
University of New Mexico
UNM Digital Repository
Electrical & Computer Engineering Faculty
Publications Engineering Publications

9-28-2011

An Experimental Evaluation of Akamai Adaptive
Video Streaming over HSDPA networks
Luca De Cicco

Saverio Mascolo

Chaouki T. Abdallah

Follow this and additional works at: https://digitalrepository.unm.edu/ece_fsp

This Article is brought to you for free and open access by the Engineering Publications at UNM Digital Repository. It has been accepted for inclusion in
Electrical & Computer Engineering Faculty Publications by an authorized administrator of UNM Digital Repository. For more information, please
contact disc@unm.edu.

Recommended Citation
De Cicco, Luca; Saverio Mascolo; and Chaouki T. Abdallah. "An Experimental Evaluation of Akamai Adaptive Video Streaming over
HSDPA networks." (2011): 13-18. https://digitalrepository.unm.edu/ece_fsp/136

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151577189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp/136?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

An Experimental Evaluation of Akamai Adaptive Video Streaming
over HSDPA networks

Luca De Cicco, Saverio Mascolo, and Chaouki T. Abdallah

Abstract— Adaptive video streaming is a relevant advance-
ment with respect to classic progressive download streaming
such as the one employed by YouTube. Building upon its
content delivery network (CDN), Akamai recently started to
offer High Definition (HD) adaptive video streaming using
HTTP. Nowadays, not only the amount of Internet video
traffic is always increasing but also the number of users
accessing the Internet using wireless links. In this paper we
experimentally investigate the switching algorithm employed
by Akamai to implement video quality adaptation over a High
Speed Downlink Data Packet Access (HSDPA) link. In order
to assess the Quality of Experience we measure goodput, TCP
friendliness, and video reproduction continuity. Main results
are: 1) Akamai flows are not able to achieve the fair share when
competing with a TCP greedy flow due to the conservativeness
of the stream-switching algorithm; 2) when the link is shared
with a greedy TCP connection in 50% of the experiments
the video reproduction was paused for more than 19% of the
experiment duration.

I. INTRODUCTION

Nowadays the Internet is becoming the most important
platform to deliver audio/video delay-sensitive traffic. Ac-
cording to a recent report published by Cisco, the traffic
generated by video applications will account in 2014 for
91% of the global traffic [3]. Important applications that feed
this trend are YouTube, which delivers user-generated video
content, and Skype audio/video conference over IP.

In this paper we focus on adaptive streaming that repre-
sents a key advancement wrt classic progressive download
streaming such as the one employed by YouTube. With
download streaming, the video is a static file that is delivered
as any data file using greedy TCP connections. The receiver
employs a player buffer that allows the file to be stored
in advance wrt the playing time in order to mitigate video
interruptions. On the other hand, with adaptive streaming, the
video source is adapted on-the-fly to the network available
bandwidth so that live video content can be delivered in real-
time and users can watch videos at the maximum bit rate that
is allowed by the time-varying available bandwidth.

Mobile multimedia delivery is becoming more and more
ubiquitous thanks to the development of broadband wireless
technologies such as IEEE 802.11 for local access and 3G-
4G for large area coverage and due to the spreading of smart

Luca De Cicco is post-doc at Dipartimento di Elettrotecnica
ed Elettronica, Politecnico di Bari, Via Orabona 4, Italy (email:
ldecicco@gmail.com)

Saverio Mascolo is with the Dipartimento di Elettrotecnica ed
Elettronica, Politecnico di Bari, Via Orabona 4, Italy (email:
mascolo@poliba.it)

Chaouki T. Abdallah is with the Electrical and Computer Engineering
Department, MSC01 1100 1 University of New Mexico, Albuquerque, NM,
USA (email: chaouki@ece.unm.edu)

phones with powerful CPUs. In particular, the High Speed
Downlink Packet Access (HSDPA) is an upgrade of UMTS
that is getting worldwide deployment and that can provide
downlink peak rates of several Mbps, which is more than one
order of magnitude improvement with respect to the 100kbps
offered by GSM EDGE few years ago [8].

