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This paper shows how probabilistic methods and statistical learning theory can provide approximate solutions to “dif-

ficult” control problems. The paper also introduces bootstrap learning methods to drastically reduce the bound on the

number of samples required to achieve a performance level. These results are then applied to obtain more efficient algo-

rithms which probabilistically guarantee stability and robustness levels when designing controllers for uncertain systems.

The paper includes examples of the applications of these methods.
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I. Introduction

Our paper is concerned with the problem of approximatley solving difficult control problems. Such
problems are too costly to be solved exactly as discussed for example in [?]. Many authors have recently
advanced the notion of probabilistic methods in control analysis and design for such problems. These
methods build on the standard Monte Carlo approach with ideas advanced during the 1960s and 1970s
[1] on the theory of empirical processes and statistical learning. In control theory, some of the original
(Monte Carlo) ideas have already been used by Lee and Poolla [?], Ray and Stengel [2], Tempo et al. [3],
[4], [5], Barmish et al. [6], [7], [8], [?], Chen and Zhou [9], [10], [11] and by Khargonakar and Tikku [12],
to solve robust analysis problems while Vidyasagar used learning theory to solve robust design problems
[13], [14].

Unfortunately, and as acknowledged by the various authors, probabilistic methods, while more efficient
than gridding techniques (which suffer from the curse of dimensionality), still require a large number of
samples in order to guarantee accurate designs. As an example, Vidyasagar in [14] calculates that more
than 2 million samples are needed in order to probabilistically guarantee a certain performance level in
a robust control design problem. On the other hand, it was conjectured and verified experimentally that
much smaller bounds on the number of samples may be sufficient (tens of thousands instead of millions)
to guarantee a certain level of performance [14]. In fact, Vidyasagar in [14] uses 200 samples instead of
the millions implied by his bounds, while acknowledging that the theoretical guarantees of accuracy and
confidence no longer hold.

This paper recovers the theoretical guarantees by invoking different versions of bootstrap sequential
learning algorithms. For these algorithms, the necessary number of samples (known as the sample com-
plexity of learning) is a random variable whose value is not known in advance and is to be determined in
the process of learning. This value is bounded below by the sample size at which the algorithm starts to
work, and bounded above by conservative upper bounds of the sample complexity, which are of the same
order as the bounds well known in statistical learning theory, used, for instance, by Vidyasagar [13].

The remaining of this paper is divided as follows: section II contains a discussion of generic robust
control problems, their difficulty, and their computational complexity. Section III presents an overview of
statistical learning methods and section IV contains the bootstrap learning method and its applications
to control problems. Section V contains numerical examples illustrating our approach and contrasting it
with earlier results, while section VI contains conclusions and an outline for future research.

II. Robust Control, Decision Theory, and Computational Complexity

In studying control problems we are led to the conclusion that some robust control problems are actually
undecidable. For example, the simultaneous stabilization problem of more than two plants was shown
by Blondel [15] to be rationally undecidable using a general model of computing. More examples of such
problems may be found in [16].

Most of the control problems we study in this paper are decidable and may be converted to a decision
problem relating to the satisfiability of quantified multivariate polynomial inequalities (MPIs) which are
then reduced using Tarski’s quantifier elimination (QE) theory [17]. These problems include the fixed-
structure control design problem for linear and nonlinear systems which remains one of the most practical
and difficult problems [?], [?]. In fact, one can argue that most practical control designs involve fixed-
structure (and fixed-order) controllers such as PID, or Lead-Lag compensators (see page 113 of [?], and
page 3 of [?]). While this makes the control design problem theoretically intractable, it actually reduces
some undecidable problems to decidable ones, and fits nicely within the randomized algorithms framework.
As an example, the following problems are all decidable using Tarski’s decision theory: robust stabilization
problems [18], dead-beat control of discrete-time systems [19], Lyapunov stability of polynomial systems
[20], and others [21]. The general control problem for an uncertain single input single output (SISO),
linear time invariant (LTI) system stated as a decision problem is as follows,

Problem 1: Given a real rational function G(s,X), where X = [x1 x2 · · · xk] is a k-dimensional real
vector, does there exist an l-dimensional real vector Y = [y1 y2 · · · yl], yi) [yi ≤ yi ≤ yi], 1 ≤ i ≤ l,
in the real rational C(s, Y ) such that for all (xi) [xi ≤ xi ≤ xi], 1 ≤ i ≤ k, the closed-loop system
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Fig. 1. Feedback Structure for Problem 1

T (s,X, Y ) satisfies some performance objectives placed on a scalar performance index Ψ(X, Y )?
This is the performance verification problem [?], and it includes the guaranteed-cost design problem.

Note that if either X or Y are known, then the problem simplifies to a robust analysis problem. Typical
examples are the linear quadratic regulator (LQR), and specialized guaranteed-cost problems. In the case
where the problem and the performance objective are convex, Linear Matrix Inequalities (LMIs) may be
used and the decision control problem is easy. The general decision control problem is however very hard
because it leads to a nonlinear, partial differential Hamilton-Jacobi-Bellman (HJB) equation (for non-
quadratic performance objectives) which in general is difficult to solve. Researchers in Control Theory
have used QE in solving Problem 1 since the 1970’s, but the tedious operations made the technique
very limited [18]. Later, Collins [22] introduced a theoretically more efficient QE algorithm that uses
a cylindrical algebraic decomposition (CAD) approach. However, this algorithm was not capable of
effectively handling nontrivial problems. Then, Collins and Hong [23], and Hong [24], [25] introduced a
significantly more efficient partial CAD QE algorithm, implemented in the software package QEPCAD.
Recently, people have used the QEPCAD software to solve academic, but nontrivial problems [26], [21],
[27], [20], [19].

