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Reducing Redundancies in Reconfigurable Antenna
Structures Using Graph Models

Joseph Costantine, Member, IEEE, Sinan al-Saffar, Member, IEEE, Christos G. Christodoulou, Fellow, IEEE, and
Chaouki T. Abdallah, Senior Member, IEEE

Abstract—We present an approach for reducing redundancies
in the design of reconfigurable antenna structures using graph
models. The basics of graph models, their rules, and how they can
be applied in the design of switch-based reconfigurable antennas
are introduced. Based on these rules, a methodology is developed
and formulated to reduce the number of switches and parts in
the antenna structure, without sacrificing the desired antenna
functions. This approach not only optimizes the overall structure
of the antenna but it also reduces cost and overall losses. Several
examples are presented and discussed to demonstrate the validity
of this new approach through simulations and measurements that
present good agreement.

Index Terms—Graph theory, reconfigurable antennas, redun-
dancy, switches.

I. INTRODUCTION

R ECONFIGURABILITY, when used in the context of an-
tennas, is the capacity to change an individual radiator’s

fundamental operating characteristics through electrical, me-
chanical, or other means [1]. The reconfiguration of such an
antenna is achieved through an intentional redistribution of the
currents or, equivalently, the electromagnetic fields of the an-
tenna’s effective aperture, resulting in reversible changes in the
antenna impedance and/or radiation properties [2]. Many tech-
niques can be used to achieve the reconfiguration of an antenna.
Most of these techniques employ switches, diodes or capacitors.
Other techniques resort to mechanical alterations like a rotation
or bending of a certain antenna part.

Reconfigurable antennas are mostly used on systems that re-
quire some type of change from one application to another. Re-
configurable antennas are used in multiple input multiple output
(MIMO) situations, in cognitive radios, on laptops, in cellular
phones and many other systems.

Graph models are widely used in computer science and in
the development of networking algorithms [3]. Graphs also find
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Fig. 1. a. An example of an undirected graph. b. An example of a directed graph
with weighted edges.

applications in self-assembly robotics, where they are used to
model the physics of particles by describing the outcomes of in-
teractions among subsystems [4]. Herein we use graph models
to optimize the structure of a reconfigurable antenna. We set
graph modeling rules for the different types of switch-recon-
figured antennas. We present several examples elaborating our
modeling rules and optimization technique.

II. INTRODUCTION TO GRAPHS

Graphs are symbolic representations of relationships between
different components of a system. They are mathematical tools
used to model complex systems in order to organize them and
improve their status. In [5] the authors showed, briefly, that re-
configurable antennas can be modeled using graphs. A graph is
defined as a collection of vertices that are connected by lines
called edges. A graph can be either directed or undirected. The
edges in a directed graph have a certain determined direction,
while this is not the case in an undirected graph as shown in
Fig. 1. Vertices may represent physical entities while the edges
between them in the graph represent the presence of a function
resulting from connecting these entities. If one is proposing a set
of guidelines for antenna design, then a possible modeling rule
may be to create an edge between two vertices whenever their
physical connection results in a meaningful antenna function.

Edges may have weights associated with them, as shown in
Fig. 1(b). These weights represent costs or benefits that are to
be minimized or maximized. A path is an uninterrupted se-
quence of edges that are traveled in the same direction from an
originating vertex to a destination vertex. The weight of a path
is defined as the sum of the weights of its constituent edges.
In some cases it is useful to find the shortest path connecting
two vertices. This notion is used in graph algorithms in order
to optimize a certain function. The shortest path distance in a

0018-926X/$26.00 © 2010 IEEE
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non-weighted graph is defined as the minimum number of edges
in any path from one vertex to another. If the graph is weighted,
then the shortest path corresponds to the least sum of weights in
a particular path. In a reconfigurable antenna design, a shorter
path may mean a shorter current flow and thus a certain reso-
nance associated with it. A longer path may denote a lower res-
onance frequency than that of a shorter path.