In this paper we investigate the performance of the
adaptive streaming service provided by Akamai, which is
the worldwide leading Content Delivery Network (CDN),
over a HSDPA link. The service is called Akamai High
Definition Video Streaming (AHDVS) and aims at delivering
HD videos over Internet connections using the Akamai
CDN. The Akamai system employs the stream-switching
technique: the server encodes the video content at different
bit rates and it switches from one video version to another
based on client feedbacks such as the measured available
bandwidth. It can be said that the Akamai approach is the
leading commercial one since it is employed by the Apple
HTTP-based streaming, the Microsoft IIS server, the Adobe
Dynamic Streaming, and Move Networks.

In [4] we focused on the dynamic response of Akamai
switch-stream algorithm in response to abrupt variations of
the available bandwidth in a controlled network environment.
We have found that the control logic employed by AHDVS
to dynamically select the suitable video level is implemented
at the client and it is based on an estimate of the available
bandwidth. If, on one hand, executing the adaptation logic
at the client-side has the advantage of keeping the streaming
server implementation simple, on the other hand, from a
control theoretic point of view, this has the drawback of
introducing a variable time delay in the control loop which
makes the design of an effective controller more challenging.

We have shown that the adaptation algorithm implemented
by Akamai is not able to avoid short playout interruptions
when abrupt decreases of the available bandwidth occur and
in other cases the conservativeness of the algorithm leads to
network underutilization [4].

In this paper we show the results of a measurement
campaign we have carried out over the downlink of a HSDPA
network. In order to assess the Quality of Experience (QoE)
the following metrics have been measured for each experi-
ment: 1) goodput, 2) Jain Fairness Index (JFI) to estimate the
TCP friendliness, and 3) paused time percentage to estimate
the video playback continuity.

The rest of the paper is organized as follows: in Section
II a brief review of adaptive streaming algorithms proposed
in the literature is presented; in Section III we discuss the
main characteristics of the quality adaptation logic employed

2011 IEEE International Symposium on Computer-Aided Control System Design (CACSD)
Part of 2011 IEEE Multi-Conference on Systems and Control
Denver, CO, USA. September 28-30, 2011

978-1-4577-1067-4/11/$26.00 ©2011 IEEE 13

by Akamai HD Video Streaming; in Section IV the obtained
experimental results are discussed; finally, Section V sum-
marizes the major findings and concludes the paper.

II. RELATED WORKS

Even though TCP has been considered not suitable for the
transport of video streaming, recently it is getting a wider
acceptance and it is being used with the HTTP. This is mainly
due to the following reasons: i) HTTP-based streaming is
cheaper to deploy since it employs standard HTTP servers
[10]; ii) TCP has built-in NAT traversal functionalities; iii)
it is easy to be deployed within Content Delivery Networks
(CDN) [10]; iv) TCP delivers most part of the Internet traffic
and it is able to guarantee the stability of the network by
means of an efficient congestion control algorithm [9].

Stream-switching algorithms encode the raw video content
at increasing bitrates resulting into N versions, i.e. video
levels; an algorithm dynamically chooses the video level that
matches the user’s available bandwidth. Stream-switching
algorithms minimize the processing costs since, once the
video is encoded, no further processing is required in order
to adapt the video to the variable bandwidth [10], [1], [7],
[2], [6]. Another important advantage of such algorithms
is that they do not rely on particular functionalities of the
employed codec and thus can be made codec-agnostic. The
disadvantages of this approach are the increased storage
requirements and the fact that adaptation is characterized by
a coarser granularity since video bitrates can only belong to
a discrete set of levels. From the point of view of the control
algorithm this means that the actuation variable is quantized.

Recently, the stream-switching approach is being adopted
by several adaptive streaming commercial products. In par-
ticular we cite: 1) the IIS Smooth Streaming [10] which is
provided by Microsoft; 2) the Adobe Dynamic Streaming [6]
developed by Adobe and recently included by Amazon in
the EC2 platform; 3) the HTTP Adaptive Live Streaming
solution [7] which has been proposed for standardization
within IETF by Apple; 4) Move Networks that provides live
adaptive streaming service [2] to several TV networks; 5)
Netflix that implements stream switching in its video on
demand streaming platform.