One important concept in this theory is that of a polynomial-time algorithm. In practice, such an
algorithm can be feasibly implemented on a real computer. This is in contrast to an exponential-time
algorithm, which is only feasible if the problem being solved is extremely small. Unfortunately, it turns
out that QE is at best exponential! [28]

The complexity class P consists of all decision problems that can be decided in polynomial-time, using
a Turing machine model of computation. The simplicity of the Turing machine model appears to make it
of little practical value; however, the Church-Turing Thesis holds that the class of problems solvable on a
Turing machine in polynomial time is robust across all other reasonable models of computation (including
the computers we use).

The complexity class NP consists of all decision problems that can be decided algorithmically in nonde-
terministic polynomial-time. An algorithm is nondeterministic if it is able to choose or guess a sequence
of choices that will lead to a solution, without having to systematically explore all possibilities. This
model of computation is not realizable, but it is of theoretical importance since it is strongly believed that
P 6= NP. In other words, these two complexity classes form an important boundary between the tractable
(or easy) and intractable (or difficult) problems. A problem is said to be NP-hard if it is as hard as any
problem in NP. Thus, if P 6= NP, the NP-hard problems can only admit deterministic solutions that
take an unreasonable (i.e. exponential) amount of time, and they require (unattainable) nondeterminism
in order to achieve reasonable (i.e. polynomial) running times.

The central idea used to demonstrate NP-hardness evolves around the NP-complete problems. A
problem is said to be NP-complete if every decision problem in NP is polynomial-time reducible to it.
This means that the NP-complete problems are as hard as any decision problem in NP. Given two
decision problems P1 and P2, P1 is said to be polynomial-time reducible to P2 (written as P1 ≤p P2),
if there exists a polynomial time algorithm R which transforms every input x for P1 into an equivalent
input R(x) for P2. By equivalent we mean that the answer produced by P2 on input R(x) is always the
same as the answer P1 produces on input x. Thus, any algorithm which solves P2 in polynomial time
can be used to solve P1 on input x in polynomial time by simply computing R(x), and then running
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P2. In order to show that a particular (control) decision problem P2 is NP-complete, one starts with a
problem P1 in NP-complete, and attempts to show that P1 ≤p P2. This shows that P2 is NP-hard. To
complete the proof that P2 is NP-complete, it must be demonstrated that a candidate solution can be
verified in polynomial time. In control theory, researchers have followed this “reduction” method to study
the computational difficulty of some decidable problems and many decidable control problems have been
shown to be NP-complete (or NP-hard) [29], [30], [31], [32], [33]. A recent overview of the computational
complexity of many control problems may be found in [29].

The problem of simultaneous stabilization of N given linear systems with a LTI dynamic compensator
is as previously mentioned rationally undecidable for N > 2 [15]. However, restricting the stabilizing
compensator to be static (or dynamic but of a given order) makes the problem decidable (although
inefficiently) using the Tarski approach as discussed before. So the question becomes: how do we deal
with decidable but inefficient control problems? And moreover, can we deal with undecidable control
problems? We actually have two possibilities in attempting to answer both questions:

1. Limit the class of systems (such as to linear, minimum-phase, passive systems, etc.). This is typically the
approach taken by control designers.

2. Soften the goal for the class of systems we are interested in. This is a more recent idea in control pioneered
in [9], [2], [34], [13], [35]. An example of goal softening is the randomized algorithms approach discussed
next.
A re-formulation of LTI control problems may then be as follows [36],

Problem 2: Given a closed-loop system T (s, X, Y ) with a performance measure Ψ(X, Y ), where X,Y are
random real-valued vectors, find a vector Y0, if one exists, of controller parameters which has a high prob-
ability of minimizing the expected value with respect to X of an appropriate function f(X,Y ) of Ψ(X,Y ).

The related decision problem is to ascertain the existence of a vector Y0 such that a certain level γ
is achieved by Ef(X,Y ). Note that our problem has been changed from a deterministic decision problem
to a probabilistic optimization problem. Also note that the randomness of X and Y is used to open the
door for Monte-Carlo and statistical learning methods. Finally, we have converted a worst-case scenario
(guaranteed-cost) into an average-case problem.

In the context of stabilization, let Ψ(X, Y ) = 0 if T (s,X, Y ) is stable and Ψ(X, Y ) = 1 otherwise.
By minimizing Ef(X, Y ) we are actually maximizing the volume (or number in case of finite number of
plants) which may be stabilized with C(s, Y0). In fact, let

fY (X) = f(X, Y ) =
{

1 Ψ(X, Y ) = 1
0 Ψ(X, Y ) = 0

and F = {fY (·) : Y ∈ Y}. The purpose of control is to choose Y0, and thus the corresponding controller
C(s, Y0) to stabilize the maximum number of plants. Note that if the structure and the order of C(s, Y )
are fixed, then the problem reduces to finding the set of parameters Y . This objective may be achieved
by minimizing the expected value E[fY (X)]. An interpretation of the minimization of the expectation
E[fY (X)] is that we can then ascertain with confidence 1−E[fY0(X)] that the controller C(s, Y0) stabilizes
a random plant G(s,X).

One limitation of this approach is that in practice, we do not have the necessary information to calculate
E[fY ] since all we have are sample plants and compensators. Moreover, how do we minimize E[fY ] when
all we have are the values of f at sample points? In [36], the empirical mean of fY (X) is used instead of
E[fY ] for a given Y ∈ Y,

1
n

n∑

j=1

fY (Xj), (1)

which then leaves us with two questions:
1. Will 1

n

∑n
j=1 fY (Xj) be a good approximation of E[fY ] uniformly in Y as n increases?



5

2. Will the minimum of 1
n

∑n
j=1 fY (Xj), obtained empirically as

min
1≤i≤m


 1

n

n∑

j=1

fYi(Xj)




be close to the actual minimum of 1
n

∑n
j=1 fY (Xj) as m increases?