Adjacency-Matrix Representation: The adjacency-matrix
representation of a graph , assuming that the vertices are
numbered in some arbitrary manner, consists of a

such that [3]

(1)

The adjacency matrix of the graph shown in Fig. 1(a) is pre-
sented in the matrix below. The adjacency-matrix represen-
tation can also be used for weighted graphs. The corresponding
weights in a graph are grouped into the adjacency matrix. For
example, if is a weighted graph with edge-weight
function of the edge , then is simply stored as
the entry in row and column of the adjacency matrix. The
lack of an edge is indicated by 0 in the adjacency matrix. The
adjacency matrix of the graph shown in Fig. 1(b) is shown in the
matrix as follows:

Graph Modeling Rules: There are several ways to graph
model reconfigurable antennas. Here we set some rules for
graph modeling the different types of switch-reconfigured an-
tennas. These rules are required for our optimization approach.

We set constraints for each rule in order to facilitate the
graph modeling process. These constraints explain how to
graph model each specific case of switch-reconfigured an-
tennas. Herein an antenna is called a multi-part antenna if it is
composed of an array of identical or different elements (trian-
gular, rectangular parts). Otherwise it is called a single-part
antenna.

Rule 1: A multi-part antenna connected with switches is
modeled as a weighted undirected graph. This graph consists of
a vertex for each antenna part and connects those vertices with
undirected weighted edges wherever the parts have a physical
connection.

Constraints: The connection between two parts has a dis-
tinctive angular direction. The designer defines a reference axis
that represents the direction that the majority of parts have in
relation to each other or with a main part. The connections be-
tween the parts are represented by the edges. The edges’ weights
represent the angles that the connections make in relation to the
reference axis. A weight is assigned to an edge repre-
senting a connection that has an angle 0 or 180 in relation to
the reference axis. Otherwise a weight is assigned to the
edge as shown in (2).

(2)

Fig. 2. The antenna structure in [6] with its graph model.

where represents the angle that the connection i,j form with
the reference axis.

The removal or addition of a part in the reference axis direc-
tion affects one parameter in the antenna radiation characteris-
tics (i.e. S11). The addition or removal of a part in a direction
different from the reference axis direction affects many parame-
ters (i.e., S11, radiation pattern and polarization); thus the bigger
weight.

Example of rule 1: As an example, we take the antenna
shown in Fig. 2(a) [6] and model it by a graph following rule 1.
The basic antenna is a 130 balanced bowtie. A portion of the
antenna corresponds to a two-iteration fractal Sierpinski dipole.
The remaining elements are added (three on each side) to make
the antenna a more generalized reconfigurable structure.

Following rule 1, the vertices in the graph model repre-
sent the triangles added. The edges connecting these vertices
represent the connection of the corresponding triangles by
MEMS switches. The graph modeling of this antenna is shown
in Fig. 2(b). If a switch is activated to connect triangle T1 to
triangle then an edge appears between the vertex T1 and the
vertex , as shown in Fig. 2(b). In this design the connections
between T1 and T2, T2 and T4, and , and
are collinear with the reference axis. As a result, the edges
representing these connections are weighted with , and
the other connections are weighted with .

Rule 2: A single part antenna with switches bridging over
slots is modeled as a non-weighted undirected graph. This graph
consists of a vertex for every switch end-point and connects
those vertices with non-weighted edges wherever switches are
activated.

Constraints: In the case of switches bridging multiple slots
in one antenna structure, the graph model takes into considera-
tion one slot at a time.

Example of rule 2: As an example, we take the antenna
shown in Fig. 3(a) [7]. This antenna is a triangular patch antenna
with two slots. The authors suggested five switches to bridge
each slot in order to achieve the required functions.

The graph modeling this antenna following rule 2 is shown
in Fig. 3(b), where vertices represent the end points of each
switch, and edges represent the connections between these end
points. When switch 1 is activated, an edge appears between N1
and representing the two end-points of switch 1. The graph
model in Fig. 3(b) represents each slot at a time. For example,
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Fig. 3. The antenna structure in [7] with its graph model for all possible con-
nections. a. Antenna structure; b. graph model.

N1 represents end-point 1 for switch 1 in slot 1 and end-point 1
for switch 1 in slot 2.

III. STRUCTURE REDUNDANCY OPTIMIZATION

An optimum reconfigurable antenna design yields the
smallest number of redundant elements and achieves the func-
tions required with great reliability. Our optimization approach
allows the designer to identify the redundant parts in the design.
These parts might be antenna topology parts that need to be
removed, or electronic components such as switches. This
technique removes redundancies from reconfigurable antenna
structures to reduce costs and losses.