In spite of the wide acceptance of this quality adaptation
paradigm in the multimedia industry, the literature regarding
the stream-switching approach is not exhaustive. In partic-
ular, the few published papers that focus on designing a
stream-switching control algorithm often rely on heuristic-
based arguments [5]. This has the clear drawback of making
the system dynamics difficult to be predicted and mathemat-
ically analyzed.

III. AKAMAI SWITCH-STREAM CONTROL ALGORITHM

Before presenting the details of the control algorithm
employed by Akamai to dynamically switch among the video
levels, we briefly discuss the client-server protocol used by
this algorithm.

AHDVS employs HTTP connections to stream data from
the server to the client. The adaptation algorithm is executed

Video Bitrate Resolution
level (kbps) (width×height)
l0 300 320x180
l1 700 640x360
l2 1500 640x360
l3 2500 1280x720
l4 3500 1280x720

TABLE I
SET OF AVAILABLE VIDEO LEVELS L

at the client in a Flash application. By capturing and ana-
lyzing the traffic between the Akamai server and the client
we have observed that the client issues a number of HTTP
requests to the server throughout all the duration of the video
streaming carrying feedbacks and commands to the server
using a separate TCP socket.

At first, the client connects to the Akamai server [1], then a
Flash application is loaded and a number of videos are made
available to the client. When the user clicks on the thumbnail
of the video he is willing to play, a GET HTTP request is
sent to the server which points to a SMIL compliant file.
In the SMIL file the base URL of the video, the available
video levels, and the corresponding encoding bit-rates are
provided.

After that, the client parses the SMIL file to reconstruct
the complete URLs of the available video levels and selects
the corresponding video level based on the quality adaptation
algorithm. All the videos available on the demo website are
encoded at five different bitrates as shown in Table I. In
particular, the video level bitrate l(t) can assume values in
the discrete set of available video levels L = {l0, . . . , l4}.
All the video levels are encoded at 30 frames per second
(fps) using H.264 codec with a group of picture (GOP) of
length 36, so that two consecutive I frames are 1.2s apart.
This means that, since a video switch can occur only at the
boundaries of GOPs, video levels can change only each 1.2s.
Finally, the audio is encoded with Advanced Audio Coding
(AAC) at 128 kbps bitrate.

After the SMIL file gets parsed, at time t = t0, the client
issues the first POST request specifying several parameters.
Among those, the most important parameters are cmd, that
specifies a command the client issues on the server, and
lvl1, that specifies several feedback variables F(t) such
as: 1) the receiver buffering time q(t) measured in seconds,
2) the receiver buffer target qT (t) measured in seconds, 3)
the received video frame rate f(t) measured in frames per
second (fps), 4) the estimated bandwidth B(t) measured
in kilobit per second (kbps), 5) the received goodput r(t)
measured in kbps, 6) the current received video level bitrate
l(t) measured in kbps; 7) the playing time tp(t) measured
in seconds; 8) the estimated round trip time R(t).

The quality adaptation algorithm starts at t = t0. For a
generic time instant ti > t0 the client issues commands via
HTTP POST requests to the server in order to select the
suitable video level.

Table II reports all the possible commands ci that the client

14

Command Args Occurrence (%)
c1 throttle 1 ˜80%
c2 rtt-test 0 ˜15%
c3 SWITCH UP 5 ˜2%
c4 BUFFER FAILURE 7 ˜2%
c5 log 2 ˜1%

TABLE II
COMMANDS ISSUED BY THE CLIENT TO THE STREAMING SERVER VIA

THE CMD PARAMETER

Internet

Akamai Client Akamai Server

HTTP
traffic

Decoder

Actuator

buffer

q(t)

Measurement Levels
Video

r̄(t)

TCP
buffer

HTTP
POST

q(t), r(t),

F(t), c(t), T (t)

r(t), l(t)

selects
τb

τf

B(t), f(t)
li ∈ L

Adaptation
Controller

Player

Fig. 1. A block diagram of the control architecture employed by AHDVS

can issue on the servers along with the number of arguments
and the occurrence percentage. The first two commands
are issued periodically, throttle with a median inter-
departure time of about 2s and rtt-test with a median
inter-departure time of roughly 11s. On the other hand, log,
SWITCH UP and BUFFER FAILURE are event triggered
commands.

