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Abstract - Cloud providers have just begun to provide
primitive functionality enabling users to configure and eas-
ily provision resources, primarily in the infrastructure as a
service domain. In order to effectively manage cloud re-
sources in an automated fashion, systems must automate
quality-of-service (QoS) metric measurement as a part of a
larger usage management strategy. Collected metrics can
then be used within control loops to manage and provision
cloud resources. This basic approach can be scaled to mon-
itor the use of system artifacts as well as simple QoS pa-
rameters, and can also address the needs of large systems
spanning the boundaries of single service providers though
the problem seems to moving toward intractability.

Keywords: Usage Management, Cloud Computing, Sys-
tem of Systems.

1 Introduction

Cloud computing services as a computational paradigm
are more market oriented than previous attempts at com-
modity computing. Furthermore, they are in many cases
designed to be composed into larger, more powerful cus-
tomer facing systems. These kinds of aggregate systems fit
neatly into one of the more commonly used definitions of a
system of systems as well [1], [2]. With so much data in the
hands of different providers in an aggregate system, system
developers and users are hard-pressed to effectively monitor
and control the use of sensitive content by various compos-
ite systems. Some of this information can be contained in
service level agreements (SLAs), but they have thus far been
focused on quality-of-service (QoS) metrics rather than ad-
dressing issues like data flow or physical application resi-
dency. For the most part today’s SLAs are simply not suf-
ficient for addressing usage management concerns [3], [4],
[5], [6]. Automation of SLA and QOS measurement pro-
vides needed scalability of control. This can lead to effec-
tive usage management monitoring coupled with feedback
processing creating an event loop suitable for applying con-
trol theoretic concepts to cloud infrastructures.

Usage policies specified at a fine-grained level provides
cloud service users with more reliability of the use of their
data within cloud-centric systems. For example, data rout-
ing, caching, or hosting can be a sensitive issue for some
systems in that specific users may want to restrict the coun-
tries that can access that data. The ability to specify and
control where specifically that data travels and resides gives
those kinds of sensitive users confidence to use cloud-
centric computing resources. Furthermore, this kind of con-
trol will also facilitate cost profiles for services that more
closely match demand, giving providers better control over
their infrastructure and additional areas for product differ-
entiation.

Herein, we will elaborate the idea of applying usage
management to single and distributed cloud systems. In this
brief analysis, we will touch on the application of common
system design principles and standards [7], [8], [9], appli-
cation of usage control concepts [10, 11, 12], control theory
as applied to computing systems [13], [14], [15], [16], [17],
[18], and interoperability [19], [20], [21]. We will apply
these ideas toward a controllable feedback-enabled system
suitable for cloud system control.

In Section 2 this paper first addresses how to create a
controllable system with feedback suitable for system eval-
uation from the perspective of a single provider. Here, we
will address the constraints and advantages of such an ap-
proach and how providers could begin to offer these kinds
of services. In this first example, we will focus on QoS data
specifically. Next in Section 3 we will extend our single
provider system to provide control over attributes more spe-
cific to the usage management domain, with examples and
associated analysis. Finally in Section 4 we extend this sin-
gle provider model to a system deployed to multiple cloud
providers in a realistic system-of-systems scenario.

1.1 Previous Work

Cloud computing is emerging as the future of utility sys-
tems hosting for consumer-facing applications. In these
kinds of systems, components, applications, and hardware
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are provided as utilities over the Internet with associated
pricing schemes pegged by system demand. Users accept
specific QoS guidelines that providers use to provision and
eventually allocate resources. These guidelines become the
basis over which providers charge for services.

Over the past few years multiple service-based
paradigms like web services, cluster computing and grid
computing have contributed to the development of what
we now call cloud computing [22]. Cloud computing dis-
tinctly differentiates itself from other service-based com-
puting paradigms via a collective set of distinguishing char-
acteristics: market orientation, virtualization, dynamic pro-
visioning of resources, and service composition via mul-
tiple service providers [23]. This implies that in cloud
computing, a cloud-service consumer’s data and applica-
tions reside inside that cloud provider’s infrastructure for
a finite amount of time. Partitions of this data can in fact
be handled by multiple cloud services, and these partitions
may be stored, processed and routed through geographi-
cally distributed cloud infrastructures. These activities oc-
cur within a cloud, giving the cloud consumer an impres-
sion of a single virtual system. These operational charac-
teristics of cloud computing can raise concerns regarding
the manner in which a cloud consumer’s data and appli-
cations are managed within a given cloud. Unlike other
computing paradigms with a specific computing task fo-
cus, cloud systems enable cloud consumers to host entire
applications on the cloud (i.e. Software as a Service) or to
compose services from different providers to build a single
system. As consumers aggressively start exploiting these
advantages to transition IT services to external utility com-
puting systems, the manner in which data and applications
are handled within those systems by various cloud services
will become a matter of serious concern.