Herein, a part is defined as redundant if its presence gives the
antenna more functions than required and its removal does not
affect the antenna’s desired performance. The removal of a part
from the antenna structure may require a change in the dimen-
sions of the remaining parts in order to preserve the antenna’s
original characteristics. That is, a redundant part can be removed
as long as its removal will not affect the polarization status of
the antenna in a reconfigurable return loss and reconfigurable
polarization antenna.

For Multi-Part Switch-Reconfigured Antennas: The min-
imum number of edges present in any graph model according
to rule 1 is equal to (N-1) and the maximum number is equal
to N(N-1)/2. N represents the number of vertices in the graph
model. In the case of a multi-part antenna and according to rule
1, N represents the different parts of the antenna. Eq. (3) shows
the bounds of the number of edges NE in a graph model of this
category

(3)

where represents the maximum number of edges in a graph
modeling a multi-part antenna. The number of unique paths
(NUP) in such a graph model is always or else idle ver-
tices are present; Keeping in mind that a path is a continuous
sequence of edges that are traveled in the same direction from
an originating vertex to a destination vertex. Then is suffi-
cient to be considered the necessary number of unique paths re-
quired to minimize redundancies. By decreasing the number of
unique paths, the number of possible configurations is reduced,
which results in reducing the number of vertices and removing
redundant parts. Fig. 4 shows an example of how to identify the
unique paths in a graph modeling a multi-part switch-reconfig-
ured antenna.

Equation (4.b) shows the necessary number of available con-
figurations (NAC) where the case of no connection is added.

Fig. 4. An example of all possible unique paths in a given graph modeling a
multi-part switch-reconfigured antenna.

Equation (4.c) is a direct derivation of (4.a) and (4.b) and
represents the number of vertices required to achieve a certain
number of configurations. The reconfigurable antenna may
have more possible configurations than NAC for a given set of
vertices; however, NAC represents the minimum number of an-
tenna configurations that are necessary to achieve the maximum
number of functions with the least number of components

(4a)

(4b)

Using (4.a) and (4.b) we get

(4c)

For Single-Part Switch-Reconfigured Antennas: In the case
of single-part antennas, vertices represent different end-points
of switches. The number of vertices N in a graph modeling a
single part switch-reconfigured antenna is twice the number of
all possible edges. In this case, the number of possible unique
paths is equal to the number of possible edges in the graph based
on rule 2. Equation (5.a) represents the minimum number of
available antenna configurations to achieve an efficient design.
It is the number of possible edges in addition to the case where
no connection exists. As in (4), the reconfigurable antenna might
have more possible configurations than NAC for a given set of
vertices. By rearranging (5.a), (5.b) is obtained and represents
the number of vertices necessary to achieve a certain number of
configurations

(5a)

(5b)
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Fig. 5. Antenna in [8] and its graph model.

IV. OPTIMIZING REDUNDANCY IN MULTI-PART

SWITCH-RECONFIGURED ANTENNAS

Example IV.1: As an example we take the switch-reconfig-
ured antenna shown in Fig. 5 [8]. This antenna is built out of a
hexagonal main patch and six trapezoidal parts placed around
it. The graph model of this antenna conforms to rule 1. The an-
tenna is designed on an FR4 epoxy substrate with

.
In addition to its original frequencies of operation, when all

the switches are off, this antenna is required to have three more
configurations that resonate as follows:

Configuration 1: 1 GHz, 3.5 GHz, 4.5 GHz;
Configuration 2: 3.5 GHz, 4.5 GHz, 5 GHz;
Configuration 3: 1 GHz, 2.5 GHz, 5 GHz;
Configuration 4 (All switches OFF): 3 GHz, 3.5 GHz,
4.5 GHz.

These frequencies represent practical applications such as
WIMAX, WIFI, and GPS. This antenna was designed in [8]
to have six switches connecting six sections to a main section.
The application of (4.a), (b) to the graph model of this antenna
shows that this antenna has at least 22 configurations, while
just four configurations are required

The application of (4.c) reveals that we need at most three
vertices in the graph model to achieve these four required
configurations

To reduce the redundancy and complexity of this system and
to minimize the design time and the number of simulations,
the number of switches used has to be reduced to two. To pre-
serve the radiation properties the general shape of the antenna
as a six-armed hexagon cannot be disturbed, especially when
all switches are OFF. The designer optimizes by simulations

Fig. 6. The optimized structure with its graph model.