In [4] we have shown that the throttle command
specifies a single argument, the throttle percentage T (t), that
it is used to control the receiver buffering time q(t) as we will
discuss in Section III-A. The rtt-test command is issued
to periodically actively probe for the available bandwidth and
to measure the round trip time R(t) (RTT) of the connection.

Finally, the two event-based commands SWITCH UP and
BUFFER FAILURE are sent from the client to ask the server
to respectively switch up or down the video level l(t).

Figure 1 shows a block diagram of the overall control
architecture employed by AHDVS. The server is connected
to the client through an Internet connection characterized by
a forward connection delay τf and a backward connection
delay τb. Figure 1 shows that the three main components
of the control loop, i.e. measurement, adaptation controller,
and actuator, are connected through the Internet so that the
control loop is affected by an overall delay τ = τf + τb.

The client receives the video flow at level l(t) ∈ L over an
HTTP connection at a rate r(t). The received video is stored
in a playout buffer, whose instantaneous length expressed
in seconds is q(t), which is drained by the decoder at the
current received video level. A measurement module feeds
the values of the buffer length q(t), the received goodput
r(t), the bandwidth B(t), and the decoded frame rate f(t)
to the adaptation controller.

The adaptation controller is made of two modules: 1) a
playout buffering time controller whose goal is to drive the
buffering time to a target value; 2) a stream-switching logic
that selects the appropriate video level to be streamed by the
server.

A. The playout buffering time controller

In [4] we have shown that the control law implemented by
Akamai to regulate the buffer length q(t) is a proportional
controller that takes the error qT (t) − q(t) as the input and
whose output is the throttle percentage T (t):

T (t) = max

(
(1 +

qT (t)− q(t)
qT (t)

)100, 10

)
(1)

The throttle percentage T (t) is used to set the rate r(t) at
which the Akamai server feeds the TCP socket buffer with
the current video level l(t) as follows:

r(t) = l(t)
T (t)

100
(2)

The rationale of controlling r(t) is to induce, on average, a
TCP sending rate that is equal to r(t). This means that when
the throttle percentage is above 100% the server can stream
the video at a rate that is above the encoding bitrate l(t). It
is important to stress that, in the case of live streaming, it is
not possible for the server to supply a video at a rate that is
above the encoding bitrate for a long period, since the video
source is not pre-encoded.

By looking at (1) we find that when the buffer length q(t)
matches the target buffer length qT (t), the throttle percentage
T (t) is equal to 100% and r(t) matches l(t). On the other
hand, when the error qT (t)− q(t) increases, T (t) increases
accordingly in order to allow r(t) to increase so that the
buffer can be filled quickly.

B. The stream switching logic

Let us now focus on the stream-switching logic, the
heuristic-based controller that dynamically decides which
video level l(t) ∈ L has to be sent by the server, based on
the estimated bandwidth, the current video level, the playout
buffer length, and the frame rate. In particular, and based on
the debug information provided by the Akamai Client and on
the experiments we have run, the stream-switching heuristic
works as follows.

The client periodically issues rtt-test commands that
have the effect of setting at the server a throttling percentage
of 500%, thus asking the server to periodically send the
video in greedy mode. In this way Akamai actively probes
for extra available bandwidth and estimates the RTT R(t)
under congestion. Based on the estimated value of the RTT,
the client computes a safety factor S. By parsing the debug
information in order to collect the pairs (R(t), S(t)) it
was possible to run a linear regression over the dataset
which yielded to the following static linear model (R(t) is
expressed in seconds):

f(R(t)) = 2.5R(t) + 0.15

By considering the collected samples we found that when
R(t) > 0.1s the safety factor remains set to 0.4, whereas
when R(t) < 0.02s, it is set to 0.2. Thus, we can conclude

15

that the complete model for S(R(t)) is the following:

S(R(t)) =


0.2 0 < R(t) < 0.02s
2.5R(t) + 0.15 0.02s ≤ R(t) ≤ 0.1s
0.4 R(t) > 0.1s

(3)

It is worth noting that in the case of HSDPA connections
round trip times are likely to be higher than 0.1s so that we
can assume in this specific scenario a fixed safety factor S
equal to 0.4.

