,Pc refers the average frame (packet) cor-
rect reception rate. As we know,Pc depends on the SIR, the
channel characteristics, the modulation format, the channel
coding, etc.

A suitable utility function for a CDMA system is given by
(see [1] and references therein):

u =
LR

M p
Pc (1)



whereu thus represents the number of information bits re-
ceived successfully at the BS per joule of expanded en-
ergy. With the assumption of no error correction, therandom
packet correct reception ratẽPc is then given as

∏M
l=1(1 −

P̃e(l)), whereP̃e(l) is therandombit error rate (BER) of the
lth bit at a given SIRγi (c. f. (13) and (25)).

III. S IGNAL MODEL AND PERFORMANCE

In this paper we are assuming that all users in a cell are us-
ing the same modulation scheme, non-coherent Binary Fre-
quency shift Keying (BFSK), and that they are transmitting
with the same rateR. The signalri(t) received at the BS
from theith user is given as:

ri(t) = αi si(t) + n(t), i = 1, 2, ..., N (2)

whereαi is the path fading coefficient betweenith user and
the BS and it is constant for each bit in a fast flat fading. And
si(t) is the sent message for each bit,n(t) is the BS receiver’s
background noise modelled as zero-mean AWGN, andN is
the number of active users currently in the cell. The SIRγi at
the receiver for theith user is given as [6]:

γi =
W

R

pi hi α2
i∑N

k 6=i pk hk α2
k + σ2

(3)

where,W is the spread spectrum bandwidth,R is the data
rate (bits/sec),pk is the transmitted power of thekth user,hk

is the path gain between the BS and thekth user, andσ2 is
the variance of the AWGN. For simplicity let us express the
interference from all other users asxi, i.e.

xi =
N∑

k 6=i

pk hk α2
k (4)

therefore (3) can be written as:

γi =
W

R

pi hi

xi + σ2
α2

i = γ
′
iα

2
i (5)

For a givenγi andxi, the BER,P̃ (e/γi, xi), of the ith user
using BFSK is given by [6]:

P̃ (e/γi, xi) =
1
2

e−
γi
2 (6)

The average BER for this modulation scheme is evaluated for
two channel models: The Rayleigh fast flat fading channel
and The Rician fast flat fading channel. In the next two sub-
sections we shall evaluate the average utility function under
the two channel models.

A. Rayleigh Fast Flat Fading Channel

In this caseαi is modelled as a Rayleigh random variable
with a probability distribution given by:

p(αi) =
αi

σ2
r

e−(1/2σ2
r)α2

i , i = 1, 2, ..., N (7)

Whereσ2
r = E{α2

i }/2 is the measure of the spread of the
distribution. In all following calculations it is assumed that
σ2

r = 1/2. Using (5) and (7) the distribution ofγi for a given
xi is defined as:

f(γi/xi) =
1
γ
′
i

e
−( 1

γ
′
i

)γi

(8)

For thelth bit in the frame, we can rewrite the SIR (5) and
the interference (4) for theith user as follows:

γi(l) =
W

R

pi hi α2
i (l)

xi(l) + σ2
(9)

xi(l) =
N∑

k 6=i

pk hk α2
k(l) (10)

Assuming that both{αi(l)}M
l=1 and{xi(l)}M

l=1 are iid (identi-
cal independent distributed) random variables, and of course
αi(l) and xi(l) are jointly independent random variables.
Henceforth, theaveragedcorrect receptionPc is given as
(1 − Pe)M , wherePe is averagedBER for each bit in the
frame, that isPe = E{P̃e}. We will calculate the averaged
Pe in the next few lines.

We can find the conditioned error probabilitỹP (e/xi) by
taking the average of (6) with respect tof(γi/xi):

P̃ (e/xi) = E
{

P̃ (e/γi, xi)
}

=
∫ ∞

0

P̃ (e/γi, xi) f(γi/xi)dγi

=
1

2 + γ
′
i

(11)

Notice that we dropped the bit indexl because the average
BER does not depend onl. For large SIR, (11) behaves like:

P̃ (e/xi) ≈ 1
γ
′
i

=
xi + σ2

W
R pi hi

(12)

Now, we can find theaveragedBERPe by taking the expec-
tation of (12):

Pe = E
{

P̃ (e/xi)
}

=
1
γi

(13)

whereγi is the average SIR given by:

γi =
W

R

pi hi∑N
k 6=i pk hk + σ2

(14)

Therefore, the average utility function of theith user is given
by:

ui =
L R

M pi
(1− 1

γi
)M (15)



B. Rician Fast Flat Fading Channel

In this caseαi is modelled as a Rician random variable
with a probability distribution given by:

p(αi) =
αi

σ2
r

e
(−α2

i +s2

2σ2
r

)
I0(

αi s

σ2
r

) (16)

wheres2 represents the power in the nonfading signal com-
ponents, and is sometimes called a specular component of the
received signal or the noncentrality parameter of the distribu-
tion [6]. I0(z) is the zero-order, first-kind Bessel function.
Similarly to the Rayleigh case, we need to find the distribu-
tion of γi (see (5)) for fixedxi (see (4)):

f(γi/xi) =
e−s2

γ
′
i

e
−( 1

γ
′
i

)γi

I0(2s

√
γi

γ
′
i

) (17)

where we assumed thatσ2
r = 1/2 as we mentioned earlier.