Fig. 7. The simulated input reflection (S11) plot for the required configurations.

the placement of the two switches to achieve the required fre-
quencies and configurations. The placements of these switches
as well as the graph model of the optimized antenna are shown
in Fig. 6. The simulated S11, the input reflection of this antenna,
for all required configurations is shown in Fig. 7. By applying
this technique, the design time has been reduced and, instead of
determining the placement and topology of the antenna with six
switches we need to do the work for only two. A comparison
of the antenna’s radiation patterns with redundant switches and
the one without redundant elements at 4.517 GHz is shown in
Fig. 8 for the x-y and y-z plane cuts.

Example IV.2: In this example the antenna [9] is a MEMS-re-
configurable pixel antenna that provides two functions: recon-
figuration of its modes of radiation and reconfiguration of the
operating frequency. The proposed antenna uses a 13 13 ma-
trix of metallic pixels connected through MEMS switches in
which circular patches of different radii are mapped.

Each metallic pixel has dimensions 1.2 1.2 mm, and the
pixels are separated by 2 mm to provide enough space to allocate
the MEMS switches and connecting lines. The MEMS switches
around each pixel are activated or deactivated depending on the
DC voltage that is supplied to the pixels. The DC connectivity
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Fig. 8. Comparison of the antenna’s simulated radiation patterns with and
without redundant elements at 4.517 GHz for the x-y and y-z plane cuts.

is provided through bias lines that connect the pixels to the back
side of the substrate. In order to connect two metallic pixels, the
voltage difference between them has to be around 30 V. The
metallic pixels and the bias lines are connected through RF re-
sistive lines made of Ni-chrome alloy. The substrate used is a
quartz substrate that is 2 2 in, 1.575 mm thick and has a di-
electric constant of 3.78. This antenna can generate five orthog-
onal radiation patterns at any frequency between 6 and 7 GHz.
These patterns are those generated by the modes ,
and , all of them with , with ,
and with [10]. At any fixed frequency be-
tween 6 and 7 GHz, five radiation states can be selected. The
simulated flattened 3-D far field pattern for the ,
with , , with and
modes are shown in [10] This antenna exhibits frequency tuning
as well as pattern/polarization diversity for fixed frequencies.
The optimization approach introduced takes into consideration
one reconfiguration function at a time, which in this case is the
pattern/polarization. It is noted that five configurations are re-
quired. To graph model this antenna, the parts constituting its
structure are treated as vertices. These vertices are connected by
weighted undirected edges. The graph model of the antenna con-
figurations required to achieve the five different modes of opera-
tion is shown in Fig. 9 and follows rule 1. Since only five config-
urations are required, applying (4.c) to this antenna gives us the
number of parts required to achieve the desired configurations

Only four configurations are required to achieve five antenna
functions. The shape of the antenna with four parts will be very
different from the one shown in Fig. 9 and needs to be sim-
ulated and investigated extensively. The antenna designer in
[9] required a minimization of the number of switches used
while keeping the same antenna topology. To preserve the same
antenna topology, redundant connections have to be identified
and redundant switches eliminated. By comparing the different
graph models in Fig. 9, one notices that edges connect only cer-
tain vertices and the rest of the vertices remain idle in all five

Fig. 9. Graph model of the required antenna configurations.

configurations. To identify the different sections of the antenna
necessary to achieve the desired behavior, the adjacency matrix
representation of the graph is used assuming the edges are not
weighted. A part connected by an edge has a value 1, while a
part that is not connected by any edge is represented by 0. The
adjacency matrix representation for all possible configurations
is shown in Table I. The matrices in Table I can be expressed as
shown in (6)

(6a)

(6b)

(6c)

(6d)

(6e)

where are defined in Table II.
The matrices in Table II can be translated into graphs repre-

senting each case. The corresponding graphs can be translated
to antenna sections. These 27 antenna sections are shown in
Fig. 10. Inside each section, the square patches are connected
constantly, which eliminates the need for switches. Switches
will be used only to connect the sections. Parts belonging to the
same sections are always connected, and there is no need for
switches inside each section. Some antenna parts are never con-
nected, to achieve polarization diversity, and they are shown in
black in Fig. 10. Using this technique, the number of switches
is reduced by more than 100 from 312 to 166, while preserving
the antenna topology. The reduction of the number of switches
does not affect the radiation characteristics in [9] because the
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TABLE I
ADJACENCY MATRIX REPRESENTATION FOR ALL POSSIBLE ANTENNA CONFIGURATIONS

TABLE II
THE MATRICES COMPOSING THE MATRICES OF TABLE I

topology has been preserved. Another example of reducing re-
dundancies from a multi-part switch-reconfigured antenna can
be found in [11]; where the antenna was optimally redesigned
to maintain the same functionality and radiation characteristics.