For each video level li ∈ L a high threshold LH
i and a

low threshold LL
i are maintained:

LH
i (t) = li · (1 + S(t)) ; LL

i = li · 1.2 (4)

A switch up to a higher video level li occurs when B(t) >
LH
i (t), which means that if, for instance, the RTT is above

0.1 s and thus S(R(t)) = 0.4, to allow a switch up to level
li the estimated bandwidth must be at least 40% higher than
li. This seems to be a conservative approach that leads to
network underutilization and, as a consequence, to a reduced
QoE.

On the other hand, the switch down event occurs when:

q(t) < qL(t) (5)

where qL(t) is another threshold that is smaller than the
queue target1 qT (t). When (5) holds, a BUFFER FAILURE
is sent and the new video level li < l(t) is selected. In
particular, the highest video level li ∈ L satisfying the
following condition:

B(t) > 1.2 · li = LL
i

is selected. Thus, in order to select the level li, the currently
estimated bandwidth B(t) must be at least 20% above li.
Moreover, in [4] we have shown that when SWITCH UP and
BUFFER FAILURE commands are sent from the client, the
actuator, which is located at the server, takes an average
delay of τsu ' 14s and τsd ' 7s respectively, to actuate
these commands.

Finally, it is worth noting that the overall system exhibits a
very complex dynamics due to the interaction of two closed-
loop dynamics: the stream-switching logic, which has been
designed using heuristic arguments, and the playout buffering
time controller. As a consequence, it is very complex to
develop a mathematical analysis as well as to tune control
variables to satisfy key design requirements such as settling
times and steady state errors.

IV. EXPERIMENTAL RESULTS

In this Section we show the results obtained by an exper-
imental evaluation of AHDVS over a commercial HSDPA
network. In order to carry out the experimental evaluation
we have employed the video sequence “Elephant’s Dream”,
available on the Akamai demo website [1], since its duration
is long enough for a careful experimental evaluation. The
receiving host is a laptop equipped with an Ubuntu Linux
running a 2.6.32 kernel.

1The identification of qL(t) has not been carried out.

A total of 125 experiments have been carried out at
different hours of the day during a two months period. We
have considered the following QoE metrics:

1) the received goodput which is computed as:

g(tk) =
d(tk)− d(tk−1)

tk − tk−1

where d(tk) is the total amount of data received up to
the k-the sampling time tk. The sampling interval is
equal to 1s.

2) In scenarios where two flows share the HSDPA down-
link it has been evaluated the Jain Fairness Index (JFI)
to estimate the TCP friendliness as follows:

JFI =
(
∑N

i=1 gi)
2

N
∑N

i=1 g
2
i

where gi is the average goodput obtained by the i-
th flow. The minimum fairness is obtained when one
link grabs all the available bandwidth and the others
obtain no bandwidth. In this case the JFI is 1/N . The
maximum fairness, i.e. JFI = 1, is obtained when all
the flows obtain the same bandwidth share.

3) The paused time percentage P estimates the video
playback continuity is defined as follows:

P =
∆P

∆T
100 =

∆T − tp(∆T)

∆T
100

where ∆P is the total time the player is paused and
∆T is the duration of the experiment. The paused time
∆P is computed as the difference between the duration
of the experiment ∆T and the playing time evaluated
at the end of the experiment tp(∆T).

In the following we report the metrics described above in
the form of cumulative distribution functions. Moreover, the
dynamics of a subset of the feedback variables provided in
the POST commands via the lvl1 parameter are shown. In
this paper we have considered two scenarios: 1) one video
streaming flow and 2) one streaming flow versus one TCP
greedy flow.

A. One video streaming flow

In this Section we present the results obtained when a
single video streaming flow accesses the HSDPA downlink
for 300s with no concurrent traffic.

We have chosen one experiment that is able to show
the typical behaviour of the control algorithm employed
by AHDVS and that let us validate the proposed model
discussed in Section III. Figure 2 shows the dynamics of
the received video level l(t), the estimated bandwidth B(t),
the SWITCH UP and BUFFER FAIL events, and the high
thresholds LH

i (t) evaluated by using2 (4). Figure 3 shows
the dynamics of the buffer length q(t) along with the target

2In order to evaluate S(t) we employ the equation (3) which expresses
S(t) as a function of the measured RTT R(t). The RTT sample R(t) is
taken from the sixth parameter of the lvl1 variable that contains all the
feedback information to the server.