A growing body of research has begun to appear over
the past two years applying control theory to tuning com-
puter systems. These range from controlling network in-
frastructure [14] to controlling virtualized infrastructure and
specific computer systems [15], [16] to exploring feedfor-
ward solutions based on predictive modeling [17]. Signifi-
cant open questions remain to research within this field [13],
[18].

2 Single Provider Feedback System

Controllable cloud systems enable providers to supply
more closely targeted, cost effective services while at the
same time providing service consumers with the confidence
that the data and other artifacts their systems use are pro-
tected. With that as our eventual goal, we first begin with
a simple system managing currently accepted QoS parame-
ters - system attributes like bandwidth, system memory al-
location, and the like. Specifically, we intend to provide the

ability to monitor and control a virtual system hosted on a
cloud infrastructure so that response time for a hosted appli-
cation falls within a specific range of accepted parameters.

In order to manipulate a system to meet a preselected
threshold of performance metrics, we must have access to
measurement information with respect to factors affecting
those metrics and we need to be able to adjust system per-
formance in response to those measurements. An example
is system response time measured at the edge of the cloud
provider’s infrastructure as the metric we wish to control.
We could very well adjust system performance to meet that
metric by manipulating the number of processing nodes,
bandwidth available to those nodes, and node RAM allo-
cations.

We have identified the attributes we wish to control. This
leads us to a group of requirements we can use to assemble
a logical system architecture. Requirements we know we
need to address include:

• Performance: We will be adjusting a system within
specific soft real-time frames. Ergo, we need to be able
to collect feedback measurements, process those mea-
surements, and make decisions about how to respond
to those measurements quickly in order to avoid falling
out of compliance with any performance parameters to
which we must adhere.

• Accessibility: In order to control component systems,
we must be able to access those systems. In order to
do so within time constraints, we must be able to ac-
cess those systems electronically as well; physical ac-
cess requirements simply will not scale into this per-
formance domain.

• Controllability: We must be able to access the appro-
priate control primitives on the systems we need to
tune. This will include accessing compute node gener-
ation and termination capabilities. It would help if we
could access node performance information and tune
those nodes as well, though this is not required; we can
emulate this by terminating nodes in one configuration
and creating nodes with another to more adequately
address performance needs.

These system attributes lead us to a system architecture
that is beginning to look like a traditional feedback-centric
controllable system.

The system shown in Figure 1 has seven primary com-
ponents. These components work together to provide cloud
services to consumers in a hypothetical infrastructure-as-
a-service scenario. This particular view addresses logical,
functional components of this kind of a system rather than
specific technologies used in an implementation, although
some components are loosely modeled on popular open-
source cloud environments (i.e. Eucalyptus).
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Figure 1. Single Cloud Provider, Quality of Service.

Essentially, we have a cloud controller element that ini-
tiates provisioning of compute nodes within a given cluster.
The cluster itself is managed by a cluster controller, which
in turn controls storage controllers, node controllers, and
by extension, nodes. The nodes and node controllers them-
selves are monitored by a Resource Allocator which refers
to a set of QoS requirements.

• Cloud Controller: Provides an initial interface to ad-
ministrative users to control the cloud.

• Cluster Controller: Managed by the cloud controller,
the cluster controller manages the resources of a single
cluster. A given cloud may contain multiple clusters.

• Storage Controller: Provides storage of system images
and for other general storage needs. This controller
component is highly I/O sensitive.

• Node Controller: Responsible for allocating, deliv-
ering, and managing individual compute nodes upon
which client software runs.

• Node: The compute node delivering services to end
users and managed by the cluster’s control infrastruc-
ture. This is the primary computational resource ac-
cessed by users accessing managed cloud resources.

• Policy: Quality of service terms the cloud provider has
agreed to honor for the cloud customer with respect
to system delivery, provisioning, and overall perfor-
mance.

• Resource Allocator: The component responsible for
real-time tuning of the cloud system to maintain de-
fined quality of service.