V. OPTIMIZING REDUNDANCY IN SINGLE-PART

SWITCH-RECONFIGURED ANTENNAS

Example V.1: In this example a single-part antenna is con-
sidered. This antenna [12], shown in Fig. 11 is a multi-band
low-cost antenna that employs Koch fractal geometry. The an-
tenna is fabricated on a 1.6 mm-thick FR4-epoxy substrate with
dimensions 4 cm 4.5 cm, is microstrip fed, and has a partial
ground plane flushed with the feed line. A trapezoidal matching
section connects the feed line to a U-Koch-slotted rectangular-

Koch patch. The first-iterated Koch fractal geometry is used in
the patch, and the U-slot is inserted to increase the antenna’s
electrical length for operation at lower frequency bands. Five
pairs of RF MEMS are mounted across the slot, as shown in
Fig. 11.

In [12] the symmetrically placed switches are activated two
at a time to achieve the desired configurations. The first config-
uration, (10000), represents the activation of N1 and and
the deactivation of the other eight switches. This configuration
exhibits a narrow resonance at 1.9 GHz as well as a wide band
operation between 2.7 and 6.6 GHz. The second configuration,
(01000), represents the activation of N2 and while deac-
tivating the other switches. This configuration achieves a res-
onance at 2.1 GHz and a wide band operation. from 2.4 to 6.7
GHz. The third configuration, (11111), represents the activation
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Fig. 10. The 27 antenna sections: red line indicating the presence of a switch
and black line indicating the presence of a permanent connection (no need for
a switch).

Fig. 11. The antenna topology in [12].

of all ten switches. This configuration achieves a wide band op-
eration from 2.5 to 6.7 GHz. The graph model of the original
structure is the same as the one shown in Fig. 3(b).

Investigating redundancies in this antenna structure, we can
preserve the distinctive topology while removing redundant
switches. Switches in this case have to be studied two at a time
to preserve the antenna’s operating modes.

In (5.a), N represents the end points of one side of the slots,
so in this case. Applying (5.a) to this antenna reveals
that the minimum number of antenna configurations that can be
achieved with five pairs of switches is six

Fig. 12. Antenna with optimized number of switches and their positions, with
the corresponding graph model.

Fig. 13. Comparison of the input reflection of the original and the antenna with
the optimized number of switches for case 1.

Fig. 14. The fabricated optimized prototype.

Since just three configurations are required, applying (5.b) re-
veals that only two switches are needed.

The antenna topology with two switch positions is shown in
Fig. 12 with the corresponding graph model. A comparison be-
tween the input reflection parameters of the original antenna and
the antenna with the optimized number of switches is shown in
Fig. 13 for the first required configurations. The fabricated pro-
totype is shown in Fig. 14. A comparison of the analogies be-
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Fig. 15. Comparison of simulated and measured input reflection for the (10)
optimized case.

tween the measured and simulated S11 for the (10) optimized
case is shown in Fig. 15.

VI. CONCLUSION

In this paper, graphs are introduced as a modeling tool for re-
configurable antennas. Guidelines for graph modeling different
types (multi-part and single part) of switch reconfigurable an-
tennas are presented.

We also present a new methodology for removing redundan-
cies from antenna structures. This approach is based on com-
paring the number of unique paths in a given graph with the
number of the required antenna configurations. Equations are
introduced for different types of switch reconfigurable antennas.
In some cases redundant elements are simply removed from the
antenna structures and in different cases a complete redesigning
of the antenna is required. This optimization approach is an effi-
cient tool for reducing costs and losses in reconfigurable antenna
structures. Examples are given on multi and single-part switch
reconfigured antennas, validating the discussed approach with
simulations and measurement. Furthermore this easy approach
does not replace the simulation in a design process however it
reduces the number of iterations needed.

In addition, this paper proposes a complexity reduction ap-
proach while maintaining the desired multi-functional proper-
ties of a reconfigurable antenna, and facilitates the control of
such antennas by using corresponding graph algorithms.
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