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H∞ filtering of networked systems with time-varying sampling rates

Renato A. Borges, Ricardo C. L. F. Oliveira, Chaouki T. Abdallah and Pedro L. D. Peres

Abstract—In this paper, the problem of robust filter design
for networked systems with time-varying sampling rate is
investigated. The design conditions are obtained by using the
Lyapunov theory and the Finsler’s Lemma. A robust filter,
that minimizes an upper bound to the H∞ performance of the
estimation error, is obtained as the solution of an optimization
problem. A path-dependent Lyapunov function is used in order
to obtain less conservative design conditions. Robust filters
based on affine parameter-dependent Lyapunov functions can
be obtained as a particular case of the proposed method.
Numerical examples illustrate the results.

I. INTRODUCTION

The use of communication channels in the control of

dynamic systems is an important topic which has been

much investigated by the control community in the last

years. Networked control systems (NCS) have represented a

good alternative to implement distributed control and inter-

connected systems, among others. A better characterization

of how real-time networks exchange information between

system components is an important step towards a precise

description of stability and robustness properties for this class

of systems [1, 2]. The study of strategies to deal with packet

size constraints, time delays, uncertain sampling rates, and

so on, in NCS has received a special attention lately, as can

be seen in [3–7].

Over the last decades, the Lyapunov theory has been

extensively used for stability analysis, control and filtering of

dynamic systems. In many cases, the design conditions can

be expressed as a feasibility problem of a set of linear matrix

inequalities (LMIs). Concerning the index of performance,

there have been two basic criteria, respectively the mini-

mization of H2 and H∞ cost functions. Recent works in the

NCS framework include [8] dealing with feedback control

of a discrete-time Markovian jump system with random

delays, [9] in the context of multipoint-packet system and

H2 optimization, [10] concerned with stabilization of NCSs

by means of a packet-loss dependent Lyapunov function,

[11] where a Lyapunov-Krasovskii functional is used in the

control problem of a time-delay sampled system and [12] that

investigates the problem of robust estimation for uncertain

polytopic systems subject to limited communication capacity
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such as measurement quantization, signal transmission delay,

and data packet dropout.

In some particular situations, where either no solution or

only sufficient conditions are available in the literature, non-

convex approaches have also been applied in the stability

analysis of dynamic systems, as for instance bilinear matrix

inequality (BMI) tools. More details about optimization

problems expressed in terms of BMIs and some specific

applications can be seen in the works [13–15] and references

therein.

The aim of this paper is to provide robust filters for

networked systems subject to time-varying sampling rate. In

order to assure the stability of the estimation error dynamic,

a path-dependent Lyapunov function [16, 17] is applied. In

general, this class of function provides less conservative

results when compared with quadratic and affine Lyapunov

functions. The robustness of the filter is certified by an

H∞ guaranteed cost. Using extra variables introduced by

the Finsler’s Lemma, the design conditions are expressed

in terms of BMIs, that can be freely explored in the search

for better performance of the networked filtering system. All

the sampled system matrices are supposed to be affected

by the time-varying parameters, which are modelled inside

polytopic domains. The robust filter is then obtained by the

solution of an optimization problem that minimizes an upper

bound to the H∞ index of performance subject to a finite

number of BMI constraints formulated only at the vertices

of a polytope. Design conditions written in terms of LMIs

and based on affine Lyapunov functions can be obtained as

a particular case of the main result. Numerical examples

illustrate the efficiency of the proposed method.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the model described in Figure 1. The stable

physical plant is given by the following equations, for t ≥ 0

ẋ(t) = Ax(t)+Bw(t), x(0) = 0

z(t) =C1x(t)+D1w(t)

y(t) =C2x(t)+D2w(t)

(1)

where x(t) ∈ IRn is the state space vector, w(t) ∈ IRm is the
noise input belonging to L2[0,∞), z(t) ∈ IRp is the signal
to be estimated and y(t) ∈ IRq is the measured output. All
matrices are real, with appropriate dimensions.