Operationally, the initial commands required to initial-
ize the cloud are delivered from the Cloud Controller to the
Cluster Controller, which then propagates another, related
set of commands provisioning an initial set of resources
from the Node Controllers and the Storage Controllers. At

Figure 2. Control System Perspective.

this point, the initial system has been configured and is run-
ning, serving hosted software to its customer base.

Once the system is running, state data describing the per-
formance metrics of interest is dispatched from Nodes on
the Node Controllers, the Node Controllers themselves, and
the Storage Controller to the Resource Allocator. The Re-
source Allocator then processes this new event data in the
context of the defined QoS parameters. This processing, in
this model, is likely to be simple processing over the cur-
rent event package or perhaps the current and the otherwise
most recent event package. This evaluation is very perfor-
mance sensitive; we need to process the state of the current
system quickly and adjust resource allocation accordingly.
Because of this soft real-time requirement, we do not have
the luxury of spending significant time reviewing trending
or providing sophisticated analysis over delivered event in-
formation. Note that extension of this system into the feed-
forward domain would allow this kind of more robust sys-
tem management, allowing us to employ more complex and
powerful machine learning or neural systems to predict sys-
tem needs.

Finally, if needed the Resource Allocator will dis-
patch messages to the Cluster Controller, Node Controller,
Nodes, and Storage Controller adjusting system profiles to
ensure they remain within acceptable performance ranges.

As shown in Figure 2, we have an initial reference in-
put reflecting the control parameters outlined by the Policy.
The Resource Allocator then processes both the reference
input as well as system feedback metrics, providing control
stimulus to the cloud cluster as output.

Note that in this example we are controlling the cluster.
Similar control loops exist over individual physical servers
within the cluster, individual racks of servers within a sin-
gle cloud provider system, and the entire cloud system it-
self. The first two control loops, the physical loops, could
control attributes like power consumption. The latter ex-
ample, the service loop, allows a single provider to reason
over groups of different customer SLAs under resource con-
strained conditions to determine which SLAs can be broken
to minimize financial impact or prevent SLA breach; this
allows for more efficient over-subscription of resources.

This control infrastructure as it has strict timing require-
ments with respect to event collection, analysis, and control,
likely needs to be hosted in close physical proximity to the
controlled systems. Otherwise, the systems themselves can

169



be located just about anywhere accessible to the Internet.
These logical components are not necessarily all hosted on
physically distinct systems either, though generally at least
the Storage Controller and the Node Controller are as they
have remarkably different requirements with respect to pro-
cessing power and I/O throughput.

Clearly, both the cloud service consumer and providers
are impacted by this kind of infrastructure. Consumers have
systems performing within required performance bounds
while providers are no longer required to maintain as strict
administrative over-watch of managed systems. This kind
of system may also impact system developers, as dynamic
node control and allocation imparts new requirements with
respect to intra-system data handing and processing. Gener-
ally however, accepted service development guidelines with
respect to statelessness and allowing running processes to
terminate prior to node shutdown will alleviate these issues.

When implemented, this kind of system will provide dy-
namic runtime control of cloud systems enhancing provider
and customer confidence in the hosted infrastructure’s per-
formance potential. This can also be extended into the usage
management realm with more specific requirements with
respect to how customer artifacts are managed, not just de-
livered.

3 Single Provider Feedback System with Us-
age Management

Now that we have developed a cloud system capable
of fairly granular control via a feedback control loop us-
ing QoS parameters, we will next incorporate specific us-
age management parameters. In order to provide control
over customer data artifacts in a cloud environment, we will
adopt the system developed in Section 2. Our usage man-
agement control system must fit within the functional con-
fines of the QoS system from Section 2 while extending the
QoS functionality to artifacts not generally controlled via
traditional QoS metrics. For these purposes, a good exam-
ple of an artifact not generally controlled via QoS param-
eters could be streaming network data. While bandwidth
throttling is clearly in the QoS domain, more specific uses
of that data stream like caching and routing are not.

Using a data stream as an example, we recognize some
situations we clearly need to be able to control. In this ex-
ample, we will limit ourselves to a data stream emitted from
a Node on a Node Controller which is routed to a user as a
result of a user request. Here, we have control over stream
creation. We want to limit the ability to update that data
stream, we certainly do not want that stream deleted, and
we want to limit who may read that stream. In fact, we
can safely assume in this scenario that update and deletion
are operations we want to completely forbid, while we may
want to limit stream readability, leading us to the primary

Figure 3. Single Cloud Provider, Usage Management.

extended requirement when adding usage management over
a network stream in this case:

• Accessibility: Data streamed through the cloud system
must be able to be monitored and the accessibility of
that stream needs to be dynamically tunable. This im-
plies that we need to be able to control routing and
caching of all streaming data according to user spec-
ified conditions. This also implies that we need to be
able to control exactly which Node Controllers are able
to spawn which Nodes.