It turns out that the first question has been studied thoroughly in the theory of empirical process and
statistical learning theory. Minimization of a function defined by equation (1) in particular is a case of
empirical risk minimization as discussed in the next section. Note that there are actually two separate
questions to answer: a question of empirical averaging, and a question of empirical minimization. The
empirical average question depends on the number n of plants, while the minimization question depends
on both the number of plants n and the number of controllers m. Our main results in this paper offer
a significant reduction in n but not in m. Our future papers will address the minimization problem and
how to reduce m further. We will next review relevant results from Statistical Learning Theory and
randomized algorithms.

III. Statistical Learning Theory

The basic notions of Probability Theory used in the paper can be found in any textbook on Advanced
Probability, see, for instance, [?]. More special results on empirical processes and statistical learning
theory can be found in [37], [?], [38], [39], [13]. We present now an overview of standard learning theory
concepts and results obtained in [36] along with their application to control problems.

Let (S,A) be a measurable space and let {Xn}n≥1 be a sequence of independent identically distributed
(i.i.d) observations in this space with common distribution P. We assume that this sequence is defined on
a probability space (Ω, Σ,P). Denote by P(S) := P(S,A) the set of all probability measures on (S,A).
Suppose P ⊂ P(S) is a class of probability distributions such that P ∈ P. In particular, if one has no prior
knowledge about P, then P = P(S). In this case, we are in the setting of distribution free learning. One
of the central problems of statistical learning theory is the risk minimization problem. It is crucial in all
cases of learning (standard concept or function learning, regression problems, pattern recognition, etc.).
It also plays an important role in randomized (Monte Carlo) algorithms for robust control problems, as
has been shown by Vidyasagar [14] and as we will see in this paper. Given a class F of A-measurable
functions f from S into [0, 1] (e.g., decision rules in a pattern recognition problem or performance indices
in control problems), the risk functional is defined as

RP (f) := P (f) :=
∫

S

fdP := Ef(X), f ∈ F .

The goal is to find a function fP that minimizes RP on F . Typically, the distribution P is unknown (or,
as it occurs in many control problems, the integral of f with respect to P is too hard to compute) and
the solution of the risk minimization problem is to be based on a sample (X1, . . . , Xn) of independent
observations from P. In this case, the goal of statistical learning is more modest: given ε > 0, δ ∈ (0, 1),
find an estimate f̂n ∈ F of fP , based on the data (X1, . . . , Xn), such that

sup
P∈P

P{RP (f̂n) ≥ inf
f∈F

RP (f) + ε} ≤ δ. (2)

In other words, one can write that with probability 1 − δ, RP (f̂n) is within ε of inff∈F RP (f) = R∗.
Denote by ÑL

F,P(ε; δ) the minimal number n ≥ 1 such that for some estimate f̂n the bound (2) holds,
and let ÑU

F,P(ε; δ) be the minimal number N ≥ 1 such that for some sequence of estimates {f̂n} and
for all n ≥ N the bound (2) holds. Let us call the quantity ÑL

F,P(ε; δ) the lower sample complexity and
the quantity ÑU

F,P(ε; δ) the upper sample complexity of learning. These quantities show how much data
we need in order to guarantee certain accuracy ε of learning with certain confidence level 1 − δ. Clearly,
ÑL
F,P(ε; δ) ≤ ÑU

F,P(ε; δ), and it is easy to show that the inequality can be strict. The upper sample



6

complexity is used rather frequently in statistical learning theory and is usually referred to simply as the
sample complexity. But in this paper we will deal more with the lower sample complexity.

A method of empirical risk minimization is widely used in learning theory. Namely, the unknown
distribution P is replaced by the empirical measure Pn, defined as

Pn(A) :=
1
n

n∑

k=1

IA(Xk), A ∈ A

where IA(x) = 1 for x ∈ A and IA(x) = 0 for x 6∈ A. The risk functional RP is replaced by the empirical
risk RPn

, defined by

RPn
(f) := Pn(f) :=

∫

S

fdPn :=
1
n

n∑

k=1

f(Xk), f ∈ F .

The problem is now to minimize the empirical risk RPn
on F , and we let fPn

∈ F be a function that
minimizes RPn

on F .

In what follows, fPn
is used as our learning algorithm, i.e. f̂n := fPn

. Determining the sample complexity
of the empirical risk minimization method is definitely one of the central and most challenging problems
of statistical learning theory (see, e.g., [37], or Vidyasagar [36] for the relevant discussion in the context
of robust control problems). A reasonable upper bound for the sample complexity can be obtained by
finding the minimal value of n for which the expected value Ef(X) is approximated uniformly over the
class F by the empirical means with given accuracy ε and confidence level 1− δ. More precisely, denote

N(ε, δ) := NL
F,P(ε, δ) := min

{
n ≥ 1 : sup

P∈P
P
{‖Pn − P‖F ≥ ε

} ≤ δ
}

,

where ‖ · ‖F is the sup-norm in the space `∞(F) of all uniformly bounded functions on F . Let us call the
quantity N(ε; δ) the (lower) sample complexity of empirical approximation on the class F . Then, clearly,
NL
F,P(ε/2; δ) ≥ ÑL

F,P(ε; δ). To see this, it is enough to consider the following,

0 ≤ RP (fPn)− inf
f∈F

RP (f)

≤ P (fPn)− Pn(fPn) + inf
f∈F

Pn(f)− inf
f∈F

P (f)

≤ 2‖Pn − P‖F . (3)

Unfortunately, the quantity NL
F,P(ε, δ) is itself unknown for most of the nontrivial examples of function

classes, and only rather conservative upper bounds for this quantity are available. These bounds are
expressed in terms of various entropy characteristics and combinatorial quantities, such as VC-dimensions,
which themselves are not always known precisely and are replaced by their upper bounds [36]. Going
back to our control motivation, we note that our problem involves also the finding of the minimum of a
certain performance objective or more precisely, finding the controller parameters which correspond to
such minimum. This is the second separate question mentioned at the end of Section II and refers to
the optimization part of the problem which we approach in the same manner as Vidyasagar. In [36],
Vidyasagar introduced the following types of minima, in order to use statistical learning theory to design
fixed-order robust controllers, which minimize the performance index in Problem 2.