System (1) is sampled with a period h, yielding the

discrete-time model, for k ∈ Z+ and x(0) = 0 [18]

x(kh+h) = As(h)x(kh)+Bs(h)w(kh)

z(kh) =C1s(h)x(kh)+D1s(h)w(kh) (2)

y(kh) =C2s(h)x(kh)+D2s(h)w(kh)
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Fig. 1. Networked Filtering Model.

The system matrices As(h), Bs(h), C1s(h), D1s(h), C2s(h) and
D1s(h) are given by

As(h) = eAh, Bs(h) =
∫ h

0
eAsdsB, C1s(h) =C1

D1s(h) = D1, C2s(h) =C2, D2s(h) = D2

(3)

In order to make model (2) closer to real systems, the sam-

pling period h must be considered a time-varying parameter.

As discussed in [5], h may change its value at run-time due

to different reasons, as bandwidth allocation and scheduling

decisions. Nevertheless, bounds in such variations can be

determined, guaranteeing that the actual value of h at each

instant k (i.e., hk) lie inside finite discrete sets as specified

below

hk ∈ {hmin, . . . ,hmax}, hk = κ ·g, κ ∈ N (4)

The parameter g is known as the processor/network clock

granularity and is closely related with the number of possible

values of (4), [5]. As for instance, the smaller g the bigger the

number of elements of (4). As a result, the sampled system

becomes an uncertain system with parameters that are time-

varying.

A full order proper robust filter is investigated here, being

given by

ẋ f (kh+h) = A f x f (kh)+B f y(kh), x f (0) = 0

z f (kh) =C f x f (kh)+D f y(kh)
(5)

where x f (t) ∈ IR
n is the filter state space vector and z f (t) ∈

IRp the estimated signal. All filter matrices are real, with

appropriate dimensions.

In order to represent the set of all possible matrices

in system (2) due to the time-varying uncertainties (4), a

polytopic model is considered. More specifically, the system

matrices, for any time kh ≥ 0, are described as a convex
combination of well-defined vertices, which are given by the

arrangements of the extreme values of (4).

The estimation error dynamics is given by

ς(kh+h) = Â(α(kh))ς(kh)+ B̂(α(kh))w(kh),ς(0) = 0

e(kh) = Ĉ(α(kh))ς(kh)+ D̂(α(kh))w(kh) (6)

where ς(kh) = [x(kh)′ x f (kh)
′]′, e(kh) = z(kh) − z f (kh),

α(kh) represents the time-varying uncertainties and1

Â(α) =

[

As(α) 0

B fC2s(α) A f

]

, B̂(α) =

[

Bs(α)
B fD2s(α)

]

1The time dependence of α(kh) will be omitted to lighten the notation.

Ĉ(α) =
[

C1s(α)−D fC2s(α) −C f
]

,
D̂(α) =

[

D1s(α)−D fD2s(α)
] (7)

The whole of possible outcomes for the set (7) belongs to

the polytope

P ,

{[

Â(α) B̂(α)

Ĉ(α) D̂(α)

]

=
N

∑
i=1

αi

[

Âi B̂i

Ĉi D̂i

]

}

(8)

with the time-varying vector α lying inside the unit simplex

U =

{

α ∈ IRN :
N

∑
i=1

αi = 1, αi ≥ 0 , i= 1, . . . ,N

}

for all kh≥ 0.
The filtering problem to be dealt with can be stated as

follows.

Problem 1: Find matrices A f ∈ IR
n×n, B f ∈ IR

n×q, C f ∈
IRp×n and D f ∈ IR

p×q of the filter (5), such that the estimation

error system (6) is asymptotically stable, and an upper bound

γ to the H∞ estimation error performance is minimized, that

is, for all kh≥ 0

sup
w(kh) 6=0

‖e(kh)‖22
‖w(kh)‖22

< γ2 (9)

with w(kh) ∈ l2[0,∞).
Before proceeding to the solution of Problem 1, a previous

result is needed.

