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C
ontrol systems often operate in the presence of de-

lays, primarily due to the time it takes to acquire the 

information needed for decision-making, to create 

control decisions, and to execute these decisions, as 

shown in Figure 1. Systems with delays arise in engi-

neering, biology, physics, operations research, and economics.

In traffic-flow models, the drivers’ delayed reactions, 

which combine sensing, perception, response, selection, and 

programming delays, must be considered [1]–[3]. These delays 

are critical in accounting for human behavior, analyzing traf-

fic-flow stability, and designing collision-free traffic flow 

using adaptive cruise controllers [4].

Material distribution and supply-chain systems are com-

posed of interconnected supply-demand points that share 

products and information to regulate inventories and respond 

to customer demands [5]. Sources of delay in supply chains 

include decision-making, transportation-line delivery, and 

manufacturing facilities that work with lead times [6]. These 

delays, which influence every stage of the supply-demand 

chain, deteriorate inventory regulation, thereby causing finan-

cial losses, inefficiencies, and reduced quality-of-service [7].
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In process control, delay terms arise from mass- 

transport phenomena in stirred-tank reactors and flow-

temperature-composition control [8], [9]. In milling 

processes, the flexibility of the cutting tool prevents a tooth 

from precisely machining the desired chip thickness, caus-

ing the following tooth to encounter the uncut portion of 

the chip in the form of an additional force [10], [11]. In this 

setting, the delay arises since the forces affecting the 

dynamics are associated with past events. In the milling 

process, the delay is the tooth-passing period, which is 

related to the spindle speed. If the spindle speed is not cor-

rectly chosen, then undesirable vibrations, known as 

regenerative-chatter instability, occur at the interface of the 

metal work-piece and the cutting tool. This instability ulti-

mately leads to increased tool wear, undesirable surface 

quality, and reduced productivity.

Delays arise in biology [12], [13] and population dynam-

ics [14], [15]. For instance, a population can grow only after 

the offspring mature and become reproductive. Models of 

reaction chains and transport phenomena have delay terms 

since chemical reactions and mass transport occur after an 

interval of time. An example is the breathing process 

within the physiological circuit that controls the carbon 

dioxide level in the blood [16], [17]. Delay terms also model 

sensing times in human motor control [18], [19], HIV 

dynamics [20], circulation dynamics of hormones in the 

bloodstream [21], and the dynamics of chronic myeloge-

nous leukemia [22]. This list of dynamical systems with 

delays is far from complete, and additional examples are 

presented and discussed throughout this article.

The presence of delays may be either beneficial or detri-

mental to the operation of a dynamical system. A feedback 

system that is stable without delay may become unstable 

for some delays [23], [24]; yet, judicious introduction of a 

delay may stabilize an otherwise unstable system [11]. This 

paradox may explain the five decades of interest in the 

stability and control of delay systems [11], [25]–[33]. The 

potentially stabilizing effect of delays is a motivation for ex-

ploiting the ever-present delays in dynamical systems. For 

instance, appropriate adjustment of the spindle speed helps 

in tuning the delay to avoid chattering in metal machin-

ing, while  intentionally adding delays to decision-making 

allows supply-chain managers to observe consumer trends 

to make better purchasing and stocking decisions [7]. This 

stability-seeking approach is known as the wait-and-act 

control strategy [34]. The presence of properly timed de-

lays designed for waiting before executing a decision is an 

effective stabilizing control strategy. For example, prolong-

ing delays in the feedback loop may help recover stability 

of an otherwise unstable system [35]–[38].

Interest in understanding the effects of delays and de-

signing stabilizing controllers that account for delays is 

also increasing with the complexity of control systems 

[39]–[41]. In particular, the effect of delays becomes more 

pronounced in interconnected and distributed systems 

[42], where multiple sensors, actuators, and controllers 

introduce multiple deterministic and stochastic delays. In 

interconnected systems, delays may arise from the avail-

ability of shared communication networks, such as the In-

ternet and wireless networks illustrated in Figure 2 [43]. 

Delays are also found in teleoperation [44], telesurgery 

[45], the coordination of unmanned vehicles [46]–[50], 

decentralized and collaborative control of multiple agents 

[51], [52], synchronization and haptics [53], adaptive 

combustion control [54], combustion dynamics in liquid- 

propellant motors [55], chemical processes with transport 

delays [56], active vibration suppression [57], and sway 

control in cranes [58].

The objectives and scope of this article are as follows. 

We discuss various problems and opportunities arising due 

to delays in linear time-invariant (LTI) systems modeled by 

delay differential equations (DDEs). We illustrate that in-

tentional delays, when judiciously chosen, can be used to 

stabilize and improve the closed-loop response of these sys-

tems. We use eigenvalues, spectrum assignment, and para-

metric techniques to study stability. Lyapunov and linear 

matrix inequality techniques are considered in [59].
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FIGURE 1 Delays in a feedback system. Feedback control  systems 

often function in the presence of delays, primarily due to the time 

it takes to acquire the information needed for decision-making, to 

create the control decisions, and to execute these decisions.
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FIGURE  2 Network control systems. Controlling across a s hared 

communication network is a challenging task due to the delays 

arising in the communication medium. Delays can manifest them-

selves in the control signals, in the measured signals, and in exter-

nal inputs traveling from their source to their destination through 

the links of the network.
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The remainder of this article is organized as follows. 

We first present models of LTI systems with multiple 

delays and the resulting characteristic equations. We then 

illustrate the spectral properties of these systems using an 

example and explain how this spectrum, and thus stabil-

ity, is affected by a single delay and a single controller 

gain. Next, visualization of asymptotic stability in the 

form of stability charts is demonstrated. We then present 

two application examples. The first example concerns net-

work systems, where delays arise from communication 

lines. The second example demonstrates a case of uncon-

trolled vibration in which delays are part of metal-machin-

ing dynamics. For each example, we illustrate how delays 

can have either a stabilizing or destabilizing effect. These 

examples serve as an introduction to more technical dis-

cussions regarding the limitations of designing control-

lers. Stability analysis in the presence of multiple delays 

is also discussed, including the robustness of Smith pre-

dictors with respect to uncertainty in the delays. Finally, 

we draw some conclusions and give a view of potential 

directions for future work. For notation used in the text, 

see “Notation.”

DELAY DIFFERENTIAL EQUATIONS 
AND THE CHARACTERISTIC EQUATION
Most models of systems with delays are obtained based 

on inflow-outflow interactions, such as conservation 

laws involving mass and energy. These models describe 

relationships among the rates of change of flow vari-

ables as well as the balance among the corresponding 

inflow rates and outflow rates affected by delays. Inflow 

may be due to production and reproduction, while out-

flow may represent consumption, death, or elimination 

[11], [25], [28]–[30].

The examples we consider can be cast as the DDE 

 
dx 1t 2

dt
5 A0 x 1t 2 1 a

N

i51

Ai x 1t 2 ti 2 ,  (1)

where x 1t 2  is the n-dimensional state variable, Ai, 

i 5 0, c, N, is an n 3 n matrix with constant real entries, 

and N is a positive integer. In (1), ti . 0 is the delay, that is, 

x# 1t 2  depends on x 1t 2  at time t as well as at the time instants 

t 2 ti. The delay is a shift operator that lags an input signal 

by the constant amount of time ti as illustrated in Figure 3. 

This type of delay represents a first-in, first-out-type 

model found in sensing, information transmission, and 

mass transport.

Characteristic Equations

The characteristic equation of (1) is given by 

 f 1s; t1, c,tN 2   :5 det csI 2 A0 2 a
N

i51

Ai 
e2sti d 5 0, (2)

where I  is the n 3 n identity matrix, and the exponential 

functions arise from the Laplace transforms of the delay 

terms. Due to the presence of the exponential terms, (2) 

is a quasi-polynomial and thus is a transcendental equa-

tion, which possesses an infinite number of roots in the 

complex plane C, called characteristic roots.

For a given set of delays, (1) is asymptotically stable if 

and only if all of the roots of (2) lie in the open left-half 

complex plane C_. Verifying asymptotic stability can be 

difficult since (2) has infinitely many characteristic roots. 

To address this difficulty, continuity of the spectrum of (1) 

needs to be exploited [11], [25], [28], [40]. Henceforth, “sta-

bility” refers to asymptotic stability.

To illustrate how to analyze the stability of a DDE, con-

sider the plant transfer function H 1s 2 5 1/s with the con-

troller C 1s 2 5 2ke2st, where t is the delay and k is the 

controller gain. The characteristic equation of this system is 

given by f 1s; t 2 J s 1 ke2st. If t = 0, then f 1s; t 2 5 0 has a 

single root at s 5 2k. As we increase t from zero to 01, the 

root s 5 2k moves in C, while at the same time an infinite 

number of roots s 5 si
|  , i 5 1, 2, c, appear in C. These 

roots satisfy two conditions, namely, R 1 si
| 2 , 0, and 

|s|i| S `, as t S 01. That is, for an infinitesimally small 

delay, the roots s|i are dormant from a stability point of 

view. As the delay parameter increases, however, the real 

parts of these roots may increase, and consequently these 

roots can destabilize the closed-loop system.

I
n this article, we use s [  C for the Laplace variable; R 1s 2  
for the real and I(s) for the imaginary part of s; R1, R2, Z1, 

and Z0,1 denote the set of positive real numbers, negative 

real numbers, positive integers, and nonnegative integers, 

respectively. The notation sup( # ) stands for the supremum 

of ( # ); :( # ); for the floor of ( # ), det for the determinant of a 

square matrix, x
# 1 t 2 5 dx/dt for the time derivative of x, j for 

the imaginary number, jR for the imaginary axis, C2 and 

C1 for the open left-half and open right-half of the com-

plex plane, respectively, C1 for the closed right-half of the 

complex plane, t denotes a delay, and tS 5 5t,6L,51 is the set 

whose elements are the scalar delays t,.

Notation Inflow Outflow

0 Time

Discrete

Delay Model

with Delay τ
t Time

FIGURE  3 Constant delay model. Delay can be modeled as a 

 buffer that holds the inflow signal for a length of time and then 

releases the signal without distortion. This type of delay repre-

sents a first-in, first-out-type model found in sensing, information 

transmission, and mass transport. 
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To understand the movement of roots in C, define g:

R13 R A R by 

 g 1t; k 2 J sup5R 1s 2 :   f 1s; t 2 J s 1 ke2st 5 0, s [ C6. (3)

The function g 1t; k 2 , called the spectral abscissa function, 

defines the real part of the rightmost characteristic root, 

and the stability analysis reduces to checking the sign of 

g 1t; k 2 . Furthermore, since g 1t; k 2  is a continuous function 

of both t and k [26], [31], [60], it follows that the system 

can switch from stability to instability, or vice versa, only 

when at least one characteristic root moves to the 

 imaginary axis as t changes. That is, stability analysis of 

the system requires calculating the characteristic roots 

s 5 jv of the corresponding characteristic equation. This 

approach is the basis of the stability analysis of (1) using (2) 

[11], [39], [61], [62].

Stability Charts

When studying the stability of (1), one of the main objec-

tives is to determine necessary and sufficient conditions for 

closed-loop stability in either the delay-parameter space or 

the controller-parameter space [63]–[65]. Characterization 

of stability in delay-parameter space relies on the t-decom-

position technique [66], while stability in controller-param-

eter space is studied using the D-decomposition principle 

[67]. These decomposition techniques state that boundaries 

in the parameter space exist to divide the space into regions, 

where all the values the parameter can attain in each region 

make the system either stable or unstable.

A DDE that is stable for only some values in the delay-

parameter space is called delay-dependent stable [62]. If the 

stability of a DDE is maintained independently of the 

delay, then DDE is called delay-independent stable. Multi-

ple disjoint delay regions may also exist, where the 

system may be stable within each region, while becom-

ing unstable outside [68]. These regions, which are 

known as stability regions, become stability intervals in a 

system with a single delay, that is, when N 5 1 in (1). Sta-

bility intervals can be detected using Kronecker summa-

tion [69], matrix pencils [33], frequency sweeping [40], 

and algebraic tools [68], [70].

Stability intervals can be extended to a two-dimen-

sional (2D) map, known as a stability chart [11], in which 

the intervals are displayed with respect to a controller 

gain; see Figure 4. A stability chart can also be obtained 

in the plane of two delays, where each delay arises from 

a different input-output system in the closed-loop con-

trol. Compared to the one-dimensional (1D) stability 

analysis along a single delay axis, the stability informa-

tion in a 2D delay plane is richer since it represents 

whether a system is stable or not with respect to all com-

binations of delays. A stability chart can reveal whether 

increasing a delay value favors stability or instability. 

Moreover, for a fixed ratio t2/t1 between two delays, 

 stability may be  independent of the delays satisfying this 

ratio, although a small perturbation of this ratio may 

yield multiple switches from instability to stability. The 

sensitivity and existence of these special ratios is of prac-

tical interest when designing robust controllers.

Characterizing higher dimensional stability charts in 

delay-parameter space is challenging since the stability 

analysis of (1) is a nondeterministic polynomial (NP)-hard 

problem for N . 1 [71]. In this case, hardness is a computa-

tional measure of the amount of time or space it takes to 

solve an example of a decision question as a function of the 

size of its input. NP hard problems are considered costly in 

this setting.

EXAMPLES OF SYSTEMS WITH DELAYS
We now illustrate how delays appear either in engineered 

feedback systems, such as network control systems, or nat-

urally as part of vibrational dynamics without the presence 

of feedback control. Further examples are discussed in 

“Delays in Microscopic Vehicular Traffic Flow,” “Delays in 

Biology,” and “Delays in Operations Research.”

Networked Control Systems

Delays appear in parallel computation and computer net-

working. Distributed computing architectures use a 

 network of computational elements to achieve perfor-

mance levels that are not attainable by a single element. A 

distributed architecture is a cluster of computers commu-

nicating through a shared network [72]. In this context, 

the distribution of the computational load across available 

resources is referred to as load balancing.
Consider a computing network consisting of n comput-

ers, called nodes, that can communicate with each other. At 

Delay-Dependent Stability

Instability

Stable Independent of Delay

Delay (s)

F
e
e
d
b
a
c
k
 G

a
in

 k

FIGURE  4 Stability chart. This chart is obtained for a clo sed-loop 

system with the plant transfer function e2tsb/ 1s 1 a 2  and the con-

troller C 1s 2 5 k . This stability chart is partitioned into three regions, 

namely, delay-independent stable, delay-dependent stable, and 

unstable. This chart reveals the effect of a delay parameter on sta-

bility and how the controller gain k can be tuned to avoid instability. 
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H
uman drivers have reaction delays, that is, drivers need 

a minimal amount of time to become aware of external 

events and make decisions. Vehicular traffic is thus  affected 

by delays [1], [S1]. Reaction delays vary under physical 

conditions and stimuli and depend on the drivers’ cognitive 

and physiological states. Experimental and simulator mea-

surements indicate that these delays range between 0.6 s 

and 2 s. Not only do delays invite collisions, but delays can 

also cause traffic jams and stop-and-go waves, making traf-

fic prone to slinky-type instabilities. These effects contrib-

ute to casualties on highways, increased emissions due to 

jams, and productivity losses due to increased travel times 

[S1]–[S3].

Numerous approaches of varying complexity are used to 

model vehicular traffic flow [1], [S1]. One option is to assume 

that the vehicles follow each other in a single lane as shown 

in Figure S1. The resulting models are at a microscopic level, 

which allows the inclusion of human reaction delays.