Similarly, as we did in the Rayleigh fast flat fading case, the
averaged frame correct reception is given asPc = (1−Pe)M .
WherePe can be found as follows:

P̃ (e/xi)=
∫ ∞

0

P̃ (e/γi, xi)f(γi/xi)dγi

=
e−s2

2γ
′
i

∫ ∞

0

e
−γi(

1
2+ 1

γ
′
i

)
I0

(
2s

√
γi

γ
′
i

)
dγi(18)

using the fact thatI0(ζ) can be written as:

I0(ζ) =
∞∑

n=0

( ζ
2 )2n

(n!)2
(19)

By substituting (19) in (18) and after few mathematical ma-
nipulations we obtain:

P̃ (e/xi) =
1

2 + γ
′
i

e
s2(−1+ 2

2+γ
′
i

)
(20)

At high SIR (γ
′
i À 1), (20) can be approximately written as:

P̃ (e/xi) ≈ 1
γ
′
i

e−s2
=

xi + σ2

W
R pi hi

e−s2
(21)

Now, to find the final average error ratePe we need to find
µxi the mean ofxi.

µxi = E{xi} = E





N∑

k 6=i

α2
kpk hk





= (1 + s2)
N∑

k 6=i

pk hk (22)

where we used the fact that [6]

E{αn
k} = (2σ2

r)n/2 e
(− s2

2σ2
r
) Γ((2 + n)/2)

Γ(n/2)
× 1F1[(2 + n)/2, n/2; s2/2σ2

r ] (23)

whereΓ(.) is the Gamma function, and1F1[a, b; y] is the
confluent hypergeometric function [10]. By substituting for
σ2

r = 1/2 andn = 2 in (23) we can get the result in (22).
We used the following special case of the confluent hyperge-
ometric function1F1[a, b; y] in calculating (22):

1F1[2, 1; s2] = (1 + s2) es2
(24)

Finally to obtainPe, we simply need to replacexi in (21) by
µxi

, that is

Pe ≈ e−s2
(µxi

+ σ2)
W
R hi pi

=
1
γs

i

(25)

where

γs
i =

W
R hi pi es2

(1 + s2)
∑N

k 6=i hk pk + σ2
(26)

Then, the utility function of theith user is given by

ui =
L R

M pi
(1− 1

γs
i

)M (27)

IV. N ON-COOPERATIVEPOWER CONTROL GAME

SupposeN = {1, 2, ..., N} represent the index set of
the users currently served in the cell and{Pj}j∈N repre-
sents the set of strategy spaces of all users in the cell. Let
G = [N , {Pj}, {uj(.)}] denote a noncooperative game,
where each user chooses its power level from a convex set
Pj = [pj−min, pj−max] and wherepj−min andpj−max are
the minimum and the maximum power levels in thejth user
strategy space, respectively. With the assumption that the
power vector p= [p1, p2, ..., pN ] is the result of NPG, the
utility of userj is given as [1]:

uj(p) = uj(pj , p−j) (28)

wherepj is the power transmitted by userj, and p−j is the
vector of powers transmitted by all other users. The right side
of (28) emphasizes the fact that userj can just control his own
power. We can rewrite (1) for userj as:

uj(pj , p−j) =
LR

M pj
Pc(γj) (29)

The formal expression for the NPG is given in [1] as:

NPG : max
pj∈Pj

uj(pj , p−j), for all j ∈ N (30)

This game will continue to produce power vectors until it
converges to a point where all users are satisfied with the
utility level they obtained. This operating point is called an
equilibrium point of NPG.

In the next section, we define the Nash equilibrium point
and describe its physical interpretation.



A. Nash Equilibrium in NPG

The resulting power vector of NPG is called a Nash equi-
librium power vector.

Definition 2: [1] A power vectorp = [p1, p2, ..., pN ] is
a Nash equilibrium of theNPG defined aboveif for every
j ∈ N , uj(pj , p−j) ≥ uj(p

′
j , p−j) for all p

′
j ∈ Pj .