Definition 1: Let R : Y −→ R and ε > 0 be given. A number R0 ∈ R is said to be an approximate near
minimum of R to accuracy ε if

∣∣∣∣R0 − inf
Y ∈Y

R(Y )
∣∣∣∣ ≤ ε

Definition 2: Suppose R : Y −→ R, Q is a given probability measure on Y, and α > 0 be given. A
number R0 ∈ R is a probable near minimum of R to level α if there exists a measurable set S ⊆ Y with
Q(S) ≤ α such that

inf
Y ∈Y

R(Y ) ≤ R0 ≤ inf
Y ∈Y\S

R(Y ).
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where Y \ S is the complement of the set S in Y.
Definition 3: Suppose R : Y −→ R, Q is a given probability measure on Y, and α > 0, ε > 0 be given.

A number R0 ∈ R is a probably approximate near minimum of R to accuracy ε and level α if there exists
a measurable set S ⊆ Y with Q(S) ≤ α such that

inf
Y ∈Y

R(Y )− ε ≤ R0 ≤ inf
Y ∈Y\S

R(Y ) + ε.

Note in particular that the last 2 types of minima while useful in practice may not give an accurate
picture of the performance of the closed-loop control system. Finally, let us define a version of probably
approximate near minima in the case of a stochastic process R (say, R := RPn

, see the definition above)
as follows.

Definition 4: Suppose that R : Y → R is a stochastic process, that Q is a given probability measure
on Y, and that α ∈ (0, 1), δ ∈ (0, 1) and ε > 0 are given. A number R0 is a probably approximate near
minimum of R with confidence 1− δ, level α and accuracy ε, if

P
{

inf
Y ∈Y

R(Y )− ε ≤ R0 ≤ inf
Y ∈Y\S

R(Y ) + ε

}
≥ 1− δ

with some measurable set S ⊆ Y such that Q(S) ≤ α.
An interpretation of definitions 2, 3, 4 is that we are not searching for the minimum over all of the set

Y but only over its subset Y \S, where S has a small measure (at most α). Unless the actual infimum R∗

is attained in the exceptional set S, R0 is within ε from the actual infimum with confidence 1 − δ. It is
exactly this goal softening that gets around the computational difficulty of these problems [35]. Although
using Monte Carlo type minimization, it is unlikely to obtain a better estimate of R∗ than R0 (since the
chances of getting into the set S are small), nothing can be said in practice about the size of the difference
R0 −R∗. Vidyasagar in [36] then proposes an “efficient” algorithm as follows.

Algorithm 1: Given:
• Sets X and Y,
• Probability measures P on X and Q on Y,
• A measurable function f : X × Y −→ [0, 1], and
• An accuracy parameter ε ∈ (0, 1), a level parameter α ∈ (0, 1), and a confidence parameter δ ∈ (0, 1).
Let RP (·) = EP [f(X, ·)] and denote F := {fY : Y ∈ Y},

RPn(·) =
1
n

n∑

j=1

f(Xj , ·)

q(n, ε,F) = P{ sup
Y ∈Y

|RPn(Y )−RP (Y )| > ε}.

Then, choose n and m such that

m ≥ log(2/δ)
log[1/(1− α)]

q(n, ε,F) ≤ δ/2 (4)

and generate i.i.d. samples Y1, Y2, · · · , Ym ∈ Y from the distribution Q and X1, X2, · · · , Xn ∈ X from the
distribution P . Then let,

R0 = min
1≤i≤m

RPn(Yi)

Then with confidence at least 1 − δ, R0 is a probably approximate near minimum of RP (Y ) to level α
and accuracy ε. 3
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To guarantee the existence of n such that q(n, ε,F) ≤ δ/2, in Algorithm 1 one can assume that F is
a Glivenko-Cantelli class for P (see [?], [38] for the definition). The UCEM property considered in [13]
means that for all ε > 0 q(n, ε,F) → 0 as n → ∞; it is equivalent to the Glivenko-Cantelli property of
the class F . Note that in Algorithm 1, the bound on the quantity q(n, ε,F) is no longer dependent on m.

Sufficient conditions for satisfying Glivenko-Cantelli (UCEM) property, which are convenient for the
purposes of control theory, can be formulated in terms of the finiteness of VC-dimensions or P -dimensions
of the class F , [13], [36].

Definition 5: Let C be a family of subsets of X . A finite set F = {x1, · · ·xn} ⊂ X is shattered by
C, if for every subset B of the 2n subsets of F , there exists a set A ∈ C such that F ∩ A = B. The
Vapnik-Chervonenkis dimension of C denoted VC-dim(C) is the largest integer n such that there exists a
set F of cardinality n shattered by C.

Given a class F of functions mapping X into {0, 1}, one can consider the class of sets C := {{x : f(x) =
1} : f ∈ F} and define the VC-dimension of F as VC-dim(C). It will be also denoted VC-dim(F). The
role of P -dimension (see e.g. [13]) is similar in the case of more general classes of functions. In particular,
one can consider the class Fk,l,r,t arising from our MPIs and defined as follows. Given polynomials
p1(X,Y ), . . . , pt(X,Y ) on Rk × Rl of degree ≤ r (with respect to Y ), consider all the Boolean formulae
obtained from expressions “pj(X, Y ) > 0”, j = 1, . . . , t using the standard logical operations ∨,∧,¬. Let
Φk,l,r,t be the set of all such formulae. Each formula φ ∈ Φk,l,r,t defines the function f := fφ that takes
value 1 if the formula is true and value 0 otherwise. We set Fk,l,r,t := {fφ : φ ∈ Φk,l,r,t}. This class can
be used to describe the control decidability questions.