We now present three models to explain the ideas be-

hind deriving traffic-flow models. The first model with delay 

is given by

 x
..
i 1t 2 5 k 1x# i11 1 t 2 t 2 2 x

#
i 1t 2 t 22 , (S1)

where i 5 1, c,n, and n is the number of vehicles. In (S1), 

the terms x
$
i and x

#
i are, respectively, the acceleration and 

velocity perturbations of vehicle i around a constant vehicle 

velo city y. In this model, k is a positive constant, and the 

delay t is the driver reaction delay. The stability of (S1) is 

studied in the delay-free case [S4], [S5], as well as in the 

presence of delay t [S6]. Analytical predictions obtained 

from (S1) tend to match experiments performed with human 

drivers [1]. Stability analysis of this model can further be 

used to analyze the flow characteristics of traffic, how traffic 

jams occur, and how human driving affects these jams. This 

analysis is related to how traffic impacts the environment 

and the economy.

The second model is given by

 xi
$ 1 t 2 5 k 3V 1Di 1 t 2 t 22 2 x

#
i 1 t 2 t 24, (S2)

where t is the driver’s reaction delay, the headway 

Di 1t 2 5 xi11 1t 2 2 xi 1t 2  is the distance between vehicles i  and 

i 1 1, and V 1Di 1t 22  is the optimal velocity function, which det er-

mines how a vehicle can cruise faster so long as it maintains 

larger headway with respect to the preceding vehicle [S7]. Op-

timal velocity functions can be identified based on experimen-

tal measurements [S7]–[S9].

The third model presented considers the case where driv-

ers observe multiple vehicles ahead [4], [S10]. This driving 

strategy modifies (S1) as

 xi
$ 1t 2 5 a

Ni

p51

kp,i 1x# i1p 
1t 2 tp,i 2 2 x

#
i 
1t 2 tp,i 22, (S3)

where kp,i is a constant penalizing the velocity perturbation 

differences between the i th and 1 i 1 p 2 th vehicle sensed 

with delay tp,i, and Ni . 1 is the number of ve hicles that the 

i th vehicle is following. In this case, multiple delays can rep-

resent a driver’s sensing time of different vehicles.
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Delays in Microscopic Vehicular Traffic Flow

FIGURE S1 Platoon of vehicles. One w ay to model traffic 

flow is to assume that each driver follows a preceding vehi-

cle without changing lanes. Human decision-making adds 

reaction delay to the flow dynamics. These delays, wh ich 

are measured in the range of 0.6–2 s [2], affect the stability 

and flow characteristics of traffic, which in turn determine 

the impact of traffic on the environment and the economy.
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startup, the nodes are assigned an equal number of tasks. 

Since some nodes may operate faster than others, load 

imbalance can occur. To balance the load, each node sends 

its queue size qj 1t 2  to the remaining nodes in the network. 

Node i receives the information qj 1t 2 tij 2  from node j 
delayed by the length of time tij. Node i then uses this 

information to compute its local estimate of the average 

number of tasks in the queues of the n nodes. This estimate, 

which is based on the observations, is given by 

11/n 2gn
j51 qj 1t 2 tij 2  with tii 5 0. Node i then compares its 

queue size qi 1t 2  with its estimate of the network average 

to compute 

 b 5 qi 1t 2 2
1

n
 a

n

j51

 qj 1t 2 tij 2 . (4 )

If b is greater than the nonnegative threshold bi, then node 

i sends some of its tasks to the remaining nodes. If b , bi, 

then no task is sent. Furthermore, the tasks sent by node i 
are received by node j with a task-transfer delay hij. The 

delay hij, which depends on the number of tasks to be trans-

ferred, is much greater than the communication delay tij. 

The controller, that is, the load-balancing algorithm, 

decides how often and how fast to implement load balanc-

ing and how many tasks are to be sent to each node.

In high-speed networks, load imbalance can also occur 

when multiple users attempt to compete for resources. For 

example, the congestion-dynamics model 

 X
# 1t 2 5 Z 1t 2 t1 2 2 m, (5 )

 Z
# 1t 2 5 2a 1X 1t 2 t2 2 2 X 2 2 b 1X 1t 2 t2 2 r 2 2 X 2 , (6 )

represents a single connection between a communication 

source controlled by an access regulator and a distant 

node with a constant transmission capacity µ, where X 1t 2  
denotes the buffer contents, Z 1t 2  is the current input rate, 

and X
2

 is the buffer target value. This model involves mul-

tiple delays, namely, t1, t2, and r, where the delay t 5 t1 1 t2 

is the round-trip time, and the delay r denotes the control-

time interval, which can be manipulated in the network 

[73], [74].

Variable-Pitch Milling Dynamics

In the milling process shown schematically in Figure 5, 

the clamped metal workpiece is machined by a rotating 

cutting tool with several teeth. Since both the cutting tool 

and workpiece are deformable, each tooth leaves some 

uncut material, which then acts as an additional force on 

the following tooth. That is, a past event affects the evolu-

tion of the cutting dynamics. The delay in this context is 

defined by the tooth-passing period t, which is propor-

tional to the pitch angle between two consecutive teeth 

and is inversely proportional to the rotational speed vspindle 

of the cutting tool.

A regular-pitch cutting tool with four flutes has four iden-

tical pitch angles at 90° as shown in Figure 5(a). Under 

some cutting conditions and at some specific settings of 

vspindle, regenerative-chatter instability occurs with the use 

of this cutting tool [10]. A tool with variable-pitch, which 

has unevenly distributed pitch angles at 110°, 70°, 110°, 70° 

as shown in Figure 5(b), can remove this instability under 

the same conditions [10]. This design changes the tooth-

passing periods between the teeth, that is, the delays. To 

extend the design, the pitch angles u1 and u2 can be consid-

ered as variables as shown in Figure 5(b), and the stability 

of the cutting dynamics can be investigated as a function of 

t1 5 u1/vspindle and t2 5 u2/vspindle.

The characteristic equation of the variable-pitch milling 

dynamics with t1 and t2 is given by 

 f 1s; t1, t2 2 5 det c I 2
1

4p
Kt a 14 2 2 1e2t1s 2 e2t2s 2 2F0 1s 2 d 5 0,

 (7 )

where Kt is a cutting-force coefficient, a is the axial 

depth-of-cut, the transfer matrix F0 1s 2  relates the forces 

on the tool to the displacement of the tool, and the expo-

nential terms carry the effects of the tooth-passing 

 periods t1 and t2 [75].

The model in (7) contains two independent delays simi-

lar to the congestion-control dynamics. If the stability of the 

Four-Flute Variable-Pitch

Milling Cutting Tool
ωspindle

Fu

Fv

Feed

Workpiece

(a)

θ1
θ2

(b)

FIGURE  5 Variable-pitch milling. A four-flute cutting tool  with pitch 

angles u1 and u2 is used to machine a metal workpiece. Due to the 

flexibility of the tool, each tooth leaves some uncut material, which 

is encountered by the next tooth as an additional force. That is, a 

past event affects the evolution of the cutting dynamics. The 

delays that arise from this mechanism are proportional to the 

tooth-passing period.
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T
he effects of neuromusculoskeletal torque generation on the 

stability of quiet standing, that is, maintaining the vertical con-

figuration of the human body, can be investigated by means  of ex-

periments and analytical tools from control theory; see Figure S2 

[19]. Quiet-standing experiments involve analyzing muscle activ-

ity at the ankles. Quiet standing is considered as an inverted pen-

dulum controlled by the torque generated by muscles, and the 

torque created by the neuromusculoskeletal system. The torque 

due to the neuromusculoskeletal system is modeled by a critically 

damped system that receives input from a neural controller that 

creates corrective actions after the length of time t.

A block diagram of the closed-loop quiet-standing system 

is shown in Figure S3, where the neural controller comprises a 

proportional-derivative controller with gains KP and KD and where 

the mechanical controller is based on a damper-spring system 

defined by constants K  and B. The effect of the torque created at 

the ankles on the deviation u is felt after about 80-ms delay [19], 

[S11], [S12]. This delay is a combination of three different delays, 

 namely, a delay of 40 ms for sensing the deviations u, a delay of 

27–37 ms in the cortex, and a delay of 3–13 ms for processing 

a decision.

Following the standard block diagram simplifications in Fig-

ure S3, we find the characteristic equation of quiet standing as 

 f 1s;t Kp,KD, K, B 2 5 Q1 1s, Kp, KD, K, B 2
 1 e2tsQ2 1s, Kp, KD, K, B 2 5 0, (S4)

where Q1 and Q2 are polynomials, and t is the sensory delay of 

the human model. One goal is to find combinations of 1Kp, KD 2  
such that the quiet-standing model (S4) is stable for a given 

delay t. Additional applications at the intersection of neurosci-

ence, control theory, and delay systems can be found in [S13].

REGULATORY NETWORKS

Cyclic biochemical feedback in cell regulatory networks is 

 affected by delays. Consider the model

 x
#
1 1t 2 5 2 l1x1 1t 2 1 c1x2 1t 2 t12 , (S5)

 x
#
2 1t 2 5 2 l2x2 1t 2 1 g 1x1 1t 2 t2 22 , (S6)

where x1 denotes the concentration of the messenger RNA 

(mRNA), x2 denotes the concentration of the protein, which is 

the end  product of the reaction, and the rate x
# 1t 2  is defi ned by 

the  balance between mRNA synthesis and the end product con-

sumption [S14]. The delays t1 and t2, respectively, defi ne the lag 

from the initiation of the translation and from the initiation of the 

transcription until the appearance of the mature protein mRNA, 

c1 . 0 describes the translation effects, l1 . 0 and l2 . 0 are 

related to degradation effects, and g is the feedback function.

System (S5)–(S6) is an example of a low-order biochemical 

oscillator model, where delays describe chemical or  biochemical 
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Open-Loop System

for Stability Analysis

FIGURE S3 Control diagram for quiet standing. The experimental 

setup in Figure S2 and its control structure are depicted in this 

block diagram. An active correction mechanism, which is typi-

cally considered as a proportional-der ivative controller, ema-

nates from the neural controller and becomes effective after a 

length of time t. The neuromusculoskeletal system models the 

response of the muscles with critically damped second-order 

dynamics whose natural frequency is vn. The human body, which 

is modeled as an inverted pendulum with inertia I, mass m, and 

center of mass at height h, responds to the torques originating 

from the neuromusculoskeletal system and the mechanical con-

troller representing the mechanics of muscles. The electromyog-

raphy signals shown here are measured at the ankles. (Used 

with permission of APS. See [19] for full citation information.)
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FIGURE S2 Quiet standing. Analysis of quiet standing offers 

insight on how humans regulate their vertical posture and puts 

light on how humans walk without falling. The laser-displacement 

sensor reads the angular displacement u of the human body from 

the vertical, the support device helps support the body at the 

knees without affecting the natural ankle angle, while the force 

plate is used to calculate the center of pressure and torques 

applied by the ankle as the body sways around the vertical. (Used 

with permission of APS. See [19] for full citation information.)
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kinetics [S15]–[S19]. Delays are also encountered in mito-

gen-activated protein kinase cascades, which are reversible 

 enzyme-activation-based mechanisms [S20]. These mecha-

nisms are modeled as a series interconnections of compart-

ments, which affect each other after a transport time of length 

tk, as shown in Figure S4. Circadian rhythm generators and dy-

namics of gene transcriptions are also examples of feedback 

control affected by delays [S21], [S22].

EPIDEMICS

Understanding the underlying mechanisms of biological 

 processes and epidemics represents a challenge for health 

workers engaged in designing clinically relevant treatment 

strategies. These mechanisms can be revealed by considering 

epidemics and diseases as dynamical processes.

Hematology dynamics can be modeled by

 x
# 1t 2 5 2lx 1t 2 1 G 1x 1t2t22, (S7)

which formulates the circulating cell populations in one com-

partment, where x represents the circulating cell population, l 

is the cell-loss rate, and the monotone function G, which de-

scribes a feedback mechanism, denotes the fl ux of cells from 

the previous compartment [61]. The delay t represents the av-

erage length of time required to go through the compartment. 

Model (S7) is also found in population dynamics, where the 

delay represents a maturation period.

Models representing regulatory feedback mechanisms in 

the production of blood cells are similar to (S7). An example is 

the characteristic equation of the linearized system

f 1s; t, l, lE, k 2 5 1s 1 l2 31s 1 l2 1s 1 lE 2 1 ke2st4 5 0, (S8)

where l . 0 is the death rate, lE . 0 is the decay constant 

of a hormone at the equilibrium of the dynamics, and t is the 

length of time needed for the maturation of red-blood-cell pre-

cursors [S23].

Examples are also found in the dynamics of leukemia, that 

is, the dynamics describing the growth of a cancer of the blood 

cells characterized by an abnormal proliferation of leucocytes. In 

the case of chronic myelogenous leukemia, some models have 

multiple delays [S24], where stability is affected by both large 

delays (one to eight days) and small delays (1 to 5 min) [S25]. 

Additional examples with delays are encountered in  epidemic 

models due to incubation times [14], [16].
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T
he main components of a supply chain model are the in-

ventories, the communication medium, the decision-mak-

ing dynamics associated with a human in the loop, the pro-

duction and supplies, and the transportation medium. Among 

these components, the transportation, decision-making, and 

production are primary sources of delay as shown in Figure S5 

[6], [7], [S26], [S27]. One of the objectives in a supply chain 

system is to maintain a constant inventory as a safety stock, 

while responding to dynamically changing customer demand, 

and receiving additional supplies that are not instantaneously 

available due to transportation delays. Delays can cause either 

excessive or insufficient inventories, when a manager is un-

able to replenish the inventories in a timely manner.

Consider the stock-acquisition model

 
d
dt

O 1t 2 5 2 aSLO 1t 2 2 1aS 2 aSL 2O 1t 2 h 2 1 r 1t 2 , (S9)

 r 1t 2 5
1

T
1aSLt̂ 1 1 1 aST 2L 1t 2 2

1

T
1aSLt̂ 1 12L 1t 2T 2, (S10)

where O 1t 2  is the manager’s ordering dynamics, the positive 

constants aSL and aS are proportional controller gains regulat-

ing discrepancies in the supply line and in the inventory, re-

spectivel y, h . 0 is the manufacturing lead-time delay, r 1t 2  is 

the nonhomogeneous part of (S9), and t̂ is an estimate of h 

[S27]. The customer demand forecaster L 1t 2  tracks the cus-

tomer demand and smooths the demand over a period T .

The model (S9)–(S10), which is supported by experiments 

[S27], contains the key components of a supply chain as 

shown in Figure S6. Equations (S9)–(S10) can also express 

the inventory variations N 1t 2  influenced by the demand D 1t 2  and 

products ordered at t 2 t, that is, dN 1t 2 /dt 5 O 1 t 2 t 2  2 D 1 t 2 . 
We can then determine controller gains such that N 1t 2  behaves 

in a desirable way and calculate the delay values that do not 

destabilize N 1t 2  for a given controller.

The characteristic equation of the dynamics in (S9) is given by

 f 1s; h 2 5 s 1 aSL 1 1aS 2 aSL 2e2ts 5 0, (S11)

where t is the manufacturing lead-time delay. Multiple delays 

can be considered to account for the decision-making delay 

h1, the manufacturing lead time h2, and the transportation 

time h3 [S28]. In this case, the governing dynamics in (S9) 

can be reformulated, leading to the three-delay characteristic 

equation

 f 1s; h1, h2, h3 2 5 s 1 aSL 1e2h1s 2 e2 1h11h22s 2 1 aSe2 1h11h21h32s 5 0.