Lemma 1: (Finsler) Let ξ ∈ IRa, Q = Q′ ∈ IRa×a, B ∈
IRb×a with rank(B) < a, andB⊥ a basis for the null-space of

B (i.e. BB⊥ = 0). The following statements are equivalent.

i) ξ ′Qξ < 0, ∀Bξ = 0, ξ 6= 0;
ii) B⊥′

QB⊥ < 0;
iii) ∃ µ ∈ IR :Q−µB′B < 0;
iv) ∃ X ∈ IRa×b :Q +X B +B′X ′ < 0.
Proof: See [19].

By applying the Bounded Real Lemma [20], combined

with the Finsler’s Lemma (1), the condition (9) can be

guaranteed as follows.

Lemma 2: For a given γ , if there exists a parameter-
dependent matrix P(α,α+)′ = P(α,α+) > 0 such that the
statements of Lemma 1 are satisfied for

Q =





P(α+,α++) 0 0

0 −P(α,α+) 0

0 0 0





+





0 0 0

0 γ−1B̂(α)B̂(α)′ γ−1B̂(α)(α)D̂(α)′

0 γ−1D̂(α)B̂(α)′ γ−1D̂(α)D̂(α)′− γI





B =
[

−I Â(α)′ Ĉ(α)′
]

,

B
⊥ =





Â(α)′ Ĉ(α)′

I 0

0 I



 , ξ =
[

ς(kh+h)′ ς(kh)′ w(kh)′
]′

where α+ = α(k+ 1) and α++ = α(k+ 2), then the error
dynamic (6) is asymptotically stable with an upper bound γ
to the H∞ performance.
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Proof: Let v(kh) = ς(kh)′P(α,α+)ς(kh) be a path-
dependent Lyapunov function given by

P(α,α+) =
N

∑
i=1

N

∑
j=1

αiα+ jPi j (10)

Considering the dual system (i. e. Â= Â′, B̂= Ĉ′, Ĉ= B̂′ and
D̂= D̂′), it is straightforward, in accordance with statement

i) of Lemma 1, that Lemma 2 ensures v(kh) > 0 and

∆v(kh) < −γ−1e(kh)′e(kh)+ γw(kh)′w(kh)

with the choice ξ = [ς(kh+ h)′ ς(kh)′ w(kh)′]′. Therefore,
from the Bounded Real Lemma, system (6) has an upper

bound γ to the H∞ performance and from the Lyapunov

theory [21] is asymptotically stable.

The conditions of Lemma 2 appear as nonlinearities that

must be tested at all points of the simplex U , i.e., at an

infinite number of points. Hence, the main goal hereafter is

to obtain finite-dimensional BMI conditions in terms of the

vertices of the polytope P to solve Problem 1. Using Schur

complement, change of variables and exploring the extra

variables provided by Lemma 1, finite-dimensional BMIs

assuring the existence of such filters are given in the next

section.

III. MAIN RESULTS

Theorem 1: (H∞ NETWORKED FILTERING) Given the sam-

pled system (2), if there exist matrices Z, Y , R, Q∈ IRn×n, L∈
IRn×q, J ∈ IRp×n, D̃ f ∈ IR

p×q, Gi j, Mi j =M
′
i j > 0 ∈ IR

2n×2n,

Hi j ∈ IR
p×2n i, j = 1, . . . ,N and a scalar γ > 0 such that2

Ξi jk ,









F11 F12 F̂3i− F̂
′
1H

′
jk 0

(⋆) F22 G jkF̂3i+ F̂
′
2iH

′
jk F̂4i

(⋆) (⋆) H jkF̂3i+ F̂
′
3iH

′
jk− γI F34

(⋆) (⋆) (⋆) −γI









< 0

(11)

i= 1, . . . ,N, j = 1, . . . ,N, k = 1, . . . ,N
F11 =M jk− F̂1− F̂

′
1, F12 = F̂2i− F̂

′
1G

′
jk

F22 = G jkF̂2i+ F̂
′
2iG

′
jk−Mi j, F34 = D1si− D̃ fD2si

F̂1 =

[

Z Y ′ +R′

Z Y ′

]