We then have the following theorems that go back to the original work of Vapnik and Chervonenkis
[39], [?] and that were used in [36].

Theorem 1: Let F be a family of measurable functions from X into {0, 1} and suppose that VC-
dim(F) ≤ d < ∞. Then, F has the UCEM property and moreover,

q(n, ε,F) ≤ 4
(

2en

d

)d

exp(−nε2/8); ∀n, ε (5)

This then leads to the following bound on the sample complexity of empirical approximation on the
class F .

Theorem 2: Let F be a family of measurable functions from X into {0, 1} and suppose that VC-
dim(F) ≤ d < ∞. Let P be an arbitrary probability measure on X , and let ε, δ ∈ (0, 1) be arbitrary
constants. Then, q(n, ε,F) ≤ δ if

n ≥ max
{

16
ε2

log
4
δ
,
32d

ε2
log

32e

ε2

}

The next theorem gives an upper bound for the VC-dimension of the class Fk,l,r,t and is due essentially
to Karpinski and Macintyre [?]. We cite it from [13].

Theorem 3: The following upper bound holds:

V C − dim(Fk,l,r,t) ≤ 2llog(4ert).

IV. Sequential Learning Algorithms

In this section, we present sequential algorithms for a general problem of empirical risk minimization.
They are designed to overcome some of the difficulties encountered with the standard learning methods
of Section III. This approach does not depend on the explicit calculation of the VC-dimension, although
its finiteness remains critical to the termination of the design algorithm, in the distribution-free learning
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case. The sequential algorithms chosen are based on Rademacher bootstrap although other bootstrap
techniques, developed in statistics (for instance, standard Efron bootstrap or various versions of weighted
bootstrap), can also be adopted for our purposes. An important feature of our approach is the randomness
of the sample size for which a given accuracy of learning is achieved with a guaranteed probability. Thus,
the sample complexity of our method of learning is rather a random variable. Its value is not known in
advance and is to be determined in the process of learning. The lower bound for this random variable
is the value of the sample size which the sequential learning algorithm starts working with. The upper
bounds for the random sample complexity are of the same order of magnitude as the standard conservative
upper bounds for the sample complexity of empirical risk minimization algorithms. Thus, in the worst
case, the sequential method of learning would take as much time (up to a numerical constant) as the
standard methods do.

We start with some basic definitions. The proofs of all statements of this section can be found in [?].
Definition 6: Let {Σn}n≥1 be a filtration of σ-algebras (i.e. for all n ≥ 1 Σn ⊂ Σn+1) such that

Σn ⊂ Σ, n ≥ 1 and Xn is Σn-measurable. Less formally, Σn consists of the events that occur by time n (in
particular, the value of random variable Xn is known by time n). A random variable τ , taking positive
integer values, will be called a stopping time if and only if (iff), for all n ≥ 1, we have {τ = n} ∈ Σn. In
other words, the decision whether τ ≤ n, or not, depends only on the information available by time n.

Given ε > 0 and δ ∈ (0, 1), let n̄(ε, δ) denote the initial sample size of our learning algorithms. We
assume that n̄ is a non-increasing function in both ε and δ. Denote by T (ε, δ) := TF,P(ε, δ) the set of all
stopping times τ such that τ ≥ n̄(ε; δ) and

sup
P∈P

P
{‖Pτ − P‖F ≥ ε

} ≤ δ.

If now τ ∈ T (ε, δ) and f̂ := fPτ is a function that minimizes the empirical risk based on the sample
(X1, . . . , Xτ ) then a bound similar to (4) immediately implies that

sup
P∈P

P
{

RP (fPτ ) ≥ inf
f∈F

RP (f) + 2ε
}
≤ δ.

The questions, though, are how to construct a stopping time from the set T (ε, δ), based only on the
available data (without using the knowledge of P ) and which of the stopping times from this set is best
used in the learning algorithms. The following definition will be useful in this connection.

Definition 7: A parametric family of stopping times {ν(ε, δ) : ε > 0, δ ∈ (0, 1)} is called strongly
(statistically) efficient for the class F with respect to P iff there exist constants K1 ≥ 1,K2 ≥ 1 and
K3 ≥ 1 such that for all ε > 0 and δ ∈ (0, 1)

ν(ε, δ) ∈ T (K1ε, δ)

and for all τ ∈ T (ε, δ)
sup
P∈P

P
{
ν(K2ε, δ) > τ

} ≤ K3δ.

Thus, using strongly efficient stopping time ν(ε; δ) allows one to solve the problem of empirical approx-
imation with confidence 1− δ and accuracy K1ε. With probability at least 1−K3δ, the time required by
this algorithm is less than the time needed for any sequential algorithm of empirical approximation with
accuracy ε/K2 and confidence 1− δ.

Definition 8: We call a family of stopping times {ν(ε, δ) : ε > 0, δ ∈ (0, 1)} weakly (statistically) efficient
for the class F with respect to P iff there exist constants K1 ≥ 1,K2 ≥ 1 and K3 ≥ 1 such that for all
ε > 0 and δ ∈ (0, 1)

ν(ε, δ) ∈ T (K1ε, δ)

and
sup
P∈P

P
{
ν(K2ε, δ) > N(ε; δ)}} ≤ K3δ.
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Using weakly efficient stopping time ν(ε; δ) also allows one to solve the problem of empirical approxi-
mation with accuracy K1ε and confidence 1− δ. With probability at least 1−K3δ, the time required by
this algorithm, is less than the sample complexity of empirical approximation with accuracy ε/K2 and
confidence 1− δ.