 (S12)

The characteristic equations (S11) and (S12) can be combined 

with the stability analysis technique presented in the section 

“Multiple-Delay Case” to investigate the stability with respect 

to either the de lays or system parameters. Note that the models 

(S11) and (S12) represent the characteristic equations of the or-

dering dynamics O 1 t 2  of the managers. The ordering dynamics 

can be combined with N
| 1s2 5 11/s 2 1O| 1s 2e2ts2D| 1s 22  to study 

the stability of the inventory dynamics N 1t 2 , where t is the total 

amount of delay between ordering new products and the arrival 

of these products in the inventories, and O
| 1s2 , D| 1s 2 , and N

| 1s 2  
are the Laplace transforms of ordering, customer demand, and 

inventory levels, respectively.
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cutting dynamics is considered for a cutting tool with a 

fixed-pitch ratio n/m, then we can define a triplet 1t0, m, n 2 , 
such that t1 5 mt0 and t2 5 nt0. In this case, analysis of (7) 

reduces to a single-delay problem with respect to t0, resem-

bling the stability analysis of the single integrator example 

presented in the section “Delay Differential Equations and 

the Characteristic Equation.” It is, however, computation-

ally overwhelming to solve (7) repeatedly for all pitch-ratios 

n/m. Determining the stability of multiple delay systems 

therefore requires  different frameworks. Stability results for 

this variable-pitch milling example are given in the section 

“Multiple-Delay Case.”

DESTABILIZING AND STABILIZING 
EFFECTS OF DELAYS
We now explore the destabilizing and stabilizing effects 

of delays on the stability and control of DDEs. Single-

delay systems with feedback laws are used to illustrate 

these concepts.

Destabilizing Effects of Delays

Consider the transfer function of a single integrator 

H 1s 2 5 1/s subject to the delayed controller C 1s 2 5 2ke2ts 

with k . 0. To determine the stability of the closed-loop 

system, we need to first find the roots s 5 j v of the closed-

loop characteristic equation 

 s 1 ke2st 5 0 (8) 

for all t, that is, 

 cos 1vt 2 5 0, (9) 

 k sin 1vt 2 5 v. (10 )

Due to the periodicity in (9)–(10), there exist infinitely 

many delays tc,, 5 p/ 12k 2 1 12p, 2 /vc, , 5 0, 1, 2, c, all of 

which yield the crossing frequency vc 5 k, that is, (8) has 

roots on the imaginary axis at s 5 ± j k. By continuity, it fol-

lows that closed-loop stability is guaranteed for all delays 

satisfying t [ 30, tc 2 , where tc 5 p/2k. In this example, the 

system is unstable for t $ tc, and thus tc is the delay margin 
of the system.

We now consider the movement of the rightmost root of 

(8) as t changes. As shown in Figure 6 for the controller gain 

k 5 1, increasing the delay from zero generates fast-moving 

characteristic roots, which enter from 2` in C. Note that 

the root located at 2k for t 5 0 moves to the left, as the 

delay increases. Finally, at the value tc 5 p/2, a pair of roots 

entering from 2` crosses the imaginary axis toward C1. 

Larger values of k induce smaller delay margins since 

tc 5 p/ 12k 2 . These results are confirmed by the Nyquist plot 

shown in Figure 7.

The number of unstable roots can be determined by 

studying the crossing direction of an imaginary root as a 

function of the delay parameter t evaluated at the cor-

responding crossing frequency vc. Since the quantity 

R 5ds/dt6 k s5jvc 5 vc
2 is positive in this example, an increase 

of the delay beyond each critical delay value t 5 tc,, cor-

responds to the crossing of the imaginary axis by a pair 

of characteristic roots toward C1. The number NU of 

unstable roots can then be tracked as a function of 

delays. In this case, for a fixed value of k, NU increases 

by two each time the delay value increases past the crit-

ical delay value t 5 tc,,. This analysis can be extended 

by considering different values of k and identifying the 

stability characteristics in the plane of t versus k, as 

shown in Figure 8. The behavior of the characteristic 

roots can also be explained by using perturbation-based 

analysis [31], [76].
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FIGURE  6 Rightmost characteristic roots on the complex plane . This 

plot shows the location of the rightmost characteristic roots of the 

closed-loop system with the characteristic equation s 1 ke2st 5 0 

for various values of t [ [0,2] with k = 1. For t 5 p/(2k), the right-

most root crosses toward the right-half plane causing instability. 

The rightmost roots are computed using DDE-BIFTOOL, which is 

a numerical bifurcation tool developed for delay differential 

equations [80].

FIGURE  7 Nyquist plot for several controller gains k. The  closed-

loop control system consists of the transfer function H (s) 5 1/s 

and the proportional feedback control law C 1s 2 5 2ke2ts with 

delay t = 0.01 s. 
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An alternative approach to handling more complicated 

multi-input, multi-output systems uses using matrix pencil 

techniques [31], [33], [40]. Yet another approach, which 

leads to the same conclusion, uses an algebraic transforma-

tion to reformulate the closed-loop characteristic polyno-

mial as a one-parameter algebraic polynomial [68], [70]. 

This polynomial, which has the same imaginary roots as 

the original characteristic equation, can be analyzed using 

algebraic tools [16], [68], [77], [78].

Stabilizing Effects of Delays

Consider the second-order open-loop system H 1s25 1/ 1s21v0
2 2  

in feedback with the delayed controller C 1s 2 5 ke2ts [79]. 

The closed-loop characteristic equation is given by 

 s2 1 v0
2 2 ke2st 5 0. (11) 

If t 5 0, then the system is unstable for all k. However, the 

system can be made stable either by designing appropriate 

values of k and t [79] or by using a proportional-derivative 

controller without delay C 1s 2 5 kp 1 kds.

We now design 1k, t 2  so that the closed-loop system is 

stable. As in (8), we can show that two distinct crossing 

 frequencies exist for each k . 0, where k [ 10, v0
2 2 , as 

given by vc, 1 5!v0
2 2 k and vc, 2 5!v0

2 1 k, which lead to 

the  critical delay values tc, 1, , 5 12,p 2 /!v0
2 2 k and 

tc,2,, 5 12, 1 1 2p/!v0
2 1 k, for , 5 0, 1, 2, ...., respectively. The 

sensitivity expression R5 3ds/dt 4 6 k s5jvc
5 2 2vc

2/ 1v0
2 2 vc

2 2  
indicates that the characteristic roots crossing at vc 5 vc,1 

favor stability, that is, the roots move toward C_, whereas 

the roots crossing at vc,2 favor instability.

If t 5 0, then the closed-loop system has only a pair of 

poles of the form s 56 j vc, 1. As calculated above, these 

poles favor stability at the delay values tc,1,,. That is, for suf-

ficiently small t 5 e . 0, the closed-loop system becomes 

stable since the poles s 5 6jvc,1 move toward C_, and no 

closed-loop poles are located in C1 or on the imaginary 

axis. In this case, increasing the delay value has a stabilizing 

effect. Considering all critical delays, we conclude that the 

system is stable if and only if, for some nonnegative integer 

,, the delay t satisfies 

 
2,p

!v0
2 2 k

, t ,
12, 1 1 2p
!v0

2 1 k
.

We now study the behavior of the rightmost root of 

(11) as the delay value is increased from zero. To 

graphically demonstrate how stability is affected by 

the delay, we select k 5 1.5 and v0 5 3 and compute the 

real part of the rightmost root of the closed-loop 

system [80]. As shown in Figure  9, we see that the real 

part of the rightmost root changes its sign as the delay 

parameter varies, indicating the existence of multiple 

stability intervals along the delay axis. In this exam-

ple, we have vc,1 5!7.5, and when the delay is per-

turbed from t = 0, the characteristic roots start moving 

from s 5 6j!7.5 toward C_. For 0 < t < 0.9695, these 

roots wander in C_, while, for t = 0.9695, the roots 

cross into C1, where they remain for 0.9695 < t < 2.2943. 

These roots return C_ for several delay ranges as 

shown in Figure 9. While this pair of roots exhibits 

this movement, the remaining characteristic roots do 

not cross the imaginary axis to C1 , and consequently 

a finite number of stability intervals arise. When the 

parameter k is relaxed, we obtain the stability chart 

FIGURE  8 Stability chart with respect to the delay t and c ontroller 

gain k. The plot depicts the stability chart of a closed-loop system 

with the transfer function H 1s 2 5 1/s and the control law 

C 1s 2 5 2 ke2ts, where 0 # k # 5. Each pair 1t, k 2  selected from 

the shaded region leads to stability of the control system. If, for a 

given pair 1t, k 2 , the system is stable, then the number NU of 

unstable roots is zero. 
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FIGURE  9 Behavior of the real part of the rightmost root. For a 

closed-loop system with the characteristic equation f 1s ; t 2 5  

s 2 1 9 2 1.5e2ts 5 0, this plot depicts how the real part of the 

rightmost characteristic root behaves with respect to the delay 

parameter t. The sign change of the real part indicates that the 

closed-loop system switches from stability to instability several times. 
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of the system shown in Figure 10. The stability inter-

vals presented here can be calculated by methods sur-

veyed in [81].

From a speed of response point of view, a comparison of 

the step responses in Figure 11 illustrates the possibility 

of a properly designed delayed proportional control 

C 1s 2 5 ke2ts matching the performance of the PD control 

C 1s 2 5 kp 1 kd s as measured by the step response.

Delays as Derivative Feedback

Consider the linear system 

 x
$ 1t 2 2 0.1x

# 1t 2 1 x 1t 2 5 u 1t 2 , (12)

 which is unstable for u(t) = 0 due to the negative damping 

term. The derivative feedback 

 u 1t 2 5 2kx
# 1t 2 , (13)

 with k . 0.1 moves the unstable open-loop poles into the 

stable left-half plane. Alternatively, we can use the delayed-

feedback control law 

 u 1t 2 5 x 1t 2 r 2 2 x 1t 2 , (14)

 which can be interpreted as a finite difference control law 

with a gain r, that is, u 1t 2 5 2 r 1x 1t 2 2 x 1t 2 r 2 2 /r. For small 

values of the delay r, (14) approximates the derivative control 

(13) with k 5 r. In fact, system (12) is stabilized by moving the 

two right-half plane poles to the left-half plane for all 

r [ 10.1002, 1.7178 2  [40]. This example demonstrates that, by 

designing the controllers appropriately, closed-loop stability 

can be achieved by using delays to approximate the deriva-

tives of signals [82].

A combination of m distinct delays can be used as a sta-

bilizing strategy [37]. Consider the plant 

 x1n2 1t 2 5 u 1t 2 ,  (15)

 which consists of a chain of integrators, and let the control-

ler be chosen as 

 u 1t 2 5 2 a
m

i51

 ki x 1t 2 ti 2 . (16)

 For stabilizing (15), the delays can be arbitrarily large since 

we can scale the time variable as t 5 t^/r, where r > 0. That is, 

if (16) stabilizes (15), then we can find the controller 

 u 1t 2 5 2a
n

i51

ki

r
x 1t 2 rti 2 , (17)

 which also stabilizes (15). This result suggests an approach 

to designing the controller (17) for systems with arbitrarily 

large delays rti [37]. We can first design (16) with appropri-

ate gains ki and sufficiently small delays ti. We can then 

calculate r and compute the gains ki/r of the controller (17).

An approximation of derivatives can be combined with 

a scaling of time [37], leading to the controller 

 u 1t 2 5 2aenq0  
en21q1

121 2    c  
1n21 2!eqn21

121 2n21
bT21 1t 2  •x 1t 2 t1 2

x 1t 2 t2 2
(

x 1t 2 tn 2
µ ,

FIGURE  10 Stability chart with respect to the delay t and contro ller 

gain k. This plot depicts the stability chart of a closed-loop control 

system with the transfer function H 1s 2 5 1/ 1s 2 1 v0
2 2  and the con-

trol law C 1s 2 5 ke2ts, where v0 5 3 and 0 , k , 9. Each pair 1t, k 2  
selected from the shaded regions leads to stability of the control 

system, that is, the number NU of unstable roots is zero. 
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FIGURE  11 Step response. The positive feedback control loop 

 consists of the open-loop transfer function H 1s 2 5 1/ 1s 2 1 9 2  and 

the controller C 1s 2 5 1kp e2ts 1 kd s 2 . The aim is to compare the 

speed of response between a delay-free proportional-derivative 

controller (kp 2 0, kd 2 0, t 5 0 2  and a delayed proportional con-

troller 1k 5 kp 2 0, t 2 0, and kd 5 0 2 . Curve 1 denotes the case 

where there is no delay in the closed-loop system with the control-

ler gains kp 5 7 and kd 5 22. Curve 2 corresponds to the output of 

the system with t 5 0.3 s and the proportional controller gain 

k 5 7. Curve 3 represents the output of the system with no delay 

and controller gains kp 5 7 and kd 5 23. Finally, curve 4 denotes 

the output of the system with delay t 5 0.6 s and controller gain 

k 5 7. 
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where e . 0 is sufficiently small, ti , i 5 1, 2, c, n, satisfy 

0 # t1 , t2 , c , tn , qi , i 5 0, 1, c, n21, are chosen 

such that the closed-loop system with the derivative 

 feedback control u 1t 2 5 2gn21

i50
 qi x

1i2 1t 2  is stable, and T 1t 2  is 

the Vandermonde matrix

 T 1t 2 5 § 1 t1 t2
2

c tn21
1

1 t2 t2
2 c tn21

2

( ( ( f (
1 tn t2

n
c t n21

n

¥ .

While the controller (16) can stabilize (15), stabilization is 

not possible if m , n [83].

Finally, consider the system x
# 1t 2 5 x 1t 2 1 u 1t 2 . The 

derivative feedback u 1t 2 5 2x
# 1t 2  stabilizes the system, 

but the closed-loop system is fragile to changes in the 

derivative feedback, where fragility is defined in the 

sense that stability is lost with the derivative approxima-

tion using finite differences, no matter how small the 

discretization step size is. Furthermore, it can be shown 

that no controller of the form u 1t 2 5 H 1x 1t 22x 1t2T 22 , 
where the function H 1 # 2  is real, can stabilize the given 

system [84]. This conclusion demonstrates that, in some 

cases, using finite differences to approximate derivatives 

may not be valid [85].

Delays as Phase Synchronizers

The oscillator 1/ 1s2 1 v 2 2  can be stabilized using the low-

gain delayed feedback controller C 1s 2 5 2ee2st, which pro-

vides the appropriate phase in the feedback loop. This 

approach is used to stabilize laser dynamics [86]. For mul-

tiple oscillators with the characteristic equation 

 q
n

i51

1s2 1 v i
2 2 1 ee2st 5 0, (18)

where v i . 0, i 5 1, c, n, the stabilization mechanism 

reduces to a phase-synchronization requirement using the 

delay parameter as explained next.

Consider the roots of the characteristic equation 

H 1s; t, e 2 J f 1s 2 1 eg 1s 2e2st 5 0 as a function of the gain

e [ R and the delay t $ 0. Here, f : C S C and g : C A C are 

entire functions. Then we have the following results [87].

Proposition 1

Let ŝ be a simple zero of f that is not a zero of g. Let Q ( C be 

a compact set that does not contain the zeros of f except ŝ, 

and such that the boundary of Q is a closed simple contour 

not containing ŝ. Then, for all t̂ . 0, there exists ê . 0 such 

that H 1s; t, e 2  has exactly one zero in Q for all 

1t, e 2 [ 30, t̂ 4 3 32ê, ê 4. Furthermore, there exists a unique 

function  r : 30, t̂ 4 3 32ê, ê 4 S Q, 1t, e 2  A r 1t, e 2  that satis-

fies r 10, 0 2  5 ŝ as well as H 1r 1t, e 2 ; t, e 2 5 0 for all 1t, e 2 [
30, t̂ 4 3 32ê, ê 4. The function r can be decomposed as 

 r 1t, e 2 5 ŝ 1 e m 1t, e 2 , (19)

where  

 lim0e 0S 01

max
t[ 30, t̂ 4 3m 1t, e 2 1

g 1 ŝ2
f r 1 ŝ 2  e2ŝt 3 5 0, (20)

which  denotes uniform convergence on compact delay 

intervals as |e| S 0. 