16

0 50 100 150 200 250 300

L0=300

L1=700

1000

L2=1500

2000

L3=2500

3000

L4=3500

time (s)

k
b

p
s

Video level l(t) SWITCH_UPBUFFER_FAILEstimated BW

LH
1 (t)

LH
2 (t)

LH
3 (t)

LH
0 (t)

LH
i (t)

τsu

Fig. 2. Video level l(t), estimated bandwidth B(t) dynamics and BUFFER FAIL, SWITCH UP events in the case of one Akamai video streaming flow
is received over the HSDPA downlink

0 50 100 150 200 250 300
0

5

10

15

20

s
e

c

time (s)

Buffer Buffer target

(a) Buffer length q(t) and buffer target length qT (t)

0 50 100 150 200 250 300
0

200

400

600

time (s)

T
h

ro
tt

le
 (

%
)

rtt−test

(b) Throttle percentage T (t) and rtt-test events

0 50 100 150 200 250 300

300
500
700

1000

1500

2000

2500

3000

3500

time (s)

k
b

p
s

Received video rate

(c) Goodput

Fig. 3. The case of one Akamai video streaming flow received over the
HSDPA downlink

buffer length qT (t), the throttle percentage T (t) along with
rtt-test events, and the goodput measured at the receiver.

When the experiment starts the video level l(t) is set to
l0, however, since the estimated bandwidth is above LH

2 (t),
according to (4), a SWITCH UP command is immediately
sent to the server asking to set the video level to l2. The
video level is actually switched up after a delay of 9.4s. Let
us now look at the dynamics of the buffer length q(t) and the
target buffer length qT (t) shown in Figure 3(a). When the
video level is switched up, the threshold qT (t) is increased
from 7s to 10s. Nevertheless, when the buffer length q(t)
drops to less than 7s at time t = 15.9s a BUFFER FAIL
command is sent asking the server to set the video level to
l1. The video level is kept to l1 until the estimated bandwidth
B(t) becomes slightly higher than LH

2 (t) at time t = 60s so
that a SWITCH UP command is sent and it is actuated after

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Average Goodput (kbps)

(a)

0.1% 1% 10% 100%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

paused time (%)

C
D

F

(b)

Fig. 4. Cumulative distribution functions of (a) goodput and (b) paused
time percentage (semilogarithmic scale) in the case a single flow is received
on the HSDPA downlink

a delay τsu of around 24s. By looking at the dynamics of
q(t) shown in Figure 3(a) we see that at the steady state
an offset is present since a proportional controller is used
to control the queue length. Finally, Figure 3(c) shows the
received goodput that exhibits remarkable oscillations due
to the fact that AHDVS periodically switches between two
states: in the normal state the video sending rate is bounded
by the maximum sending rate r(t) given by (2), whereas
each time a rtt-test command is issued AHDVS enters
the greedy-mode state and for a short time interval of around
5s the sending rate is limited by the available bandwidth.

Figure 4 shows the cumulative distribution functions of the
average received goodput and of the paused time percentage

17

in the considered scenario. The CDF of the average received
goodput (Figure 4(a)) shows a median value of around 700
kbps corresponding to the level l1 with a resolution of
640x360 and a 90th percentile of around 2000kbps which
supports a video level l2 with a resolution of 640x360. Let
us now consider the paused time percentage CDF shown in
Figure 4(b): the median value of P is 0.6% which means
that in half the experiments the video has been paused for
less than the 0.6% of the experiment duration. However, in
20% of the cases the video is paused for about 10% of the
experiment duration, resulting in roughly 30s of interruption.
Finally, the standard deviation of P in this scenario is 9.7%.

In conclusion this basic scenario shows that AHDVS is
not able to deliver high definition video over the HSDPA
downlink and even if in half the experiments the video inter-
ruptions are negligible, in more than 20% of the experiments
the video reproduction is affected by interruptions of more
than 30s.