, F̂2i =

[

A′siZ A′siY
′ +C′2siL

′ +Q′

A′siZ A′siY
′ +C′2siL

′

]

F̂3i =

[

C′1si−C
′
2siD̃

′
f − J

′

C′1si−C
′
2siD̃

′
f

]

, F̂4i =

[

Z′Bsi
YBsi+LD2si

]

then there exists a proper robust filter in the form of (5),

ensuring the asymptotic stability of the estimation error

dynamic (6) and an H∞ guaranteed cost γ , with matrices
given by

A f = V̂
−1Q(UZ)−1, B f = V̂

−1L

C f = J(UZ)
−1, D f = D̃ f

(12)

where U ∈ IRn×n and V̂ ∈ IRn×n are matrices arbitrarily
chosen such that R= V̂UZ.

2The term (⋆) indicates symmetric blocks in the LMIs.

Proof: Firstly, applying the following operation

Ξ(α) =
N

∑
k=1

α++k

{

N

∑
j=1

α+ j

{

N

∑
i=1

αiΞi jk

}}

(13)

in the BMI (11) one gets

Ξ(α) =









F11(α) F12(α) F13(α) 0

(⋆) F22(α) F23(α) F̂4(α)
(⋆) (⋆) F33(α) F34(α)
(⋆) (⋆) (⋆) −γI









< 0

(14)

F11(α) =M(α+,α++)− F̂1− F̂
′
1,

F12(α) = F̂2(α)− F̂ ′1G(α+,α++)′

F13(α) = F̂3(α)− F̂ ′1H(α+,α++)′

F22(α) = G(α+,α++)F̂2(α)
+F̂2(α)′G(α+,α++)′−M(α,α+),

F23(α) = G(α+,α++)F̂3(α)+ F̂2(α)′H(α+,α++)′

F33(α) = H(α+,α++)F̂3(α)+ F̂3(α)′H(α+,α++)′− γI
F34(α) = D1s(α)− D̃ fD2s(α)

where

F̂2(α) =

[

As(α)′Z As(α)′Y ′ +C2s(α)′L′ +Q′

As(α)′Z As(α)′Y ′ +C2s(α)′L′

]

F̂3(α)′ =
[

C1s(α)− D̃ fC2s(α)− J C1s(α)− D̃ fC2s(α)
]

,
F̂4(α)′ =

[

Bs(α)′Z Bs(α)′Y ′ +D2s(α)′L′
]

Secondly, define the partitioned matrices [22]

F =

[

X ′ U ′

Û ′ X̂ ′

]

, F−1 =

[

Y V̂

V Ŷ

]

, T =

[

X−1 Y ′

0 V̂ ′

]

together with the following variable transformation

[

Q L

J D̃ f

]

=

[

V̂ 0

0 I

][

A f B f
C f D f

][

UZ 0

0 I

]

, R= V̂UZ (15)

where Z = X−1. Then, using the above change of variable,
multiply the inequality (14) to the left by S′ and to the right

by S with

S=

[

S 0

⋆ I

]

, S =

[

T−1 0

⋆ T−1

]

, I =

[

I 0

⋆ I

]

yielding the following inequality









P(α+,α++)−F−F ′ L12(α) L13(α) 0

(⋆) L22(α) L23(α) B̂(α)
(⋆) (⋆) L33(α) D̂(α)
(⋆) (⋆) (⋆) −γI









< 0

(16)

L12(α) = FÂ(α)′−F ′TG(α+,α++)′T−1

L13(α) = FĈ(α)′−F ′TH(α+,α++)′

L22(α) = (T ′)−1G(α+,α++)T ′FÂ(α)′

+Â(α)F ′TG(α+,α++)′T−1−P(α,α+),

L23(α) = (T ′)−1G(α+,α++)T ′FĈ(α)′

+Â(α)F ′TH(α+,α++)′

L33(α) = H(α+,α++)T ′FĈ(α)′

+Ĉ(α)F ′TH(α+,α++)′− γI
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where P(α,α+) = (T ′)−1M(α,α+)T−1. Using Schur com-
plement, inequality (16) can be rewritten as follows




P(α+,α++)−F−F ′ L12(α) L13(α)
(⋆) L22(α) L23(α)
(⋆) (⋆) L33(α)



+ϒ′γ−1ϒ < 0

(17)

where

ϒ =
[

0 B̂(α)′ D̂(α)′
]

.