Expressions (19)–(20) imply that, for small values of 

the gain parameter e, the isolated zero ŝ behaves as the 

function 

 t A ŝ 2 e
g 1 ŝ 2
f  ’ 1 ŝ 2  e2st^ . (21)

If the  rightmost zeros of f are simple and lie on the imagi-

nary axis, then the corresponding function (21) for each 

zero has a sinusoidal real part. As a consequence, stability 

for small values of e depends on having an appropriate 

phase of these sinusoidal functions, which depends on 

only the delay parameter.

Proposition 2

Assume th at f 1s 2 5 f 1s 2 , g 1s 2 5 g 1s 2  for all s [ C. Let g . 0 

and assume that 

 lim
RS`

 sup e ` g 1s 2
f 1s 2 `  : R 1s 2> 2g, |s k > R f 5 0. (22)

Assume  further that all zeros of f are in the closed left-half 

plane. Denote by jv i, i 5 1, c, n, the zeros of f on the posi-

tive imaginary axis, each of which has multiplicity one. If 

the delay parameter t is such that 

 R a g 1 jv i 2
f ’ 1  jv i 2 e

2jvitb . 0, (23)

for al l i 5 1, c, n, then all zeros of H 1s; t, e 2  are in C2 for 

sufficiently small e . 0. Finally, if the inequality in (23) is 

reversed, then the same claims hold for e , 0. 

Example 1

We consider the effects of time delays on the stability 

of a mechanical system [88]. The characteristic equa-

tion is given by 

 H 1s; t, e 2 J f 1s 2 1 eg 1s 2e2st

 J 1s2 1 v1
2 2 1s2 1 v2

2 2 1 es2e2st 5 0. (24)

For v1 5 2 and v2 5 4, the functions vi : R1 S R given by 

 t A yi 1t 2 5 2 R a g 1 jvi 2
f ’ 1 jv i 2  e

2jvitb,  i 5 1, 2, (25)
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are de picted in Figure 12. Since deg(  f(s)) > deg( g(s)), 

assumption (22) of Proposition 2 is satisfied. According to 

Proposition 2, stability is achieved for sufficiently small 

positive values of e  when y1 1t 2 , 0 and y2 1t 2 , 0, that is, 

the delay t satisfies 

 t [ d e ap

4
1 kp, 

p

2
1 kpb : k [ N f . (26)

Simila rly, stability is achieved for sufficiently small nega-

tive values of e if either y1 1t 2 . 0 and y2 1t 2 . 0, or the 

delay t satisfies 

 t [ d e ap

2
1 kp, 

3p

4
1 kpb : k [ N f . (27)

In tervals (26) and (27) are given in Figure 12. To illustrate 

the relation between functions (25) and the behavior of 

the roots of (24) described by Proposition 1, we use the 

package DDE-BIFTOOL [80]. DDE-BIFTOOL is a numeri-

cal stability and bifurcation analysis toolbox for DDEs 

that can compute the rightmost roots of their characteris-

tic equations with respect to the delay parameter t. We 

select two cases, v1 5 2 and v2 5 4, where e 5 1 for both 

cases. This setting corresponds to [88, Ex. 5.1] with e 5

1/4. The plot of (25) with e 5 1/4 is provided in Figure 12, 

and the real part of the rightmost roots of (24) for e 5 1 is 

presented in Figure 13. Comparing these figures shows 

that the results are in agreement with functions (25) 

depicted in Figure 12. Further details about DDE-

BIFTOOL and similar packages are given in “Numerical 

Stability and Bifurcation Analysis.”  j 

We conclude this subsection by stating that proper 

tuning of the system parameters can lead to stability or 

improved behavior of a DDE. Beneficial effects of delays 

with different stabilizing mechanisms are found in 

designing predictors as explained in “Stabilizing Predic-

tors” while the effects of delays on chaos prediction are 

discussed in “Stabilizing Unstable Periodic Orbits in 

 Chaotic Systems.”

LIMITATIONS IN CONTROL DESIGN

Fundam ental Limitations

Consider the stabilization of a strictly proper single-input, 

single-output system described by the transfer function 

 H 1s 2 J  c 1sI 2 A 221b 5
P 1s 2
Q 1s 2 , (28)

where (A, b, c) is a minimal state-space representation, Q is 

a polynomial of degree n, and P is a polynomial of degree 

m , n.
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FIGURE  12 Verification of stable poles. Using the sinusoidal 

funct ions in (25), the location of the poles in the complex plane 

can be determined. The sign agreement between g1 and g2 indi-

cates that the closed-loop system is stable. This example shows 

that stability can be deduced from the phase synchronization of 

two functions g1 and g2, derived from the characteristic equation 

of the system.

FIGURE  13 Rightmost root distributions of (24). The curves in (a) 

and (b) show how the real part of the rightmost roots of the char-

acteristic equation (24) vary with respect to the delay t, where 

v1 5 2 and v2 5 4. (a) and (b) correspond to e 5 1/4 and e 5 1 in 

the numerical example, respectively.
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Let C 1s 2  be the transfer function of a possibly infinite-

dimensional controller that stabilizes (28) and define the 

corresponding delay margin D 1P, C 2  by 

 D 1P, C 2 J sup 5t̂ $ 0 : C stabilizes H 1s 2e2st  

  for all t [ 30,t̂ 2 6. 
The maximal allowable delay margin is defined as 

 DM(P) := sup{D(P, C) : C stabilizes P}.

The following result is based on [89, Thms. 7, 8, 14]. 

Theorem 1

The maximal achievable delay margin of the plant (28) with 

an LTI controller is finite if and only if (28) has a nonzero pole 

in C1. Furthermore, if the plant has the unstable pole s 5 rejf 

with r > 0 and f [ 30, p/2), then 

 DM 1P 2 #
p

r
 sin f 1 maxa2

r
 cos f, 

2

r
 f sin fb.

Example 2

Consider the plant H 1s 2 5 1/ 1s 1 a 2  and the controller 

C 1s 2 5 2ke2ts, where a . 0. The characteristic equation of 

the closed-loop system is given by s 1 a 1 ke2st 5 0. By 

inspecting the stability of this system in 1a, k 2 , it follows that 

the system is stabilizable if and only if at , 1 [31, Chap. 4]. 

According to Theorem 1, the maximal achievable delay 

margin over all stabilizing controllers is bounded by 2/a. 

This result is obtained by explicitly constructing controllers 

that achieve a delay margin arbitrarily close to 2/a [89].  j

Example 3 

For the multiple integrator H 1s 2 5 1/sn, the maximal achiev-

able delay margin is infinite [90].  j

Limitati ons of Controllers Based 

on Delayed Output Feedback

We now consider controllers based on the delayed output 

feedback 

 U 1s 2 5 2ke2stY 1s 2 , (29)

where k [ R, t $ 0, and the controller C(s) is given by 

C 1s 2 5 2ke2ts. We seek conditions on the pair 1k, t 2  such 

that the controller (29) stabilizes the system (28).

The following result is based on [83, Prop. III.3] and 

an extension of Lucas’s theorem to classes of entire 

 functions [91]. 

Proposition 3

Let m be the  degree of the polynomial P(s) in (28). If (28) is 

stable with the control law (29), then the polynomial 

  g 1s; t 2 J a
m11

k50

 am 1 1

k
b 

dkQ 1s 2
dsk  tm112k, (30)

is Hurwitz. 

Although the polynomial g 1s; t 2  depends explicitly 

on the delay parameter t, Proposition 3 provides condi-

tions that do not depend on t and k as demonstrated in 

the next example.

Example 4 

Consider the  second-order system 

 H 1s 2 5
1

s2 1 a1s 1 a2

. (31)

In the not ation of Proposition 3, m 5 0 and g 1s; t 2 5 

ts2 1 1a1t 1 2 2s 1 1a2t 1 a1 2 . The polynomial g 1s; t 2  is 

Hurwitz if and only if a1t 1 2 . 0 and a2t 1 a1 . 0. The 

last two conditions are necessary for stabilizing (31) 

using (29) with k and t as controller parameters. If these 

T
he Matlab package DDE-BIFTOOL provides numerical bifur-

cation and stability analysis of delay differential equations 

with several fixed constant or state-dependent delays [80]. This 

package contains routines for the computation, continuation, 

and stability analysis of steady-state solutions, their Hopf and 

fold bifurcations, periodic solutions, and connecting orbits. A 

stability analysis of steady-state solutions is achieved through 

computing approximations and corrections of the rightmost 

characteristic roots using a linear multistep method. Periodic 

solutions, their Floquet multipliers, and connecting orbits are 

computed using piecewise polynomial collocation on adaptively 

refined meshes. An overview of DDE-BIFTOOL for stabilization 

problems is presented in [S42]. Additional numerical methods 

that can compute the rightmost roots of LTI DDEs include the 

quasi-polynomial mapping-based rootfinder (QPmR) technique 

[S43] and pseudospectral differencing methods [S44].
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[S44] D. Breda, S. Maset, and R. Vermiglio, “Pseudospectral differ-

encing methods for characteristic roots of delay differential eq uations,” 

SIAM J. Sci. Comput., vol. 27, pp. 482–495, 2006.
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conditions are violated, that is, a1 # 0 and a2 # a1
2/2, then 

(31) cannot be stabilized with the control law (29).  j 

Corollary 1

If the polyn om ial Q 1s 2  has at least one zero s0 in C1 with 

multiplicity at least m + 2, then s0 is a factor of g 1s; t 2 . In this 

case, g 1s; t 2  is not Hurwitz stable, and thus the plant (28) 

cannot be stabilized by the control law (29). 

Example 5 

The multiple integrator H 1s 2 5 1/sn cannot be stabilized by 

the controller (29) for all n $ 2, since in this case the degree 

m in P is equal to zero. If the control law includes n delays, 

that is, U 1s 2 5 gn
i51 kie

2stiY 1s 2 , then the plant can be stabi-

lized, as demonstrated in the section “Delays as Deriva-

tive Feedback.”  j 

Limitatio ns of Controllers 

That Use Delays

For a given value of the gain k, we investigate whether or 

not the plant (28) with the control law (29) can be stabi-

lized. In other words, we characterize the stability of the 

 closed-loop system with the characteristic equation 

Q 1s 2 1 ke2tsP 1s 2 5 0, where the delay parameter t is the 

only tunable parameter. We refer to this problem as the delay 
stabilization problem and define two quantities that play a 

role in the solution of this problem, namely, card 1U1 2  and 

card 1S1 2 , where card(X ) denotes the cardinality of X .  

Here U1 is the set of the roots of Q 1s 2 1 kP 1s 2 5 0 located 

in the closed right-half plane, and S1 is the set of positive 

roots v of the polynomial

 F 1v; k 2 5 |Q 1 jv 2|2 2 k2|P 1 jv 2|2 5 0. (32)

For the dela y stabilization problem, we invoke the fol-

lowing assumption [31, Chapter 11]. 

Assumption 1 

The gain k [ R satisfies the following conditions: 

1) All roots of F are simple. 

2) 0 [  U1. 

3) card 1U1 2 2 0. 

Assumption 1 is used in Proposition 4. The derivation of 

Proposition 4 is based on sweeping the delay parameter from 

zero to infinity, combined with a continuity argument of the 

rightmost roots. The delay-stabilization problem is solvable if 

and only if there exists a delay t̂ . 0 such that the number of 

closed-loop characteristic roots in C1 for t 5 0, that is, 

card 1U1 2 , minus the net number of roots crossing the imagi-

nary axis from C1  to C2 when the delay is varied over the 

interval 10, t̂ 4 is equal to zero [31]. Note that card 1S1 2  reflects 

imaginary-axis crossings of the roots. The crossing direction of 

these roots across the imaginary axis is independent of the 

delay values, that is, the crossing direction of each element of 

S1 is invariant. Furthermore, the crossing direction alternates 

over the ordered elements of S1 [62, Theorem 7].

D
elay terms may also arise when designing state predictors 

and observers. To explain the main ideas, we consider the 

linear system 

 x
# 1t 2 5 Ax 1t 2 , (S13)

 y 1t 2 5 Cx 1t 2 . (S14)

Since (S13)–(S14) is time invariant, a prediction yp 1t 2  of the 

output y(t) over a time-delay interval of length t can be gener-

ated from a model of the system given by

 z
# 1t 2 5 Az 1t 2 ,

 yp 1t 2 5 Cz 1t 2 .
The observer design includes a control term in the predictor 

that depends on the difference yp 1t 2 t 2 2 y 1t 2  between the out-

puts. We then obtain the predictor

 z
# 1t 2 5 Az 1t 2 1 K 1yp 1t 2 t 2 2 y 1t 22 , (S15)

 yp 1t 2 5 Cz 1t 2 , (S16)

which can be combined with (S13)–(S14) to express the  error 

dynamics as

 e
# 1t 2 5 Ae 1t 2 1 KCe 1t 2 t 2 , (S17)

where e 1t 2 5 z 1t 2 t 2  2 x 1t 2  is the error, and the gain K  is s e-

lected to guarantee the stability  of the error dynamics, for in-

stance, by following the stability analysis techniques explained 

in the section “Delay Different ial Equations and the Character-

istic Equation.”

For control systems with delays, the detrimental effects 

of delays are minimized by including predictors in the con-

trol feedback loop. The controller then uses either the pre-

diction of the plant state variable or output for feedback, 

instead of the plant state variable and outputs. This type 

of delay compensation is the basis for the Smith predictor 

[32], [S29] as well as schemes based on finite spectrum 

assignment [S30]. Prediction-based schemes are appli-

cable to unstable open-loop systems only if stabilization of 

the predictor is addressed.

REFERENCES
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Stabilizing Unstable Periodic Orbits in Chaotic S ystems

D
elays can be used to stabilize unstable periodic orbits that 

appear in chaotic systems. Questions of observability and 

reconstructibility in both linear and n onlinear dynamical systems 

concern the availability of sufficient information in the output 

space that can be used to reconstruct the behavior of the sys-

tem in state space. The following definitions are used to state 

the main results in delay embedding, time-series prediction, and 

stabilizing chaotic systems.

Definition 2

The topological spaces X  and Y  are topologically equivalent if a 

continuous mapping f :X S Y  exists with a continuous inverse f 21.

Definition 3

If f :X S Y , where X and Y are topological spaces, is a continuous 

mapping with a continuous inverse f 21 : f 1X 2 S X  from its range 

f 1X 2 ( Y  to its domain X , then the function f is an embedding.

Consider the input-free dynamical system

 x
# 1 t 2 5 f 1x 1 t 2 2 , (S18)

 y 1 t 2 5 h 1x 1 t 2 2 , (S19)

where x [ M, M is an n-dimensional manifold, and the output y 

is a scalar. Given only the output measurements, we are inter-

ested in determining information about the phase-space of the 

system (S18)–(S19), in particular , the geometric behavior of the 

state x. We assume that x is bounded and eventually resides on 

an attractor A. 

Definition 4

Let f be a flow on M, let t > 0, and let h : M S R be a 

smooth measurement function. The delay coordinate map 

with embedding delay t, F 1h, f, t 2  : M S Rm, is defined by 

x A F 1h, f, t 251h 1x 2 , h 1f2t 1x.....h 1f22t 1x 22 , c, h 1f2 1m212t1x 222 . 

Definition 5

The subset U ( X  of a topological space is residual if it  contains 

the intersection of a countable number of open dense subsets. A 

property is called generic if it holds on a residual set. 

Baire’s theorem guarantees that a residual set is not empty 

but may have arbitrarily small measure [S31]. Furthermore, we 

know that every d-dimensional manifold can be embedded into 

R2d11 [S32]. Takens’ embedding theorem provides a particu-

lar embedding using delay mappings to reconstruct the state 

space of the original dynamical system [S33].