Note that, under the assumption N(ε; δ) ≥ n̄(ε; δ), we have N(ε, δ) ∈ T (ε, δ). Hence, any strongly
efficient family of stopping times is also weakly efficient. The converse to this statement is not true.
We show below how to construct efficient stopping times for empirical risk minimization problems. The
construction is based on a version of bootstrap. Let {rn}n≥1 be a Rademacher sequence (i.e. a sequence
of i.i.d. random variables taking values +1 and −1 with probability 1/2 each). We assume, in addition,
that this sequence is independent of the observations {Xn}n≥1. Suppose that (with b·c denoting the floor
of the argument)

n̄(ε, δ) ≥
⌊

4
ε2

log(
2

δ(1− e−ε2/4)
)
⌋

+ 1.

Let

ν(ε, δ) := νF (ε, δ) := min{n ≥ n̄(ε, δ) : ‖n−1
n∑

j=1

rjδXj‖F ≤ ε}.

where δx(f) := f(x). Note that for all ε > 0 and for all δ ∈ (0, 1), ν(ε, δ), is a stopping time and it
can be computed by Monte Carlo simulation of the sequence {rj}j≥1. The finiteness with probability 1
of the stopping time ν(ε; δ) (and other stopping times, defined below) can be shown to follow from the
Glivenko-Cantelli property for the class F .

Theorem 4: {νF (ε, δ) : ε > 0, δ ∈ (0, 1)} is a strongly efficient family of stopping times for any class F
of measurable functions from S into [0, 1] with respect to the set P(S) of all probability distributions.

The initial time of the previous algorithm could be too large if ε is very small. Here we construct
another version of sequential risk minimization algorithm with smaller initial time. Define

ν(ε, δ) := νF (ε, δ) := min{n : ‖n−1
n∑

j=1

rjδXj‖F ≤ ε, n := nk := 2kn̄(ε, δ), k = 0, 1, . . . }.

Theorem 5: Suppose that

n̄(ε, δ) ≥
⌊

4
ε2

log(
4
δ
)
⌋

+ 1.

Then, for all ε > 0, δ ∈ (0, 1),
1. ν(ε; δ) ∈ T (K1ε; δ) with K1 = 5.

2. Moreover, suppose that

N(ε, δ) ≥ n̄(ε, δ) ≥
⌊

4
ε2

log(
4
δ
)
⌋

+ 1.

Then {νF (ε, δ) : ε > 0, δ ∈ (0, 1/2)} is a weakly efficient family of stopping times for any class F of
measurable functions from S into [0, 1] with respect to the set P(S) of all probability distributions on S.

The next proposition shows that if the family of stopping times defined above starts too late (namely,
after the time N(ε; δ)), then the stopping time is close to the initial time with high probability.

Proposition 1: Suppose that

n̄(ε, δ) ≥
⌊

4
ε2

log(
4
δ
)
⌋

+ 1

and
12/ε ≤ N(ε, δ) ≤ n̄(ε, δ).
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Then, there exist constants K1 ≥ 1,K2 ≥ 1 such that

sup
P∈P(S)

P{νF (K1ε; δ) > K2n̄(ε; δ)} ≤ δ. (6)

Based on the randomized algorithm introduced in section III, and on the sequential learning algorithm
of this section, a probably approximate near minimum of f with confidence 1− δ, level α and accuracy ε,
can be found with the following algorithm.

Algorithm 2 (Search for the Statistical Optimal Controller) Given:
• Sets X and Y,
• Probability measures P on X and Q on Y,
• A measurable function f : X × Y −→ [0, 1], and
• An accuracy parameter ε ∈ (0, 1), a level parameter α ∈ (0, 1), and a confidence parameter δ ∈ (0, 1).
Let RP (·) = EP [f(X, ·)] and

RPn(·) =
1
n

n∑

j=1

f(Xj , ·)

Then,
1. Choose m independent controllers with parameters having distribution Q where

m ≥ log(2/δ)
log[1/(1− α)]

(7)

2. Choose n independent plants with parameters having distribution P , where

n =
⌊

4K2
1

ε2
log

(
8
δ

)⌋
+ 1 (8)

with K1 = 5
3. Evaluate the stopping variable

γ = max
1≤i≤m

∣∣∣∣∣∣
1
n

n∑

j=1

rjf(Xj , Yi)

∣∣∣∣∣∣
where rj are Rademacher random variables, i.e. independent identically distributed random variables
(also independent of the plant sample) taking values +1 and −1 with probability 1/2 each.
If γ > ε

K1
, add n more independent plants with parameters having distribution P to the plant samples,

set n := 2n and repeat step 3
4. Choose the controller which minimizes the cost function RPn . Then with confidence at least 1 − δ, this

controller minimizes RP to a level α and accuracy ε.
3

Note that Algorithm 2 corresponds to Theorem 5 and other variations on this algorithm are possible.

V. Applications To Control Design

Example 1: In this example we consider a modified version of the control problem originally presented
by Doyle et al. in [40] (Section 12.4).

Let us consider the feedback system in Figure 2. The plant G(s) is a simplified model of a flexible
beam. The input is the voltage to a power amplifier while the output is the tip deflection of the beam.
The transfer function G(s) is given by

G(s) =
−6.4750s2 + 4.0302s + 175.7700

s(5s3 + 3.5682s2 + 139.5021s + 0.0929)
. (9)
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Fig. 2. The closed-loop system for Example 1
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Fig. 3. The closed-loop system with the weighting functions

In [40] the author designed a controller C(s) considering some time domain specifications and an
amplitude constraint on the plant input. In order to use the H∞ approach, some appropriate weighting
functions W1(s) and W3(s) were chosen and the problem was reformulated as the minimization of the
mixed-sensitity norm (see Figure 3) ∥∥∥∥

(
W1S

W3CS

)∥∥∥∥
∞

(10)

where S is the sensitivity function S = (1 + GC)−1. After an iterative procedure, the weighting functions
W1 and W3 turned out to be

W1(s) = 0.8
s2 + 1.2s + 1

(s + 0.001)(s + 1.2)(0.001s + 1)

W3(s) =
s + 1

3

s + 100
3

The suboptimal controller found in [40] achieves an H∞ norm of the mixed sensitivity (10) of about 0.938
and has order eight, the same order of the augmented plant (plant plus weighting function).