Defining

X =
[

F ′ F ′TG(α+,α++)′T−1 F ′TH(α+,α++)′
]′
(18)

inequality (17) yields statement iv) of Lemma 1 with Q, B

and ξ given as in Lemma 2. Lastly, the filter matrices are
obtained by the change of variables (15), what concludes the

proof.

Corollary 1: The minimum γ attainable by the conditions
of Theorem 1 is given by the optimization problem

minγ s.t. (11) (19)

From this point, some remarks are in order.

Remark 1: Theorem 1 provides a robust filter in a single

step taking into consideration all possible outcomes of hk
in (4), meanwhile minimizes an upper bound to the H∞

performance of the estimation error with respect to w(kh).
By choosing G(α+,α++) = 0 and H(α+,α++) = 0 the

conditions of Theorem 1 reduce to LMIs. As a conse-

quence, Corollary 1 becomes a convex optimization problem

that can be handled by Semi-Definite Programming (SDP)

algorithms, as for instance SeDuMi [23] and YALMIP

[24] within the Matlab environment. In this paper, state-

ment iv) in Lemma 1 was applied to reach BMI condi-

tions with multipliers defined as in Lemma 2 and X =
[F ′ F ′TG(α+,α++)′T−1 F ′TH(α+,α++)′]′. The advan-
tages of this approach is due to the extra variables that can

be used in the search for better performance of the closed-

loop system. For example, a lower H∞ guaranteed cost may

be obtained exploring the new variables G(α+,α++) and
H(α+,α++).
Remark 2: The conditions of Theorem 1 were obtained by

using path-dependent Lyapunov functions. As shown in [16,

17], whenever robust stability analysis is at issue, this class

of functions yields necessary and sufficient conditions for

arbitrarily time-varying discrete-time systems. Furthermore,

in the BMI framework presented here a similar strategy was

used in order to write the extra variables G(·) and H(·) as
a function of two different instant of time, i.e., G(α,α+)
and H(α,α+). As a consequence, the results of Theorem
1 may be improved in two different ways. Firstly, a larger

path of the Lyapunov function (10) can be explored in the

search for a tighter upper bound γ , or secondly by using
the path-dependent variables G(·) and H(·) within the BMI
framework. The design conditions when the Lyapunov func-

tion is given by v(kh) = ς(kh)′P(α)ς(kh) can be obtained
as a particular case of Theorem 1 as stated in Corollary 2.

Corollary 2: A sufficient condition for H∞ robust filter

design in terms of an affine Lyapunov function, i. e. v(kh) =

ς(kh)′P(α)ς(kh), is obtained by solving Theorem 1 with
matrices G jk =G j, H jk =H j, Mi j =Mi and M jk =M j. Note
that inequality (11) does not depend on the instant k anymore.

Proof: The proof is similar to the proof of Theorem 1,

except that operation (13) becomes

Ξ(α) =
N

∑
j=1

α+ j

{

N

∑
i=1

αiΞi j

}

. (20)

Remark 3: Concerning the BMI approach, many meth-

ods appeared so far in the literature could be applied in

the solution of problem (19). Nevertheless, the following

algorithms are suggested. The first one is sometimes called

an Alternating Semi-Definite Programming (or Gauss-Seidel)

method [13] and consists of fixing some variables and

solving for others in such a way that at each step a convex

optimization problem is solved. The second one is called

path-following method [25] and consists of linearizing the

BMIs and then compute an increment that slightly improves

the controller performance by solving an SDP problem.

Although in both case there is no guarantee of convergence

to local minimum, these methods are easy to implement and

provide good results in many cases.