Theorem 6 (Takens [S33]) 

Let M  be a compact manifold of dimension d, and let t > 0 

be the embedding delay. For the nonlinear system (f, h, t), if 

f is a smooth vector fi eld on M with fl ow f and h : M S R is a 

smooth measurement function, then the delay coordinate map 

F 1h, f, t 2  : M S R2d11 is an embedding. 

The output function y 1 t 2 5 h 1x 1 t 2 2  is usually dictated by the 

available sensors and may not be mathematically available. 

The measurement function h 1 # 2  is piecewise constant, and the 

assumptions and conclusions of Theorem 6 are not achieved in 

practice. Nevertheless, delay-embedding approaches are used 

to predict the future outputs of nonlinear systems [S34] and to 

control chaotic systems [S35]–[S37]. The prediction of future 

outputs is achieved as follows. Using the collection of delay 

mappings F 1 t 2 , F 1 t 1 1 2 ,c,F 1 t 1 l 2 , a model of a dynamical 

system whose state is F 1 t 2  can be obtained by either a linear or 

nonlinear identification algorithm. For example, we can obtain 

the matrix G such that F 1 t 1 1 2 5 GF 1 t 2  [S34]. The delay-em-

bedding and prediction algorithms are illustrated in Figure S7.

Chaotic systems, which are sensitive to initial conditions, 

can also be characterized by attractor sets containing infinitely 

many unstable periodic orbits. These prop-

erties can be exploited to design delayed 

feedback for physical chaotic systems [86]. 

The discussion below is based on the OGY 

methods [S38] used to suppress chaos in 

dynamical systems by driving the trajecto-

ries to a limit cycle [S39].

Consider the dynamical system 

 x
# 1 t 2 5 f 1x 1 t 2 ,u 1 t 2 ,t 2 , (S20)

 y 1 t 2 5 h 1x 1 t 2 2 , (S21)

where x 1 # 2 [ Rn, and u and y  are scalars. 

Assume that, for u 1 t 2 5 0, the system has an 

unstable periodic orbit x0 1 t 2  of period T  that 

 satisfies x
#
0 5 f 1x0, 0, t 2  and x 1 t 1T 2 5 x0 1 t 2  

among its potentially infinitely many pe-

riodic orbits. Let y0 1 t 2 5 h 1x0 1 t 2 2 , and let 

the feedback input with multiple delays be 

given by 
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x2

x(t )

dx
dt
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y (t ) = h (x (t ))
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z (t +1) = G (z (t ))

z (t ) =

y (t )

y (t – τ)

y (t – ( 2d + 1))

...

t

FIGURE S7 The embedding and prediction algorithms. The mapping F 1h, f, t 2 provides 

a delay embedding to reconstruct the vector z 1t 2, which can then be used to identify the 

mapping G and predict z 1t 1 12. Note that the first entry of z 1t 2 is the output y 1t 2.
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 u 1 t 2 5 K c 11 2 R 2a
`

n51

Rn21y 1 t 2 nT 2 2 y 1 t 2 d ,
where kR k, 1. To analyze the stability of the closed-loop system, we 

use a perturbation approach by considering the state perturbations 

dx 5x0 1 t 2 2 x 1 t 2. Note that, for chaotic systems, the trajectory 

x 1 t 2  becomes  infinitesimally close to an unstable periodic orbit 

due to the presence of infinitely many unstable periodic orbits, 

and since the attractor has a finite dimension. The linearized 

closed-loop system is given by 

dx
#
5 A 1 t 2dx 1 t 2 1 KB 1 t 2 c 11 2 R 2a

`

n51

R n21dx 1 t 2 nT 2 2 dx 1 t 2 d ,
where A 1 t 2  and B 1 t 2  are periodic matrices. Noting that 

dx 1 t 2nT 2 5 e2nLTdx 1 t 2 ,
where L [  R  is the Floquet exponent [S38], the stabilization 

problem is reduced to that of studying the stability of the closed-

loop system 

d x
#
5 3A 1 t 2dx 1 t 2 1 KH 1L 2B 1 t 2 4dx 1 t 2 , 

where

H 1L 2 5 11 2 e2LT 2 / 11 2 Re2LT 2 .
Finding L typically requires the solution of a transcenden-

tal equation, and for some special orbits, L can be obtained 

 explicitly [S38]. Finally, this approach can be experimentally 

implemented to stabilize physical systems [S40], [S41].

Example 9

This example illustrates the time-delay embedding application 

of Theorem 6. Consider the Lorenz oscillator described by the 

equations 

 
dx1

dt
5 a 1x2 2 x1 2 ,

 
dx2

dt
5 x1 1b 2x3 2 2 x2,

 
dx3

dt
5 x1 x2 2 cx3,

where a, b, and c are real constants. For the particular choice 

a 5 10, b 5 28, and c 5 8/3, we obtain the attractor shown in 

Figure S8. By measuring y 5 h 1x 2 5 x1 and using a delay of 

t 5 1 s, the reconstructed attractor is shown in Figure S9. While 

the reconstructed attractor with this projection approach looks 

different from the actual attractor, the attractor can be used to 

predict the trajectory of x1, x2, and x3. j 
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FIGURE S8 The Lorentz attractor. This attractor, which is in R3, is 

composed of an infinite number of unstable limit cycles. For the 

particular choice of the parameters in Example 9, all trajectories 

converge t o the chaotic attractor. This attractor illustrates both the 

long-term unpredictability and boundedness of the trajectories.
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FIGURE S9 The reconstructed Lorentz attractor. The reconstruction 

is based on the output measurement y 5 x1, which is projected onto 

R3 for the embedding dimension n 5 2d 1 1 5 7. While the recon-

structed shap e is not identical to the attractor in Figure S8, the first 

three components of F 1t 2 shown in the reconstructed attractor com-

prise the signals y 1t 2 , y 1t 2 12 , and y 1t 2 22 . Theorem 6 is used to 

guarantee that the reconstructed attractor based on sufficient 

number of delays is the image of an embedding mapping of the 

original attractor. The delayed signals can be used to either stabilize 

the Lorenz system or obtain a predictive model of the output y 1t 2.
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For t . 0, define 

 n1 1t 2 5 a
v[S1, Fr 1v2.0

card5Tv d 10, t 4 6, (33)

 n2 1t 2 5 a
v[S1, Fr 1v2,0

card5Tv d 30, t 4 6, (34)

where Tv is the set of delay values corresponding to each 

v [ S1. That is, the set T 5 d v[S1
Tv partitions the non-

negative delay space into intervals, where the number of 

roots in C1 is the same for each interval. Furthermore, let 

the sets T 1 and T 2 represent a partition of T  as a function 

of the sign of the derivative F r evaluated at the correspond-

ing crossing frequency, that is, 

 T 1 5 d
v[S1, Fr1v2.0

Tv\506,   T 2 5 d
v[S1, Fr 1v2,0

Tv.

The following result characterizes stability with respect 

to the delay axis [31, Propositions 11.14, 11.18].

Proposition 4

Let k satisfy A ssumption 1. Then the delay-stabilization 

problem has a solution of the form (29) if and only if the 

following conditions hold:

i) card 1U1 1k 2 2  is a positive even integer, which satisfies 

the inequality card 1U1 1k 22 # card 1S1 1k 22 . 
ii) At least one delay value t̂ [ T  exists, such that 

 2n2 1 t̂ 2 5 2n1 1 t̂ 2 1 card 1U1 1k 22 . (35)

In this case , for all delay values t [ 1 t̂, t̂12 , where 

 t̂1 5 min 1T 1 d 1 t̂,` 22 , (36)

the closed-l oop system is stable. Finally, if S1 5 5v1, v26, 
where v1 . v2, then all stabilizing delay values are 

given by 

 t [ 1tl , tl 2 , l 5 0, 1, 2, c, lm, (37)

where tl 5t2112pl/v2 2 , tl5t11 12pl/v1 2 , and 

 
lm5jev1v2 1t12t2 2

2p 1v12v22 fk .
Following Proposition 4, the limitations of using a delay 

as a controller parameter are displayed in Table 1.

THE MULTIPLE-DELAY CASE
In the case of multiple delays, the characteristic equation (2) 

becomes 

 f 1s; t1, c, tN 2 5 a
K

i50

Pi 1s 2e2saN
,51 zi, t, 5 0, (38)

where Pi are polynomials in s with real coefficients, K [ Z1, 

and zi, [ Z0,1. Similar to the single delay case, to analyze 

stability transitions of the time-delayed dynamics, we 

study the imaginary roots s 5 jv of (38), where v is non-

negative without loss of generality.

The set of frequencies v such that s 5 jv is a root of (38) 

is the crossing frequency set, which is defined by 

 V 5 5v $ 0 0  f 1 jv; t1, c, tN 2 5 0

 for some 1t1, c, tN 2 [ R1
N 6. (39)

For each v| [ V, there are infinitely many nonnegative 

delays of the form 

 1t|1, t
|

2, c, t|N 2 1 1p1, p2, c, pN 2  2p
v|

 (40)

satisfying (38 ) with s 5 jv| , where p, [ Z and 1t|1, c, t|N 2  
are the minimal positive delays. The periodicity 2p/v|  is 

due to the exponential terms in (38) at s 5 jv| . Considering 

all v [ V, the solutions in (40) lie on N-dimensional stabil-

ity-switching hypersurfaces denoted by SSH.

As in the single-delay case, where the delay axis is decom-

posed into stability and instability intervals, in the 

 multiple-delay case, the delay space is decomposed into sta-

bility and instability regions whose boundaries are deter-

mined by SSH. Nevertheless, SSH is not sufficient to 

determine the stability regions. A method for assessing the 

number of unstable roots of the system in the delay-parame-

ter space is needed. Similar to the single-delay cases, sensitiv-

ity analysis on the SSH with respect to delays is needed, 

which is based on how imaginary roots s 5 ± jv move across 

the imaginary axis. Keeping t1, c, t,21, t,11, c, tN fixed, 

the sensitivity of s 5 ± jv|  with respect to t, is defined as 

TABLE  1 Limitations of output feedback stabilizability 
when using the delay as a controller parameter. Necessary 
and sufficient stabilizability conditions are given by 
Proposition 4 in terms of two m easures, namely, card(S+) 
and card(U+), where card(S+) is the number of unstable 
closed-loop poles, and card(U+) is the number of distinct 
crossing frequencies that the system’s imaginary poles 
can create for some delay t. The symbols “*” and “/” 
indicate, respectively, that stabilization is possible  and 
stabilization is impossible. For the case (card(U+), 
card(S+))equal to either (2,2) or (2,3), all stabilizing delay 
values are described by condition (37).

0 1 2 3 4 5 card (S+)
1 / / / / / /

2 / / Condition (37) * *
3 / / / / / /

4 / / / /                   *     * 

5 / / / / / /

6 / / / / / /

card (U+)
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 S 1t, 2 5 Ra ds
dt,

`
s5jv

&
, t
&

1,c,t
&

N

b. (41)

As the delay t, 5 t|, increases, the roots s 5 ± jv|  move 

toward C1 if S 1t, 2 . 0, and toward C2 if S 1t, 2 , 0.

The sign of sensitivity expression (41) is the same for all 

values of t, in (40). That is, for a given s 5 ± jv|  and 

t1, c, t,21, t,11, c, tN, sensitivity expression (41) is 

invariant at infinitely many delay values t,
| 1 p, 12p/v| 2  

[62], [78], [92].

The Two-Delay Case

We now present techniques that can be used to analyze the 

stability of DDEs with two delays. These techniques are 

based on the discussions in the section “Delay Differential 

Equations and the Characteristic Equation.”

Geometric Charact erization

Consider the special case of (2) given by 

 f 1s;t1,t2 2 5 P0 1s 2 1 P1 1s 2e2t1s 1 P2 1s 2e2t2s 5 0, (42)

where Pi 1s 2 , i 5 0, 1, 2, are polynomials. In this example case, 

SSH become curves C in the t1-t2 plane. While a complete 

characterization of these curves is not always possible, the 

characteristics of C may be revealed in the case of (42) [92].

We rewrite (42) as 

 a 1s;t1,t2 2 5 1 1 a1 1s 2e2t1s 1 a2 1s 2e2t2s 5 0, (43)

where ai 1s 2 5 Pi 1s 2 /P0 1s 2 , i 5 1, 2. For s 5 jv , the three 

terms in (43) are vectors in the complex plane, the 

 magnitudes of which are independent of t1 and t2. If 

(43) holds, then these vectors sum to zero, as shown in 

Figure 14. Furthermore, the last two terms in (43) can 

assume all possible orientations by adjusting the values 

of t1 and t2. Since the length of an edge of a triangle 

cannot exceed the sum of the two remaining edges, (43) 

is valid if and only if

 |a1 1 jv 2|1|a2 1 jv 2| $ 1 (44)

and 

 2 1 # |a1 1 jv 2|2|a2 1 jv 2|#1. (45)

The crossing frequenc y set V can be identified as the set of 

v that satisfy (44) and (45). 

Example 6 

Consider the system 

 a1 1s 2 5
2.5

s2 1 2z1s 1 1
, (46)

 a2 1s 2 5
1

3s2 1 6z2 s 1 1
, (47)

where z1 5 1/"2 and z2 5 0.1. Figure 15 shows the plots of 

|a1 1 jv 2|1|a2 1 jv 2| and |a1 1 jv 2|2|a2 1 jv 2| with respect to 

v . The crossing frequency set V is identified from 

Figure 15 as V 5 V1h  V2, where V1 5 30.346, 0.758 4 and 

V2 5 31.333, 1.650 4. j 

Note that C may consist of closed curves, spiral-like 

curves, and open-ended curves. In Example 6, the curves C1 

corresponding to the set V1 5 30.346, 0.758 4 give rise to 

closed curves as shown in Figure 16. In the same example, 

FIGURE  14 Geometric interpretation of (43). Equation (43) is repre-

sented in the complex plane as the sum of three vectors. If these 

vectors create a triangle in the complex domain, then the charac-

terist ic equation has a solution at s=jv for some delays t1 and t2. 

For all delay values, since the norms of the vectors are indepen-

dent of the delays, we can write conditions, called triangle inequal-
ities, for a triangle to form on the complex plane. These conditions, 

which involve only v, are based on the fact that the length of each 

edge of a triangle cannot exceed the sum of the lengths of the 

remaining two edges. Once all v satisfying these triangle condi-

tions are determined, the delays t1 and t2 can be calculated using 

v and the orientation of the vectors.
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FIGURE  15 Frequency-sweeping test. By sweeping the frequency v, 

the norm |a1 1 jv 2|6 |a2 1 jv 2| is visualized as a function of v for the 

system (46) and (47). This plot  yields the range of frequencies for 

which the triangle conditions (44)–(45) hold. These frequency 

ranges generate the delay solutions t1-t2 in figures 16 and 17. 

(Reprinted from [92] with permission from Elsevier.)
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the set V2 leads to spiral-like curves C2, which may also run 

in different directions on the plane of delays; see Figure 17. 

Example 7 

Consider the system 

 a1 1s 2 5
2

s2 1 2s 1 1
, (48)

 a2 1s 2 5
1.5

16s2 1 8s 1 1
. (49)

Figure 18 shows the pl ots of |a1 1 jv 2|1|a2 1 jv 2| and 

|a1 1 jv 2| 2|a2 1 jv 2| with respect to v. In this case, V 

 contains two intervals, namely, V1 5 10, 0.197 4 and 

V2 5 30.898, 1.079 4, with the corresponding C1 in the form 

of open-ended curves as shown in Figure 19. Additional 

characteristics, such as smoothness of the curves C and 

the direction of imaginary-axis crossings of the charac-

teristic roots, are discussed in [92].  j 

Stability of the Congestion-Control Dynamics

In the congestion control dynamics (5)–(6), the dynamics of 

the error variable Y 1t 2 5 X 1t 2 2 X are expressed by 

 
d2

dt2
Y 1t 2 1 aY 1t 2 t 2 1 bY 1t 2 t 2 r 2 5 0. (50)
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FIGURE  19 Delay solutions on open-ended curves. The delay 

pairs in the t1-t2 plane lead to either stability or instability. 