One interpretation of Nash equilibrium is that no user can
increase its utility by changing its power level unilaterally.
Sometimes, a user may find different values of transmit
power levels from its strategy space that give the user higher
values of the utility function for given power levels of the
other users. For this reason, the best response correspondence
rj(p−j) was introduced [1]. It assigns to each p−j ∈ P−j the
set

rj(p−j) =
{

pj ∈ Pj : uj(pj , p−j) ≥ uj(p
′
j , p−j)

for all p
′
j ∈ Pj

}
(31)

In light of this correspondence one can announce the power
vector p= [p1, p2, ..., pN ] as a Nash equilibrium power vec-
tor if and only ifpj ∈ rj(p−j) for all j ∈ N .

If we multiply the power vector p by a constant0 < β < 1
we may get higher utilities for all users. This means that the
Nash equilibrium is not efficient, that is, the resulting p is
not the most desired social operating point. And this results
from the lack of cooperation between the users currently us-
ing the system. To impose a kind of cooperation between
users in order to reach a Pareto dominant Nash point, a pric-
ing technique was introduced in [1]. We then use the follow-
ing algorithm to find Nash equilibrium point of NPG. Assume
userj updates its power level at time instances that belong
to a setTj , whereTj = {tj1, tj2, ...}, with tjk < tjk+1
and tj0 = 0 for all j ∈ N . Let T = {t1, t2, ...} where
T = T1

⋃
T2

⋃
...

⋃
TN with tk < tk+1 and define p

to be the smallest power vector in the total strategy space
P = P1

⋃
P2

⋃
...

⋃
PN .

Algorithm 1: Consider NPG as given in (30) and gener-
ate a sequence of power vectors as follows [1]:
1. Set the power vector at timet = 0: p(0) = p, let k = 1
2. For all j ∈ N , such thattk ∈ Tj :
(a) Given p(tk−1), calculaterj(tk) = arg max

pj∈Pj

uj(pj , p−j(tk−1))
(b) Let the transmit powerpj(tk) = min(rj(tk))

3. If p(tk) = p(tk−1) stop and declare the Nash equilibrium
power vector as p(tk), else letk := k + 1 and go to 2.

V. SIMULATION RESULTS

We present the effect of a fast fading channels on the equi-
librium utilities and powers which are the outcomes of NPG
algorithm 1 studied in [1]. We use the same definition of
utility function (see (1)) withPc modified to fit the channel
model in two cases: Rician fast flat fading channel model and

Rayleigh fast flat fading channel model. The system stud-
ied is a single-cell with9 stationary users using the same
data rateR and the same modulation scheme, non-coherent
BFSK. The system parameters used in this study are given in
Table I. The distances between the9 users and the BS are
d = [310, 460, 570, 660, 740, 810, 880, 940, 1000] in meters.
The path attenuation between userj and the BS using the
simple path loss model [7] ishj = 0.097/d4

j . Fig.1 shows
that under Rayleigh and Rician fast flat fading channels with
the strategy space Pj = [p̃j , 2] , wherep̃j > 0 and spread-
ing gain W/R = 100, users do not reach the Nash equi-
librium point since all users except the nearest user to the
BS are using the highest power level in the strategy space.
More clearly, in Fig.2 one can see that users obtain very low
utilities as a result of NPG compared to deterministic path
gains. Fig.3 and Fig.4 show that with the same parameters as
in Fig.1 and Fig.2 but with spreading gainW/R = 1000 the
results are more encouraging where a Nash equilibrium was
possible and it is comparable to that of deterministic channel
gains. This tells us that a fast channel variation can decrease
the performance of the game-theoretic approach dramatically
for low values ofW/R.

VI. CONCLUSIONS

We studied a noncooperative power control game (NPG)
introduced in [1] for more realistic channels, where we stud-
ied the impact of power statistical variation in Rayleigh and
Rician fast flat fading channels on the powers and utilities
vectors at equilibrium. The results showed that an equilib-
rium can be obtained in both games only at higher processing
gains (W/R > 100). Also, Results showed that users at dif-
ferent distances from the base station (BS) can have the same
transmit power at equilibrium as a result of fading. Utilities
for Rayleigh and Rician fast flat fading channel gains at equi-
librium are lower (at higher equilibrium power vector ) than
the utilities for deterministic channel gains. But, the SIRs
obtained at equilibrium are higher for all users at equilibrium
in the Rician and Rayleigh flat fading cases than SIR under
deterministic channel gains.

We are currently investigating the choice of different utility
functions which may allow us to solve the NPG with lower
processing gains. We are also considering various statistical
optimization techniques in order to solve the various game
problems.
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W/R, spreading gain 100, 1000
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