The same example was reconsidered in [12], where the authors tried to design a fixed-structure, third
order controller with a randomized algorithm. After fixing some ranges for the controller zeros, poles
and gain, 10, 000 controllers were randomly generated and the controller minimizing the norm (10) was
chosen. This controller resulted to achieve an H∞ norm of the mixed sensitivity (10) of about 1.02, not
far from the optimal one.

Hereafter what we will do is solve a robust control problem using our randomized algorithm and then
we will interpret the result using classical analysis tools.

First of all let us reconsider the beam transfer function (9) where we introduce uncertainties on the
gain, on the damping factor and on the natural frequency of the two complex poles, which model the first
flexible mode

Ĝ(s) = K
−6.4750s2 + 4.0302s + 175.7700

5s(s + 6.66 · 10−4)(s2 + 2ζωns + ω2
n)

(11)
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where the original plant G(s) is recovered letting K = 1, ζ = 0.0675, ωn = 5.28.
Rewriting (11) as

Ĝ(s) = K
−6.4750s2 + 4.0302s + 175.7700
5s(s + 6.66 · 10−4)(s2 + As + B)

(12)

we consider the following intervals for the coefficients K, A and B

K ∈ (0.5, 1.5), A ∈ (0, 1.4259), B ∈ (19.53, 36.27). (13)

which result in the following ranges for the original parameters ζ and ωn

ζ ∈ (0, 0.1184), ωn ∈ (4.4176, 6.0201).

What we intend to find is a third order controller which minimizes the mixed sensitivity norm (10) over
all the uncertain plants (11), guaranteeing at the same time some nominal performance

min
∥∥∥∥
(

W1(1 + ĜC)−1

W3C(1 + ĜC)−1

)∥∥∥∥
∞

subject to
∥∥∥∥
(

W1(1 + GC)−1

W3C(1 + GC)−1

)∥∥∥∥
∞

< 2 (14)

There is no analitycal way of solving this problem. A possible classical way to approach the problem
could be to use the µ-synthesis to design a controller and then reduce its order hoping that its optimal
properties would be retained. Hereafter we will try a randomized approach basing on our algorithm. As
in [12], we look for a stable, minimum-phase, strictly proper, third order controller. Its coefficients are
randomly generated in the following way.

Algorithm 3 (Random Generation of the Controllers [12]) Step 1. Randomly decide if the zeros will be
real or complex conjugate.

Step 2. Randomly decide if there will be a pair of complex conjugate poles.
Step 3. Generate the real zeros and poles by sampling uniformly over (-realbound,0).
Step 4. Generate the real parts of the complex zeros and poles by sampling uniformly over (-realbound,0)

and their imaginary part by sampling uniformly over (-imagbound,imagbound).
Step 5. Generate the controller gain by sampling uniformly over (0,gainbound).

3

Next, we reformulate our original problem. We assume that the plant uncertain parameters have uniform
distribution in the intervals (13). We denote by X ∈ X ⊂ R3 the vector of the random coefficients of the
plant and by Y ∈ Y ⊂ R6 the the vector of the random coefficients of the controller. Let us introduce a
cost function

Ψ(Y ) = max{ψ1(Y ), ψ2(Y )} (15)

where

ψ1(Y ) =





0 if
∥∥∥∥
(

W1(1 + G(s)C(s, Y ))−1

W3C(1 + G(s)C(s, Y ))−1

)∥∥∥∥
∞

< 2

1 otherwise
(16)

and

ψ2(Y ) = E (ζ(X,Y ))

with

ζ(X,Y ) =





1 if (1 + Ĝ(s,X)C(s, Y ))−1 is unstable∥∥∥∥
(

W1(1 + Ĝ(s,X)C(s, Y ))−1

W3C(1 + Ĝ(s,X)C(s, Y ))−1

)∥∥∥∥
∞

otherwise

Now we are ready to apply the randomized algorithm 2 to find a probably approximate near minimum
of Ψ(Y ) with confidence 1− δ, level α and accuracy ε [36]. In our simulation, we chose ε = 0.1, δ = 0.05
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Fig. 4. The stopping variable γ for the design of the statistical controller of Example 1

and α = 0.001. Therefore n evaluated to 3, 688 and m initially evaluated to 50, 753. For the generation
of the controller we let gainbound=realbound=imagbound=2. Out of the n controllers, only n̂ = 15 gave
ψ1 = 0; the others were discarded. The stopping variable γ that we obtained for the first m plant samples
is shown in Figure 4. Since the final value of γ is less than ε/5 = 0.02, one iteration was sufficient. The
best controller is

C(s) =
0.5781s2 + 0.6602s + 0.1198

0.2012s3 + 0.9687s2 + 11.7181s + 1
. (17)

and the corresponding value of the cost function (15) is Ψ = 0.600.
Now let us go back to our original intent. We wanted to design a good third order controller attempting

to minimize the norm in (14). How good our controller (17) is? To answer this question, in the following we
will analyse the nominal performance, robust stability and robust performance of our closed-loop system.
The tools we will use have become classical control tools; for a detailed discussion see e.g. [41] and the
references therein.

To analyze the nominal performance, it sufficient to evaluate the mixed sensitivity norm (10). This
norm evaluates to about 1.08, which is not far from the values gained by the H∞ controller proposed
in [40] and by the random controller proposed in [12].

The analysis of both robust stability and robust performance can be carried out using the µ-analysis.
To this aim we need to write our uncertain system (11) using LFTs. First of all let us rewrite (12) as

Ĝ(s) = K
as2 + bs + c

5s(s + d)(s2 + As + B)

where
a = −6.4750, b = 4.0302, c = 175.77, d = 6.66 · 10−4.