The boundaries separating the stability and instability 

region s are determined by the stability-switching curves of 

the system. In the example (48), (49), these curves are in the 

form of open-ended forms. (Reprinted from [92] with permis-

sion from Elsevier.)
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FIGURE  16 Delay solutions on closed curves. The curves C1 of the 

system in Example 6 are the stability-switching curves, which rep-

resent the delay values for which the characteristic equation has a  

pair of roots on the imaginary axis. These curves decompose the 

delay plane into regions in which all delays lead to the same number 

NU of unstable roots of the system. (Reprinted from [92] with per-

mission from Elsevier.)

FIGURE  17 Delay solutions on open-ended spirals. The curves C2 of 

the system in Example 6 are the stability-switching curves, which 

represent the delay values with which the characteristic equation 

has a pair of roots on the imaginary axis. These curves decompose 

the delay plane into regions in which all delays lead to the same 

number NU of unstable roots. (Reprinted from [92] with permission 

from Elsevier.)
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FIGURE  18 Frequency-sweeping test. By sweeping the fre-

quency v, the norm |a1 1 jv 2 |6 |a2 1 jv 2 | is visualized as a func-

tion of v for the system (48) and (49). This plot yi elds the 

range of frequencies for which the triangle conditions (44), 

(45) hold. These frequency ranges generate the delay solu-

tions t1- t2 in Figure 19. (Reprinted from [92] with permission 

from Elsevier.)
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We next investigate the  stability of (50) in r-t plane. The 

characteristic equation of (50) is given by 

 f 1s; t, r 2 5 s2 1 ae2ts 1 be2 1t1r2s 5 0. (51)

Equation (51) is a spec ial case of (42), where P0 1s 2 5 s2, 

P1 1s 2 5 a, and P2 1s 2 5 b with t1 5 t and t2 5 t 1 r. Using the 

geometric approach based on triangle inequalities illus-

trated above leads to the boundaries shown in r-t plane in 

Figure 20. Sensitivity analysis reveals that the shaded 

 parametric region determines where the congestion dynam-

ics are stable. This example demonstrates how feedback 

with multiple delays can render an oscillatory open-loop 

system stable. The shape of the stability regions in the 

delay-parameter space 1r, t 2  is useful in choosing a wait-
and-act strategy [74], which provides stability robustness 

with respect to the round-trip time t.

An Approach Based on  

the Bilinear Transformation

To compute the characteristic roots on the imaginary axis, 

we replace the exponential terms in (38) with the bilinear 

transformation 

 e2t, s S
1 2 T, s
1 1 T, s

. (52)

The right-hand side of  (52) is different from a first-

order Padé approximation, which is restricted to 

T, 5 t,/2. In (52), we have s 5 jv  and T, [ R, , 5 1, 2. 

The transformation (52) is exact when the complex 

expressions on both sides of (52) agree in magnitude 

and phase [38], [77], [78], [81]. Notice that if s 5 jv , 

then the magnitudes agree for all t, and T,. If the 

phases agree, then 

 1t1, t2 2 5 a2tan21 1vT1 2
v

, 
2tan21 1vT2 2

v
b 1 1p1, p2 2  2p

v
, (53)

where 0 # tan21 1 # 2 , p and v [ V. In other words, trans-

formation (52) becomes exact for s 5 jv, so long as (53) 

holds. Since transformation (52) is exact, the imaginary 

roots of (38) can be studied using (52). Substituting (52) into 

(38) yields 

 g 1s; T1, T2 2 5 a
M

m50

 Qm 1T1, T2 2sm 5 0, (54)

where Qm 1T1, T2 2  are multinomials in terms of the param-

eters T1 and T2, and M is finite.

For N 5 2 delays, we define the set 

 V 5 5v $ 0|g 1 jv; T1, T2 2 5 0 

        for some 1T1, T2 2 [ R26, (55)

which is analogous to (39) . 

Corollary 2 ([78]) 

The set V is identical to the set V. 

Corollary 2 indicates that finding V from transcenden-

tal equation (38) is equivalent to finding V from the alge-

braic equation (54). To find V, a Routh array is built using 

the coefficients Q1 1T1, T2 2 , c, QM 1T1, T2 2 . The entries of 

this array are in terms of T1 and T2, and the roots s 5 jv of 

(54) can be expressed in terms of T1 and T2 by exploiting 

the rules of the array. Once all admissible solutions 

1v, T1, T2 2  are identified numerically, obtaining 1v, t1, t2 2  
is straightforward using (53).

Example 8

Consider the characteristic equation 

 f 1s; t1, t2 2 5 s2 1 s 1 20 1 12s 1 3 2e2t1s 1 1s 1 4 2e2t2s

 1 e2 1t11t22s
 5 0, (56)

in the parameter space of the delays 1t1, t2 2 . The equation 

corresponding to (54) is given by 

 g 1s; T1, T2 2 5 T1T2 s
4 1 1T2 1 T1 2 2T1T2 2s3

 1 11 1 14T1T2 1 2T2 2s2

 1 118T2 1 4 1 20T1 2s 1 28

 5 0, (57)

for which a Routh array is implemented to identify admissi-

ble triplets 1v, T1, T2 2 . The points 1T1, T2 2  are depicted in 

Figure 21(a). The third dimension in Figure 21(a) is the set 

v [ V, which is suppressed for clarity. With knowledge of 

1v, T1, T2 2 , mapping back to the delay space is achieved using 
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FIGURE  20 Stability chart. The shaded regions in the delay-param-

eter space 1t, r 2  represent the stability regions of the congestion 

control model (50). The delay r 2 0, which is the control-time inter-

val , can be chosen to guarantee stability for a round-trip time as 

large as t < 1.3 s.
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(53), as depicted in Figure 21(b). In Figure 21(b), the number 

NU of unstable roots is found with the help of (41). j 

The periodicity 2p/v in (40), which is the same as in 

(53), suggests a classification of the curves in Figure 21(b). 

The minimum positive delay points mapped in this figure 

without 2p/v shifting are the generators of the remaining 

curves. These generators are called the kernel curves, while 

the remaining curves are called the offspring, which are 

identified by shifting the kernel curves on the t1-t2 plane 

with periodicity 2p/v for each v [ V. This classification is 

called clustering [78].

The presence of kernel and offspring curves formalizes 

the identification of stability transitions in multiple-delay 

systems. Stability transitions are captured with sole knowl-

edge of the kernel curves and V. Stability transitions on the 

kernel curves map directly to the offspring curves. This 

mapping is due the invariance of the sensitivity expression 

in (41). With this simplification, the number of unstable 

roots in the plane of delays is identified.

To detect kernel and offspring curves, the Kronecker 

summation procedure [93], [94] and the building block pro-

cedure [77] can also be utilized. In the case of more than 

two delays, the kernel and offspring concepts remain the 

same since these concepts are inherent to DDEs. In higher 

dimensional delay-parameter spaces, however, the kernel 

and offspring hypersurfaces become difficult to compute 

and characterize.

Stability of Variable-Pitch Milling Dynamics

Using the bilinear transformation, we determine the stabil-

ity chart of the cutting dynamics with the characteristic 

equation (7) at one of the operating conditions. The stability 

chart is shown in Figure 22, where stable cutting options 

are in the shaded regions. In this figure, the positive slope 

of each line represents a pitch ratio of the cutting tool used 

in the machining process, and each line with a negative 

slope corresponds to a fixed speed of the cutting tool in 

revolutions per minute. Similar to Figure 21(b), the kernel 

and offspring curves are color coded in Figure 22. In this 

example, it suffices to capture the four disjoint kernel 

curves to generate all of the remaining curves in Figure 22. 

Each delay pair on the curves separating stability and 

instability renders the cutting dynamics a perfect oscillator 

at the corresponding regenerative-chatter frequency vc, 

where s 5 jv is a root of (7). Modeling and stability analysis 
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FIGURE  22 Stability chart of the metal-cutting dynamics. The gray 

shaded regions show the parametric selections corresponding to 

stability, which refers to machining with vibration-free engagement 

of the cutting  tool with the workpiece. The ratio t2/t1 corresponds to 

the pitch ratio of the cutting tool, while the lines with slopes −1 cor-

respond to the rotational speed of the spindle in revolutions per 

minute, which can be chosen appropriately to render stable cutting 

dynamics, thereby avoiding undesirable vibration at the interface 

between the cutting tool and the workpiece. 
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FIGURE  21 Mapping from the parametric domain 1T1,T2 2  to the 

delay domain 1t1,t2 2 . The domain 1T1, T2 2  in (a) is used to detect 

the stability-switching curves (SSCs) in the delay dom ain in (b). 

These curves are essential for stability analysis since they 

determine the boundaries that separate stability from instability 

in the delay domain. To find SSCs, the points 1T1, T2 2  that create 

imaginary roots s = jv in (54) are crucial. In (a), these points are 

depicted for this numerical example. Next, using the triplets 1v,T1,T2 2 , SSCs can be obtained from (53) as shown in (b). In 

(b), the stability regions in the delay domain are shaded, the 

number NU of unstable roots is shown, and the kernel curve is 

marked. In this stability analysis, we see that multiple disjoint 

stability regions arise, offering several choices to select or 

schedule the delays in the closed-loop system in order to stabi-

lize the system. 
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of regenerative-chatter dynamics are discussed in [10], [11], 

[95], and [96].

Interference Phenomena

Interference among multiple delays affects stability. An 

example of constructive interference arises when two 

delays do not destabilize a system even though each delay 

alone does [36]. This stability phenomenon with respect to 

one of the rays in the delay-parameter space is called the 

delay interference phenomenon [31], [97], [98]. Delay inter-

ference models capture the fragility, that is, the sensitivity, 

of the delay-independent stability property along a par-

ticular ray against arbitrary small perturbations of the 

direction of the ray [69], [99].

To illustrate delay interference, consider the system 

 x
# 1t 2 5 2 x 1t 2 2 x 1t 2 t1 2 2

1

2
x 1t 2 t2 2 . (58)

The rays for which delay-ind ependent stability holds are 

represented by the axes t1 5 0 and t2 5 0 of the delay-

parameter space and by the particular ray t2 5 2t1. Con-

sider first the case t2 5 0 and t1 5 t, leading to the 

characteristic equation s 1 3/2 1 e2st 5 0. Note that the 

delay-free system is stable since the characteristic root is 

located at −5/2. Moreover, the plot of H 1 jv 2 5 21/ 1 jv 1 3/2 2  
lies inside the unit circle, and therefore kH 1 jv 2 k Z 1 for all 

v . 0, and 1 2 H 1 jv 2e2jvt 2 0 for all v [ R  and all t . 0. 

In other words, the characteristic equation has no roots on 

the imaginary axis independent of the delay value t, hence 

the corresponding DDE is delay-independent stable. A sim-

ilar property holds when t1 5 0 and t2 2 0.

The analysis of (58) given in  [33] and [100] uses the 

Tsypkin frequency-sweeping criterion, which guaran-

tees the robust stability of a closed-loop system with a 

stable single-input, single-output plant and delayed 

unity feedback.

Consider next the case t2 5 2t1 5 2t. The corresponding 

characteristic equation becomes s 1 1 1 e2st 1 1/2e22st 5 0. 

As in the previous case, we need to find the roots of 

jv 1 1 1 e2jvt 1 1/2e22jvt 5 0. In other words, we search for 

the solutions z [ 3 2 1, 1 4, z 5 cos 1vt 2 , to the equation 

1/2z2 1 z 1 1 5 0 corresponding to the real part of the char-

acteristic equation on the imaginary axis. It thus follows 

that jv 1 1 1 e2jvt 1 1/2e22jvt 2 0 for all v [  R and for all 

t . 0. In conclusion, the delay-independent stability arises 

for the ray t2 5 2t1 in the delay-parameter space.

Next, let the ray t2 5 2t1 be perturbed as t2 5 12 1 e 2t1 

for e . 0. We know that (58) is not stable for all positive 

delays t1 and t2. For instance, s 5 j/2 is an eigenvalue of 

(58) when t1 5 2p and t2 5 3p. The question then 

becomes whether the ray t2 5 12 1 e 2t1 is stable or not or 

whether or not this ray intersects some boundaries sep-

arating stable and unstable regions. To answer this 

question, the limit of the sequence 5en6n$1 S 0 can be 

shown to exist, where en 5 1/ 12 12n 1 1 2 2 , such that the 

ray with e 5 en causes instability [31]. More precisely, 

for some delay values t1 . 2 12n 1 1 2p, the system 

becomes unstable on the ray corresponding to e 5 en. 

This instability is confirmed by the solution s 5 j/2 with 

t1 5 2 12n 1 1 2p [99].

Consider now the system 

 x
# 1t 2 5 2 ax 1t 2 2 x 1t 2 t1 2 2

1

2
x 1t 2 t2 2 , (59)

which recovers (58) when a 5 1.  Here we consider a as a 

positive parameter and find that the delay-independent sta-

bility of (59) is confirmed for all a $ 3/ 2 [31]. In particular, 

for all a $ 3/2, |H1 1 jv 2|1|H2 1 jv 2| , 1 for all v . 0, 

where H1 5 1/ 1a 1 jv 2  and H2 1 jv 2 5 1/2 1a 1 jv 2 . Therefore, 

1 1 H1 1 jv 2e2jvt1 1 H2 1 jv 2e2jvt2 2 0 for all v[ R, t1 . 0, 

and t2 . 0. Since the delay-free system is stable, the last 

FIGURE  23 Investigation of delay interference. Stability and instabil-

ity regions of (59) are presented in the 1t1, t2 2-space for a 5 1 (left) 

and a 5 1.3 (right). For a 5 1, three stable ray s, two of which are the 

axes, exist. If a 5 1.3, then the number of rays including the axes is 

seven. These rays, which are shown with dashed lines, define all 

combinations of multiple delays for which the closed-loop system 

remains stable. That is, the system is stable independently of the 

delays that lie on these rays. When constructing controllers, 

the existence of such rays can be useful, but instability can occur 

when the slopes of these rays are perturbed due to uncertainty in 

the delays.
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assertion allows concluding delay-independent stability for 

all t1 . 0 and all t2 . 0 by extending Tsypkin’s criterion to 

the multiple-delay case [40], [60], [100], [101].

For a = 1, only three stable rays exist. These rays are the 

axis Ot1 with t2 5 0, the axis Ot2 with t1 5 0, and the ray 

t2 5 2t1. In Figure 23, stability and instability regions of 

(59) in the delay-parameter space are presented for both 

a 5 1 and a 5 1.3. The solid lines, which are SSHs, corre-

spond to delay values for which characteristic roots are on 

the imaginary axis. The dashed lines indicate the stable 

rays. Notice that small perturbations in the slope of stable 

rays lead to intersections with SSH, which is a conse-

quence of the delay-interference phenomenon. As a S 3/2, 

the number of stable rays increases and becomes arbi-

trarily large. For a 5 3/2, the system becomes delay-inde-

pendent stable [98].

Interference Mechanism in the Smith Predictor

In light of the results presented above, we consider the 

Smith predictor  [32], [102], [103] for the transfer function 

H 1s 2 5 H0 1s 2e2st, where H0 1s 2  is a strictly proper stable 

transfer function and the delay t is not exactly known. 