B. One video streaming flow with one concurrent TCP flow

In this scenario we investigate the performance of AHDVS
stream-switching algorithm when sharing the HSDPA down-
link with one greedy TCP flow, such as in the case of a
parallel download session. The video streaming session is
started at t = 0, a greedy TCP connection is started at
t = 100s and it is stopped at t = 250s. Due to space
constraints we do not show the dynamics of the stream-
switching controller and we show the CDFs of goodput and
paused time percentage.

Figure 5(a) shows the CDF of the TCP goodput, the
goodput obtained by AHDVS and the aggregate goodput.
The CDF of the aggregate goodput shows that the median
value is 1160 kbps, meaning that the median fair share is
around 600 kbps. Nevertheless, the median value of the
goodput obtained by the Akamai flow is only 334 kbps,
whereas the median goodput obtained by the TCP flow is
892 kbps.

In order to measure the fairness we computed the JFI
and we obtained a low median fairness of 0.77 with a
standard deviation of 0.1. This indicates that, due to the
conservativeness of Akamai stream-switching algorithm, in
50% of the experiments the Akamai flow is not able to obtain
the fair share and it can only support the lowest video level
l0 = 300 kbps.

Finally, Figure 5(b) shows the CDF of the paused time
percentage achieved in this scenario. The figure shows that
the median value of the paused time percentage is 18.8%,
corresponding to a total playout interruption of 56 s due to
re-buffering.

The results obtained in this scenario clearly show that
AHDVS is not able to correctly adapt the video level in order
to obtain the fair-share and to avoid playout interruptions due
to the conservativeness of its stream-switching algorithm.

V. CONCLUSIONS

In this paper we have shown the results of an experimental
evaluation of the Akamai HD Video Streaming (AHDVS)

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

goodput (kbps)

C
D

F

Akamai

TCP

Aggregate

(a)

0.1% 1% 10% 100%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

paused time (%)

C
D

F

(b)

Fig. 5. (a) CDF of Akamai, TCP and aggregate goodput; (b) CDF of the
paused time percentage (semilogarithmic scale) in the case one video flow
shares the HSDPA downlink with a TCP connection

service over a HSDPA link in two different scenarios. The
main findings are: 1) the stream-switching algorithm employs
a conservative safety factor to trigger video level switch-
ups; 2) AHDVS flows are not able to achieve the fair
share when competing with a TCP greedy flow due to the
conservativeness of the stream-switching algorithm; 3) when
the link is shared with a greedy TCP connection in 50% of
the experiments the video reproduction was paused for more
than 18.8% of the experiment duration.

REFERENCES

[1] Akamai HD Network Demo. http://wwwns.akamai.com/hdnetwork/demo/flash.
[2] Move Networks HD adaptive video streaming.

http://www.movenetworkshd.com.
[3] Cisco Inc. Cisco Visual Networking Index:Forecast and Methodology

2009-2014. White Paper, June 2010.
[4] L. De Cicco and S. Mascolo. An Experimental Investigation of the

Akamai Adaptive Video Streaming. In Proc. of USAB 2010, Nov. 4–5,
2010.

[5] K. Dovstam, T. Einarsson, W. Eklof, and M. Kampmann. Stream-
switching with in-stream transmission rate probing for adaptive mobile
multimedia streaming. In Proc. of 17th IEEE International conference
on Image Processing, pages 2889–2892, 2010.

[6] D. Hassoun. Dynamic streaming in flash media server 3.5. Available:
http://www.adobe.com/devnet/flashmediaserver/.

[7] R. Pantos and W. May. HTTP Live Streaming. IETF Draft, June 2010.
[8] M. Sauter. Beyond 3G - Bringing Networks, Terminals and the Web

Together. John Wiley & Sons, 2008.
[9] V. Jacobson. Congestion avoidance and control. In Proc. of ACM

SIGCOMM ’88, pages 314–329, 1988.
[10] A. Zambelli. IIS smooth streaming technical overview. Microsoft

Corporation, 2009.

18

	University of New Mexico
	UNM Digital Repository
	9-28-2011

	An Experimental Evaluation of Akamai Adaptive Video Streaming over HSDPA networks
	Luca De Cicco
	Saverio Mascolo
	Chaouki T. Abdallah
	Recommended Citation

	An Experimental Evaluation of Akamai Adaptive Video Streaming Over HSDPA Networks