Let the uncertain parameters K, A and B have the expressions

K = K̄(1 + αKδK), A = Ā(1 + αAδA), B = B̄(1 + αBδB).

with

K̄ = 1 αK = 0.5
Ā = 0.7130 αA = 1
B̄ = 27.90 αB = 0.3.
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In this way we have normalized the uncertainties

−1 < δK , δA, δB < 1

and the nominal plant (9) is recovered simply letting

δK = 0, δA = 0, δB = 0.

Now, letting Ḡ = −aK̄/5, we can write our system isolating the uncertain terms as

ẋ =




0 0 0 0
1 0 0 −B̄d
0 1 0 −B̄ − Ād
0 0 1 −Ā− d


 x +




0 0 c Ḡc
0 d b Ḡb
d 1 1 Ḡ
1 0 0 0







uA

uB

uK

u







yA

yB

yK

y


 =




0 0 0 −αAĀ
0 0 0 −αBB̄
0 0 0 0
0 0 0 1


 x +




0 0 0 0
0 0 0 0
0 0 0 ḠαG

0 0 0 0







uA

uB

uK

u




(18)

The input uA, uB and uK and the outputs yA, yB and yK are fictitious inputs and outputs used to model
the uncertainties 


uA

uB

uK


 =




δA 0 0
0 δB 0
0 0 δK







yA

yB

yK


 − 1 < δA, δB , δK < 1

Let now u = −C(s)y in (18), with C(s) given by (17), and denote by Gc(s) the resulting closed-loop
system 


yA

yB

yK


 = Gc(s)




uA

uB

uK




Consider the block structure

∆ :=








δ1 0 0
0 δ2 0
0 0 δ3


 , δi ∈ R





We evaluated by means of the µ-Analysis and Synthesis Toolbox [42] the real structured singular value
µ∆(Gc(s)). Its plot is shown in Figure 5. Since its peak value is approximately equal to 0.97, our
system (18) is guaranteed to be stable for all ∆ ∈ ∆ with ‖∆‖2 < 1/0.97 ≈ 1.03. Anyway this result
may be conservative, since the lower and upper µ bounds are significantly different1. For the sake of
comparison, we evaluated µ∆(Gc(s)) for the controller proposed in [40], which however had not been
designed to be robust. The peak value of µ∆(Gc(s)) is approximately equal to 1.04.

For the evaluation of the closed-loop performance let us refer to Figure 6 (see also Figure 3). We denote
by T (GP ,∆) the transfer matrix between d and

(
e ū

)T (it is indeed the transfer matrix whose norm we
minimized in (14)). Define an augmented block structure

∆P :=
{(

∆ 0
0 ∆r

)
: ∆ ∈ ∆, ∆r ∈ C1×2

}

We evaluated the structured singular value µ∆P (GP (s)). Its plot is shown in Figure 7. Since its peak
value is approximately equal to 1.80, ‖T (GP , ∆)‖∞ ≤ 1.80 for all ∆ ∈ ∆ with ‖∆‖2 < 1/1.80 ≈ 0.556.
We evaluated µ∆P

(Gc(s)) also for the controller proposed in [40]. The peak value of µ∆P
(Gc(s)) in this

case is approximately equal to 1.60.

1It is well known that in the case of only real perturbations, the evaluation of the function µ is problematic, since it is not
necessarely a continuous function [43]. The µ lower bound in these cases may not converge or may be significantely lower
than µ itself [42]. In [42] it is shown how it is possible to overcome these problems by introducing fictitious small complex
perturbations. Anyway this is beyond the scope of our analysis.
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Remark 1: The values we chose for gainbound, realbound and imagbound in Algorithm 3 are arbitrary.
Therefore we can repeat our design procedure choosing larger ranges for the controller parameters to see if
we obtain a better controller, i.e. a controller which gives a smaller value for the cost function Ψ(Y ) (15).
We tried gainbound=realbound=imagbound=4 and making use of Algorithm 2 we obtained the controller

C(s) =
0.4608s2 + 0.7064s + 0.0803

0.0848s3 + 0.5769s2 + 1.6465s + 1
,

which gives a smaller value than before of Ψ = 0.576 for the cost function (15). With this controller we
performed the same analysis as before. We obtained 1.01 for the mixed-sensitivity norm (10), a peak
value of 0.96 for µ∆(Gc(s)) and a peak value of 1.69 for µ∆P

(GP (s)), which improve the results of the
controller (17).

4
This example shows how a combination of statistical methods and classical theoretical results can be a
good way of approaching difficult control design problems.

VI. Conclusions

In this paper we have shown how drastic reduction in the number of samples needed to obtain per-
formance guarantees in robust control synthesis problems are obtained. This reduction is achieved by
introducing sequential bootstrapping algorithms and exploiting the fact that the sample complexity is
itself a random variable. This has allowed us to present Algorithm 2 as an efficient design methodology
for fixed-order robust control design problems [?]. Recall for example that the Static Output Feedback
(SOF) was shown in [44] to be NP-hard when the gains of the feedback matrix were bounded, but that
Algorithm 3, is well suited to address exactly the SOF problem under those conditions.

It should be noted that the methodology presented in this paper can be used in many other application
areas: one only needs to have an efficient analysis tool in order to convert it to an efficient design
methodology. This is due to the fact that the design problem is converted to a sequence of analysis or
verification problems after sampling more plants and controllers than the minimum number required by
Algorithm 2. It should also be noted that the computational complexity or the undecidability of the
problems studied are not eliminated but only avoided by relaxing the design requirements from absolute
(hard) to probabilistic (soft) ones.

The randomized algorithms approach may be applied to design fixed-structure controllers for nonlinear
systems, and to delay-differential systems. Our future research is concentrating at the theoretical level in
obtaining better optimization algorithms and at the application level in designing software modules for
linear and nonlinear control design.

Acknowledgements: C.T. Abdallah acknowledges fruitful discussions with P. Dorato, G.L. Heileman,
and P. Goldberg.
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