Assume that the delay-modeling error is bounded by some 

d . 0, that is, |t 2 tn| # d, where tn is the nominal-delay 

value, and let C0 1s 2  be a stabilizing controller for H0 1s 2 . The 

Smith controller for the nominal delay case t 5 tn, assum-

ing that the system H0 1s 2  contains no modeling errors and 

uncertainties, has the form 

 C 1s 2 5
C0 1s 2

C0 1s 2H0 1s 2 11 2 e2stn 2 .
Let Hcl,0 1s 2 5 C0 1s 2H0 1s 2 / 11 1 C0 1s 2H0 1s 2 2  be the transfer 

function of the delay-free closed-loop system. For the 

uncertain delay case, the transfer function of the closed-

loop system is 

 Hcl 1s 2 5
Hcl,0 1s 2e2st

1 2 Hcl,0 e
2stn 11 2 e2s1t2tn2 2 .

The stability of Hcl 1s 2  is determined from the zero locations 

of the meromorphic function 1 2 Hcl,0 1s 2e2st1 1 Hcl,0 1s 2e2st2, 

where t1 5 tn and t2 5 t. Note that, if the closed-loop 

system is not practically stable, that is, if there exists a fre-

quency v0 . 0 such that |Hcl,0 1 jv0 2| . 1/2, then the ray 

t2 5 t1  is subject to interference phenomena [104]. Exten-

sions of the Smith predictor are given in [105].

Extension to Large Number of Delays

Stability studies of three-and four-delay DDEs are given in 

[56], [93], [94], and [106]–[108]. Furthermore, the stability of 

a special case of (38) of the form 

 f 1s; t1, c, tN 2 5 P0 1s 2 1 a
N

i51

Pi 1s 2e2sti 5 0, (60)

where N is arbitrarily large,  can be analyzed using geo-

metric methods [109]. If N = 3, then one way to analyze 

stability is to follow the ideas of the geometric character-

ization  discussed above using triangle inequalities for 

two-delay cases [107]. The three-dimensional geometries 

of the SSH that arise from this characterization are in the 

form of pipes with holes, connectors, caps, and semi-open 

pipes. Direct extensions of the existing methods to ana-

lyzing stability of systems with a large number of delays 

is not straightforward [33], [109], and existing results 

remain inconclusive in addressing stability in multiple-

delay-parameter space.

CONCLUSIONS
In this article, we analyzed the effects of delays in various 

dynamical systems modeled by linear time-invariant delay 

differential equations. The presentation focused on eigen-

value locations and parametric techniques rather than 

Lyapunov-based approaches. Examples from biology, net-

works, manufacturing systems, supply chains, and vehicu-

lar traffic flow are used to illustrate the limitations and 

potential advantages of delays. The beneficial effects of 

delays are explained by interpreting delays as phase syn-

chronizers and as approximate derivatives. While we limit 

the article to the effects of delays on stability, results on 

improving tracking performance using delays also exist 

[110]. Delays are also discussed in the context of designing 

predictors as well as controllers for nonlinear systems. We 

feel that this area deserves further research. As an exam-

ple, an approach to obtaining predictive dynamical sys-

tems models using time-delay embedding is provided 

[111]. The impact of delays continue to grow in many fields, 

including the control of distributed systems such as energy 

and computing grids [112]–[114].

AUTHOR INFORMATION
Rifat Sipa hi obtained the B.Sc. degree from Istanbul 

Technical University, Turkey, in 2000 and the M.Sc. and 

Ph.D. degrees (cum laude) from the University of Con-

necticut in 2003 and 2005, respectively, all in mechanical 

engineering. He was awarded the Chateaubriand Post-

doctoral Scholarship of the French Government to con-

duct research at Université de Technologie de Compiègne 

(UTC), France, in 2005–2006. He joined the Department 

of Mechanical and Industrial Engineering, Northeastern 

University, Boston, as an assistant professor in 2006. His 

research interests include system-level approaches to 

designing delay-tolerant network topologies and improv-

ing the behavior of delay systems arising in manufactur-

ing, mechatronics, supply-chain management, and 

vehicular traffic flow. He coedited Topics in Time Delay 
Systems, Analysis, Algorithms and Control (Springer, 2009). 

He is on the organizing committees of several confer-

ences organized by IFAC, ASME, and IEEE. 

Silviu-Iulian Niculescu is the research director at 

CNRS, Laboratory of Signals and Systems (L2S), CNRS-

Supélec, Gif-sur-Yvette, France. He received the B.S. from 



FEBRUARY 2011 « IEEE CONTROL SYSTEMS MAGAZINE 63

IPB, Bucharest, Romania, and the M.Sc. and Ph.D. from 

INPG, Grenoble, and the “Habilitation à Diriger des 

 Recherches” (HDR) in Automatic Control from UTC, Com-

piègne, France in 1992, 1993, 1996, and 2003, respectively. In 

2006, he joined the L2S, where, he has been the head since 

January 2010. He is the author of three books, coeditor of 

five multiauthor volumes, and the coauthor of more than 

300 book chapters, journal papers, and communications in 

international conferences. He was an associate editor for 

IEEE Transactions on Automatic Control from 2003 to 2005. He 

was awarded the CNRS Bronze Medal for scientific 

research. His research interests include delay systems, 

robust control, operator theory, and numerical methods in 

optimization and their applications to the design of engi-

neering systems. 

Chaouki T. Abdallah (chaouki@ece.unm.edu) obtained 

the Ph.D. in electrical engineering from the Georgia Institute 

of Technology in 1988. He joined the Electrical and Com-

puter Engineering Department at the University of New 

Mexico where he is currently  professor and department 

chair. He conducts research and teaches courses in the area 

of systems theory with focus on control, communications, 

and computing systems. He is a cofounder of the ISTEC con-

sortium. He was the general chair of the 2008 IEEE Confer-

ence on Decision and Control, which was held in Cancun, 

Mexico. He can be contacted at the University of New 

Mexico, Department of Electrical and Computer Engineer-

ing, MSC01 1100, 1 University of New Mexico, Albuquer-

que, NM 87131-0001, USA.

Wim Michiels obtained the M.Sc. in electrical engineer-

ing and the Ph.D. in computer science from the K.U. Leuven, 

Belgium, in 1997 and 2002, respectively. He was a research 

fellow of the Research Foundation Flanders (2002–2008) 

and postdoctoral research associate at the Eindhoven Uni-

versity of Technology, The Netherlands (2007). In October 

2008 he was appointed associate professor at the K.U. 

Leuven where he leads a research team within the Numeri-

cal Analysis and Applied Mathematics Division. He is the 

author of the monograph Stability and Stabilization of Time-
Delay Systems: An Eigenvalue Based Approach (SIAM 2007) 

and 40 research articles and coeditor of several books. He 

was a co-organizer of several workshops and conferences 

in the area of numerical analysis, control and optimization, 

including the 5th IFAC Workshop on Time-Delay Systems 

organized in Leuven in 2004 and the 14th Belgian-French-

German Conference on Optimization held in Leuven in 

2009. His research interests include control and optimiza-

tion, dynamical systems, numerical linear algebra, and sci-

entific computing. 

Keqin Gu is a professor and the chair of the Depart-

ment of Mechanical and Industrial Engineering, South-

ern Illinois University, Edwardsville. He received the B.S. 

and the M.S. from Zhejiang University and the Ph.D. from 

the Georgia Institute of Technology. His research inter-

ests include control systems and nonlinear dynamical 

systems, with special emphasis on time-delay systems. 

He is the author of Stability of Time-Delay Systems 

(Birkhäuser, 2003) and more than 100 articles in archival 

journals and technical conferences. He is currently an 

associate editor of Automatica and a member of the edito-

rial board for Journal of Franklin Institute. He was an asso-

ciate editor for IEEE Transactions on Automatic Control 
(2000–2002), the program editor of the 3rd IFAC Work-

shop on Time Delay Systems (2001), and a member of the 

program committee of the IEEE Conference on Decision 

and Control (2001–2003).

REFERENCES
[ 1] A. Bose and P. A. Ioannou, “Analysis of traffic flow with mixed manual 

and semi automated vehicles,” IEEE Trans. Intell. Transport. Syst., vol. 4, 

no. 4, pp. 173–188, 2003.

[ 2] M. Green, “How long does it take to stop?” Transport. Hum. Factors, vol. 

2, pp. 231–253, 2000.

[3 ] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, “Dy-

namical model of traffic congestion and numerical simulation,” Phys. Rev. 
E, vol. 51, pp. 1035–1042, 1995.

[4]  M. Treiber, A. Kesting, and D. Helbing, “Delays, inaccuracies and antici-

pation in microscopic traffic models,” Physica A, vol. 360, no. 1, pp. 71–88, 

2006.

[5]  J. Bélair and M. C. Mackey, “Consumer memory and price fluctuations 

in commodity markets: An integrodifferential model,” J. Dyn. Differ. Equ., 
vol. 1, pp. 299–325, 1989.

[6] C . E. Riddalls and S. Bennett, “The stability of supply chains,” Int. J. 
Prod. Res., vol. 40, pp. 459–475, 2002.

[7] J.  D. Sterman, Business Dynamics: Systems Thinking and Modeling for a 
Complex World. Boston: McGraw-Hill, 2000.

[8] E.  F. Camacho and C. Bordons, Model Predictive Control in the Process 
Industry. London: Springer-Verlag, 1995.

[9] D.  M. Prett and M. Morari, Shell Process Control Workshop. Stoneham, 

MA: Butterworths, 1987.

[10] Y . Altintas, S. Engin, and E. Budak, “Analytical stability prediction 

and design of variable pitch cutters,” ASME J. Manuf. Sci. Eng., vol. 121, pp. 

173–178, 1999.

[11] G.  Stépán, Retarded Dynamical Systems: Stability and Characteristic Func-
tion. London, U.K.: Longman Scientific, 1989.

[12] E.  D. Sontag, “Some new directions in control theory inspired by sys-

tems biology,” Syst. Biol., vol. 1, pp. 9–18, 2004.

[13] C.  T. H. Baker, G. A. Bocharov, and F. A. Rihan. (1999). A report on the 

use of delay differential equations in numerical modelling in the biosci-

ences. Numerical Analysis Report No. 343, Manchester Centre for Compu-

tational Mathematics, Manchester, UK [Online]. Available: http://citeseer.

ist.psu.edu/old/523220.html

[14] Y.  Kuang, Delay Differential Equations with Applications in Population Dy-
namics. Boston: Academic Press, 1993.

[15] K.  Gopalsamy, Stability and Oscillations in Delay Differential Equations of 
Population Dynamics. Norwell, MA: Kluwer, 1992.

[16] N.  MacDonald, Biological Delay Systems: Linear Stability Theory. Cam-

bridge, U.K.: Cambridge Univ. Press, 1989.

[17] B.  Vielle and G. Chauvet, “Delay equation analysis of human respira-

tory stability,” Math. Biosci., vol. 152, pp. 105–122, 1998.

[18] T. D . Frank, R. Friedrich, and P. J. Beek, “Identifying and comparing 

states of time-delayed systems: Phase diagrams and applications to human 

motor control systems,” Phys. Lett. A, vol. 338, pp. 74–80, 2005.

[19] K. Ma sani, A. H. Vette, N. Kawashima, and M. R. Popovic, “Neuro-

musculoskeletal torque-generation process has a large destabilizing effect 

on the control mechanism of quiet standing,” J. Neurophysiol., vol. 100, pp. 

1465–1475, 2008.



64 IEEE CONTROL SYSTEMS MAGAZINE » FEBRUARY 2011

[20] S. Yi,  P. W. Nelson, and A. G. Ulsoy, “Eigenvalues and sensitivity analy-

sis for a model of HIV-1 pathogenesis with an intracellular delay,” in Proc. 
ASME Dynamic Systems and Control Conf., Ann Arbor, MI, 2008, pp. 573–581.

[21] R. V. C ulshaw, S. Ruan, and G. Webb, “A mathematical model of cell-

to-cell spread of HIV-1 that includes a time delay,” J. Math. Biol., vol. 46, pp. 

425–444, 2003.

[22] D. Levy,  S.-I. Niculescu, P. Kim, and K. Gu, “On the stability cross-

ing boundaries of some delay systems modeling immune dynamics in 

 leukemia,” in Proc 17th Int. Symp. Mathematical Theory of Networks and Sys-
tems, Kyoto, Japan, 2006, pp. 2637–2647.

[23] H. Logema nn and S. Townley, “The effect of small delays in the feed-

back loop on the stability of neutral systems,” Syst. Contr. Lett., vol. 27, pp. 

267–274, 1996.

[24] W. Michiel s, K. Engelborghs, D. Roose, and D. Dochain, “Sensitivity 

to infinitesimal delays in neutral equations,” SIAM J. Contr. Optim., vol. 40, 

pp. 1134–1158, 2002.

[25] R. E. Bellm an and K. L. Cooke, Differential-Difference Equations. New 

York: Academic, 1963.

[26] R. Datko, “ A procedure for determination of the exponential stabil-

ity of certain differential-difference equations,” Q. Appl. Math., vol. 36, pp. 

279–292, 1978.

[27] A. Halanay,  Differential Equations; Stability, Oscillations, Time Lags. New 

York: Academic, 1966.

[28] J. K. Hale a nd S. M. Verduyn Lunel, Introduction to Functional Differential 
Equations. New York: Springer-Verlag, 1993.

[29] N. N. Krasov skii, Stability of Motion. Stanford, CA: Stanford Univ. Press, 

1963.

[30] O. Diekmann,  S. A. van Gils, S. M. Verduyn-Lunel, and H.-O. Walther, 

Delay Equations, Functional-, Complex and Nonlinear Analysis. New York: 

Springer-Verlag, 1995.

[31] W. Michiels  and S.-I. Niculescu, Stability and Stabilization of Time-Delay 
Systems: An eigenvalue approach. Philadelphia, PA: SIAM, 2007.

[32] O. J. M. Smi th, “Closer control of loops with dead time,” Chem. Eng. 
Progr., vol. 53, pp. 217–219, 1957.

[33] S.-I. Nicules cu, Delay Effects on Stability: A Robust Control Approach. Hei-

delberg: Springer-Verlag, 2001.

[34] G. Stepan and  T. Insperger, “Stability of time-periodic and delayed 

systems—A route to act-and-wait control,” Annu. Rev. Contr., vol. 30, pp. 

159–168, 2006.

[35] J. Beddington a nd R. M. May, “Time lags are not necessarily destabiliz-

ing,” Math. Biosci., vol. 27, pp. 109–117, 1975.

[36] N. MacDonald, “T wo delays may not destabilize although either delay 

can,” Math. Biosci., vol. 82, pp. 127–140, 1986.

[37] S.-I. Niculescu a nd W. Michiels, “Stabilizing a chain of integrators us-

ing multiple delays,” IEEE Trans. Automat. Contr., vol. 49, pp. 802–807, 2004.

[38] N. Olgac, R. Sipah i, and A. F. Ergenc, “‘Delay scheduling,’ an uncon-

ventional use of time delay for trajectory tracking,” Mechatronics, vol. 17, 

pp. 199–206, 2007.

[39] T. Erneux, Applied De lay Differential Equations. New York: Springer-

Verlag, 2009.

[40] K. Gu, V. L. Khariton ov, and J. Chen, Stability of Time-Delay Systems. 

Boston: Birkhauser, 2003.

[41] J. J. Loiseau, S.-I.  Niculescu, W. Michiels, and R. Sipahi, Eds., Topics in 
Time Delay Systems, Analysis, Algorithms and Control. Heidelberg: Springer-

Verlag, 2009.

[42] R. M. Murray, Control  in an Information Rich World: Report of the Panel on Fu-
ture Directions in Control, Dynamics, and Systems. Philadelphia, PA: SIAM, 2003.

[43] F. P. Kelly, “Mathema tical modelling of the internet,” in Mathemat-
ics Unlimited—2001 and Beyond, B. Engquist and W. Schmid, Eds. Berlin: 

Springer-Verlag, 2001, pp. 685–702.