The addition of these attributes and requirements give us
the logical system shown in Figure 3. The new system has
new associations and components required to implement
the degree of control required to limit the accessibility of
the network stream. We have added Cache Controllers and
Switches, defined as:

• Cache Controllers: Streaming network data, specif-
ically media-centric streams, can and are cached by
strategically located cache systems. In order to con-
trol the read access of network data, we must be able
to exercise explicit control over any caching systems
in our infrastructure.

• Switch: Really any kind of hardware that controls the
delivery of network data. This component includes
switches and routers primarily. In order to control how
data is accessed we must be able to control the loca-
tions to which it is delivered.

We have also added a new relationship to enable con-
trol over the Cloud Controller. To ensure that we can con-
trol where data is at any given time, we must also be able
to control the geographic areas from which data is gener-
ated, especially if the virtual compute cloud spans national
boundaries.

This again forms a controllable feedback loop, though
one that is more complex than the simple QoS case. The
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Figure 4. Multiple Cloud Providers and hosted application.

addition of new controllable items and relationships in-
creases the responsibility and complexity of the Resource
Controller as new logic and capabilities are added to facil-
itate measurement and control of the larger system. At this
point however, the number of elements of complexity is still
increasing linearly, leading us to believe that the problem
may in fact still be tractable.

4 Scaling to Multiple Providers

We have briefly examined a single case controlling
quality-of-service parameters and a second single case
with quality-of-service and usage management parameters.
Moving from the first case to the second did increase the
complexity of the problem somewhat, but not significantly.
Now we will expand our scope to multiple cloud providers,
as shown in Figure 4.

We now have three different cloud providers and vari-
ous system layers of a sample application mapped to those
providers. The first provider, cp, provides hosting for the
User Interface and Domain layers. The second provider,
cp′, provides queuing services to the application, while the
third and final provider, cp′′, provides data storage. Each
cloud provider contains the same elements contained by the
providers in the previous sections, including a Resource Al-
locator specific to that cloud provider.

Also, we have a new Resource Allocator, an Application
Resource Allocator. This new controller is required to pro-
vide control over the resources from the application’s per-
spective. The provider allocation controllers are sufficient
for providing control over cloud specific resources from the
provider’s perspective, but cannot provide the appropriate
view into the needs of the application as the application’s
needs span provider controller domains. As a result, we
need a new controller element able to take a holistic, end-
to-end view of the applications component systems that can
then tune those systems so that application performance is
effectively managed. This effectively gives us a hierarchy
of Resource Allocators, each dedicated to optimizing a par-

ticular combination of resources, ranging from application-
centric resources to provider-centric resources or other de-
pendencies.

Here, we have a simple representation of a composite
cloud system, a true system-of-systems, in the application
implemented on the various cloud providers. Furthermore,
we now have the beginnings of an exponential problem with
respect to application control. The complexity of a cloud
provider may increase linearly, but the number of possi-
ble combinations of tunable parameters is exponential in the
number of component systems, hinting at the beginnings of
a potentially intractable problem.

5 Conclusion

Herein, we introduced the idea of using usage manage-
ment constructs to manage an infrastructure dedicated to
monitoring and tuning distributed and virtualized comput-
ing systems. We began by framing the problem with cus-
tomary QoS metrics, including a hypothetical system ar-
chitecture to frame discussion. We then moved into apply-
ing usage management to data entities over the infrastruc-
ture, added new requirements and components to the system
architecture, and noticed complexity trending. We finally
presented a composite cloud system firmly in the system-
of-systems domain addressing additional requirements and
possible intractability of application resource allocation and
control.

Future planned work in this area involves rigorous anal-
ysis of the computational complexity of controlling com-
posite systems. This will extend into possible heuristics to
ameliorate domain complexity as needed. These systems
also require further work addressing usage management of
streaming data and ontologies addressing management of
typical cloud artifacts. Once the basic theoretical issues
around such control systems are more completely under-
stood, we will develop reference implementations around
typical cloud systems illustrating this approach to system
monitoring and control.
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