[44] R. J. Anderson and M. W . Spong, “Bilateral control of teleoperators with 

time delay,” IEEE Trans. Automat. Contr., vol. 34, pp. 494–501, 1989.

[45] J. E. Speich and J. Rose n, Medical Robotics. New York: Marcel Dekker, 

2004.

[46] R. M. Murray, “Recent re search in cooperative control of multivehicle 

systems,” ASME J. Dyn. Syst., Meas. Contr., vol. 129, pp. 571–583, 2007.

[47] A. Papachristodoulou and  A. Jadbabaie, “Synchronization in oscillator 

networks with heterogeneous delays, switching topologies and nonlinear 

dynamics,” in Proc. IEEE Conf. Decision and Control, San Diego, CA, 2006, pp. 

4307–4312.

[48] A. Jadbabaie, J. Lin, and  A. S. Morse, “Coordination of groups of mo-

bile autonomous agents using nearest neighbor rules,” IEEE Trans. Automat. 
Contr., vol. 48, pp. 988–1001, 2003.

[49] R. Olfati-Saber and R. M. M urray, “Consensus problems in networks 

of agents with switching topology and time-delays,” IEEE Trans. Automat. 
Contr., vol. 49, pp. 1520–1533, 2004.

[50] U. Munz, A. Papachristodoulo u, and F. Allgower, “Consensus reaching 

in multi-agent packet-switched networks with nonlinear coupling,” Int. J. 
Contr., vol. 82, pp. 953–969, 2009.

[51] W. B. Beard, T. W. McLain, D.  B. Nelson, D. Kingston, and D. Johanson, 

“Decentralized cooperative aerial surveillance using fixed-wing miniature 

UAVs,” Proc. IEEE, vol. 94, pp. 1306–1324, 2006.

[52] W. Ren and R. W. Beard, “Conse nsus seeking in multi-agent systems 

under dynamically changing interaction topologies,” IEEE Trans. Automat. 
Contr., vol. 50, pp. 655–661, 2004.

[53] J. Cheong, S.-I. Niculescu, A.  Annaswamy, and M. A. Srinivasan, “Syn-

chronization control for physics-based collaborative virtual environments 

with shared haptics,” Adv. Robot., vol. 21, pp. 1001–1029, 2007.

[54] S.-I. Niculescu and A. M. Annasw amy, “An adaptive Smith-controller 

for time-delay systems with relative degree n* >= 2,” Syst. Contr. Lett., vol. 

49, pp. 347–358, 2003.

[55] L. Crocco, “Aspects in combustion  stability in liquid propellant rocket 

motors, Part I: Fundamentals—Low frequency instability with monopro-

pellants,” J. Amer. Rocket Soc., vol. 21, pp. 163–178, 1951.

[56] M. Bozorg and E. J. Davison, “Contr ol of time delay processes with 

uncertain delays: Time delay stability margins,” J. Process Contr., vol. 16, 

pp. 403–408, 2006.

[57] N. Olgac and B. T. Holm-Hansen. “A n ovel active vibration absorption 

technique: Delayed resonator,” J. Sound Vib., vol. 176, pp. 93–104, 1994.

[58] Z. N. Masoud and A. H. Nayfeh, “Sway  reduction on container cranes 

using delayed feedback controller,” Nonlinear Dyn., vol. 34, pp. 347–358, 

2003.

[59] J. P. Richard, “Time-delay systems: An  overview of some recent ad-

vances and open problems,” Automatica, vol. 39, pp. 1667–1694, 2003.

[60] L. E. El’sgol’ts and S. B. Norkin, Intr oduction to the Theory and Appli-
cations of Differential Equations with Deviating Arguments. New York: Aca-

demic, 1973.

[61] C. Foley and M. C. Mackey, “Dynamic hemat ological disease: A re-

view,” J. Math. Biol., vol. 58, pp. 285–322, 2009.

[62] K. L. Cooke and P. van den Driessche, “On  zeroes of some transcenden-

tal equations,” Funkcialaj Ekvacioj, vol. 29, pp. 77–90, 1986.

[63] A. Callender, D. R. Hartree, and A. Porter,  “Time lag in a control sys-

tem,” Philos. Trans. R. Soc. London A, vol. 235, pp. 415–444, 1936.

[64] A. Callender and A. G. Stevenson, “The appli cation of automatic con-

trol to a typical problem in chemical industry,” Soc. Chem. Ind., vol. 18, pp. 

108–116, 1936.

[65] Editorial Staff, “The damping effect of time  lag,” Engineer, vol. 163, 

p. 439, 1937.

[66] M. S. Lee and C. S. Hsu, “On the t-decomposit ion method of stability 

analysis for retarded dynamical systems,” SIAM J. Contr., vol. 7, pp. 242–259, 

1969.

[67] J. Neimark, “D-Subdivisions and spaces of quasi -polynomials,” Prikl. 
Mat. Meh., vol. 13, pp. 349–380, 1949 .

[68] N. Olgac and R. Sipahi, “An exact method for the  stability analysis of time-

delayed LTI systems,” IEEE Trans. Automat. Contr., vol. 47, pp. 793–797, 2002.

[69] J. Louisell, “Absolute stability in linear delay- differential systems: 

Ill-possedness and robustness,” IEEE Trans. Automat. Contr., vol. 40, pp. 

1288–1291, 1995.



FEBRUARY 2011 « IEEE CONTROL SYSTEMS MAGAZINE 65

[70] Z. V. Rekasius, “A stability test for systems with  delays,” in Proc. 1980 
Joint Automatic Control Conf., San Francisco, CA, 1980, Article TP9-A.

[71] O. Toker and H. Özbay, “Complexity issues in robus t stability of lin-

ear delay-differential systems,” Math. Contr. Signal, Syst., vol. 9, pp. 386–400, 

1996.

[72] J. Chiasson, Z. Tang, J. Ghanem, C. T. Abdallah, J.  D. Birdwell, M. M 

Hayat, and H. Jerez, “The effects of time delay systems on the stability of 

load balancing algorithms for parallel computations,” IEEE Trans. Contr. Syst. 
Technol., vol. 13, pp. 932–942, 2005.

[73] R. Izmailov, “Analysis and optimization of feedback  control algorithms 

for data transfers in high-speed networks,” SIAM J. Contr. Optim., vol. 34, 

pp. 1767–1780, 1996.

[74] S.-I. Niculescu, “On delay robustness analysis of a s imple control 

algorithm in high-speed networks,” Automatica, vol. 38, pp. 885–889, 

2002.

[75] N. Olgac and R. Sipahi, “A unique methodology for chat ter stability 

mapping in simultaneous machining,” ASME J. Manuf. Sci. Eng., vol. 127, 

pp. 791–800, 2005.

[76] J. Chen, P. Fu, and S.-I. Niculescu, “When will zeros o f time-delay sys-

tems cross imaginary axis?” in Proc. European Control Conf., Kos, Greece, 

2007, pp. 5631–5638.

[77] H. Fazelinia, R. Sipahi, and N. Olgac, “Stability analys is of multiple 

time delayed systems using ‘building block’ concept,” IEEE Trans. Automat. 
Contr., vol. 52, pp. 799–810, 2007.

[78] R. Sipahi and N. Olgac, “Complete stability map of third or der LTI mul-

tiple time delay systems,” Automatica, vol. 41, pp. 1413–1422, 2005.

[79] C. Abdallah, P. Dorato, J. Benitez-Read, and R. Byrne, “Dela yed positive 

feedback can stabilize oscillatory systems,” in Proc. American Control Conf., 
San Francisco, CA, 1993, pp. 3106–3107.

[80] K. Engelborghs, T. Luzyanina, and G. Samaey. (2001, Oct.). DD E-

BIFTOOL v. 2.00: A Matlab package for bifurcation analysis of delay differen-

tial equations. TW Report 330, Department of Computer Science, Katholieke 

Universiteit Leuven, Belgium [Online]. Available: http://twr.cs.kuleuven.

be/research/software/delay/ddebiftool.shtml

[81] R. Sipahi and N. Olgac, “Stability robustness of retarded LTI  systems 

with single delay and exhaustive determination of their imaginary spec-

tra,” SIAM J. Contr. Optim., vol. 45, pp. 1680–1696, 2006.

[82] J. J. Craig, P. Hsu, and S. S. Sastry, “Adaptive control of me chanical 

manipulators,” Int. J. Robot. Res., vol. 6, pp. 16–28, 1987.

[83] V. L. Kharitonov, S.-I. Niculescu, J. Moreno, and W. Michiels,  “Static 

output feedback stabilization: Necessary conditions for multiple delay con-

trollers,” IEEE Trans. Automat. Contr., vol. 50, pp. 82–86, 2005.

[84] H. Kokame, K. Hirata, K. Konishi, and T. Mori, “Difference feedb ack 

can stabilize uncertain steady states,” IEEE Trans. Automat. Contr., vol. 46, 

pp. 1908–1913, 2001.

[85] G. Meinsma, M. Fu, and T. Iwasaki, “Robustness of the stability o f feed-

back systems with respect to small time delays,” Syst. Contr. Lett., vol. 36, 

pp. 131–134, 1999.

[86] T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Ga vri-

elides, “Delay dynamics of semiconductor lasers with short external cavi-

ties: Bifurcation scenarios and mechanisms,” Phys. Rev. E, vol. 67, article  

066214, 2003.

[87] W. Michiels, “Stability analysis of oscillatory systems subject to  large 

delays: A synchronization point of view,” J. Vib. Contr., vol. 16, pp. 1087–

1111, 2010.

[88] P. Freitas, “Delay-induced instabilities in gyroscopic systems,” SI AM J. 
Contr. Optim., vol. 39, pp. 196–207, 2000.

[89] R. H. Middleton and D. E. Miller, “On the achievable delay margin 

us ing LTI control for unstable plants,” IEEE Trans. Automat. Contr., vol. 52, 

pp. 1194–1207, 2007.

[90] F. Mazenc, S. Mondie, and S.-I. Niculescu, “Global asymptotic stabili-

 zation for chains of integrators with a delay in the input,” IEEE Trans. Au-
tomat. Contr., vol. 48, pp. 57–63, 2003.

[91] J. Moreno. (1998). An extension of Lucas theorem to entire functions. 

 Proc. 1st IFAC Workshop on Linear Time-Delay Systems, Grenoble, France 

[Online]. Available: http://www.ifac-papersonline.net/

[92] K. Gu, S.-I. Niculescu, and J. Chen, “On stability of crossing curves 

 for general systems with two delays,” J. Math. Anal. Applicat., vol. 311, pp. 

231–253, 2005.

[93] E. Jarlebring, “Critical delays and polynomial eigenvalue problems,” 

J.  Comput. Appl. Math., vol. 224, pp. 296–306, 2009.

[94] A. F. Ergenc, N. Olgac, and H. Fazelinia, “Extended Kronecker sum-

mation  for cluster treatment of LTI systems with multiple delays,” SIAM J. 
Contr. Optim., vol. 46, pp. 143–155, 2007.

[95] S. Yi, P. W. Nelson, and A. G. Ulsoy, “Delay differential equations via 

t he matrix Lambert W function and bifurcation analysis: Application to 

machine tool chatter,” Math. Biosci. Eng., vol. 4, pp. 355–368, 2007.

[96] T. Kalmar-Nagy, G. Stepan, and F. C. Moon, “Subcritical HOPF bifurca-

tion i n the delay equation model for machine tool vibrations,” Nonlinear 
Dyn., vol. 26, pp. 121–142, 2001.

[97] N. MacDonald, “An interference effect of independent delays,” IEE 
Proc. Con tr. Theory Applicat. D, vol. 134, pp. 38–42, 1987.

[98] W. Michiels and S.-I. Niculescu, “Characterization of delay-inde-

pendent stab ility and delay-interference phenomena,” SIAM J. Contr. 
Optim., vol. 45, pp. 2138–2155, 2007.

[99] R. Datko, “Time delay perturbations and robust stability,” in Differen-
tial Eq uations, Dynamical Systems, and Control Science, vol. 152. New York: 

LNM, Marcel Dekker, 1994, pp. 457–468.

[100] Ya. Z. Tsypkin, “The systems with delayed feedback,” Avtomathika i 
Telemech.,  vol. 7, pp. 107–129, 1946.

[101] J. K. Hale, E. F. Infante, and F. S.-P. Tsen, “Stability in linear delay equa-

t ions,” J. Math. Anal. Applicat., vol. 105, pp. 533–555, 1985.

[102] Z. J. Palmor, “Time-delay compensation—Smith predictor and its 

modifications,”  in The Control Handbook, W. S. Levine, Ed. Boca Raton, FL: 

CRC, 1996, pp. 224–237.

[103] I. Horowitz, “Some properties of delayed controls (Smith regulators),” 

Int. J. Co ntr., vol. 38, pp. 977–990, 1983.

[104] C.-I. Morłrescu, S.-I. Niculescu, and K. Gu, “On the geometry of stabil-

ity regions  of Smith predictors subject to delay uncertainty,” IMA J. Math. 
Contr. Inform., vol. 24, pp. 411–423, 2007.

[105] Zhong, Q.-C., Robust Control of Time-delay Systems. New York: 

 Springer-Verlag, 2006 .

[106] R. Sipahi and N. Olgac, “Stability map of systems with three inde-

pendent delays,” i n Proc. American Control Conf., Minneapolis, MN, 2006, 

pp. 2451–2456.

[107] K. Gu and M. Naghnaeian. (2009). On stability crossing set for gener-
al systems with  three delays—Part 1 and Part 2, Proc. 8th IFAC Workshop on 
Time Delay Systems, Sinaia, Romania [Online]. Available: http://www.ifac- 

papersonline.net/

[108] R. Sipahi, S. Lammer, D. Helbing, and S.-I. Niculescu, “On stability 

problems of supp ly networks constrained with transport delay,” ASME 
J. Dyn. Syst., Meas. Contr., vol. 131, article 021005, 2009 

[109] R. Sipahi and I. I. Delice, “Extraction of 3D stability switching hyper-

surfaces of a  time delay system with multiple fixed delays,” Automatica, vol. 

45, pp. 1449–1454, 2009.

[110] A. A. Khan, D. M. Tilbury, and J. R. Moyne, “Favorable effect of time 

delays on tracki ng performance of type-I control systems,” IET Contr. Theo-
ry Applicat., vol. 2, pp. 210–218, 2008.

[111] M. Casgadli, “A dynamical systems approach to modeling input-out-

put systems,” in Nonlin ear Modeling and Forecasting, vol. XII. M. Casgaldi 

and S. Eubank, Eds. Addison-Wesley, Redwood City, CA: Santa Fe Institute 

Studies in the Sciences of Comlexity, 1992, pp. 265–281.

[112] M. El Moursi, G. Joos, and C. Abbey, “A secondary voltage control 

strategy for transmiss ion level interconnection of wind generation,” IEEE 
Trans. Power Electron., vol. 23, pp. 1178–1190, 2008.

[113] J. He, C. Lu, X. Wu, P. Li, J. Wu, “Design and experiment of wide area 

HVDC supplementary  damping controller considering time delay in China 

Southern power grid,” IET Generation, Transm. Distrib., vol. 3, pp. 17–25, 2009.

[114] K. Tomsovic, D. E. Bakken, V. Venkatasubramanianm, and A. Bose, 

“Designing the next genera tion of real-time control, communication, and 

computations for large power systems,” Proc. IEEE, vol. 93, pp. 965–979, 

2005. 


	University of New Mexico
	UNM Digital Repository
	2-1-2011

	Stability and Stabilization of Systems with Time Delay: Limitations and Opportunities
	Chaouki T. Abdallah
	Rifat Sipahi
	Silviu-Julian Niculescu
	Wim Michiels
	Keqin Gu
	Recommended Citation


	untitled