Remark 4: By setting the variables G(α+,α++) and
H(α+,α++) at time kh+ h and kh+ 2h (α+ = α(kh+ h),
α++ = α(kh+2h)) in (18) all products between parameter-
dependent matrices appeared in (17) are done in different

instants of time. As a consequence, the number of BMIs and

the computational time required to solve the optimization

problem (19) are reduced. If Theorem 1 was written with

G(·) and H(·) at time kh and kh+ h a more sophisticated
procedure, as the one proposed in [26], should be applied in

order to get the BMI conditions expressed just in terms of

the vertices of the polytope, resulting in a larger number of

BMIs.

Remark 5: Lastly, the use of time-varying uncertainties

in polytopic domains to model uncertain delays brings some

advantages to face Problem 1. First of all, it does not require

the knowledge of the processor/network clock granularity g.

Secondly, the time-varying uncertainties, introduced during

the sampling stage, can be completely modeled by a polytope

of the form (8). The conditions of Theorem 1 are directly

applicable to networked systems whose matrices depend

affinely on the vector of time-varying parameters, since this

class of systems has a polytopic representation whenever

the parameters are bounded [27]. Furthermore, and the most

interesting one, the number of values in set (4) does not

influence the computational burden, in other words, a larger

number of hk does not require a bigger computational effort,

what allows the clock granularity to be as small as possible.

IV. NUMERICAL EXPERIMENTS

Example I: This example, borrowed from [28], consists

of a simplified model of an armature voltage-controlled DC

servo motor, consisting of a stationary field and a rotating

armature and load. All effects of the field are neglected. The

aim is to design an H∞ robust filter to estimate the armature
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Fig. 2. DC Servo motor as presented in [28].

current given the speed of the shaft. All information is sent

through a communication network. The behavior of the DC

servo motor shown in Figure 2 can be described by the

differential equations

[

θ̈
ρ̈a

]

=









−
b

J

KT

J

−
Kθ

La
−
Ra

La









[

θ̇
ρ

]

+

[

2

2

]

ω

y=
[

0 1
]

[

θ̇
ρ

]

(21)

where ea is the externally applied armature voltage, ρa is the
armature current, Ra the resistance of the armature winding,

La the armature winding inductance, em the back-emf voltage

induced by the rotating armature winding (em = Kθ θ̇ ,Kθ >
0), b the viscous damping due to bearing friction, J the

moment of inertia of the armature and load and θ the
shaft position. Further, the torque generated by the motor

is given by T = KT ia. For J = 0.01kgm2/s2, b = 0.1Nms,
KT = Kθ = 0.01Nm/Amp, Ra = 1Ω and La = 0.5H, system
(21) can be rewritten in the form (2) with the following

system matrices

As =

[

e−10hk −0.0003e−2hk 0.125(e−2hk − e−10hk)
0.002(e−10hk − e−2hk) −0.0003e−10hk + e−2hk

]

,

Bs =

[

0.025e−10hk −0.125e−2hk +0.099
0.0000626e−10hk −0.99e−2hk +0.99

]

, (22)

C1s =
[

0 1
]

, C2s =
[

1 0
]

D1s = 0, D2s = 0.

The sampling rate is allowed to vary within the interval

hk ∈ [0.001 0.099]. The estimation error is then expressed by
polytope (8) with two vertices (N = 2), where the parameters
αi are related to hk. Theorem 1 was solved by using the Al-
ternating Semi-Definite Programming. Each iteration consists

of two steps. First the problem is solved with G(·) = 0 and
H(·) = 0 and second, G(·) and H(·) are explored in the
search for a better H∞ upper bound γ . With one iteration,
Theorem 1 provided a robust filter with H∞ upper bound

γ = 1.8174 and matrices given by

A f =

[

−0.3912 −2.4208
0.2457 1.3843

]

, B f =

[

101.7747
−13.2249

]

,

C f =
[

0.0042 0.0227
]

, D f =
[

1.4816
]

.

Example II: Consider a sampled system (2) described by

a polytope with two vertices given by

As1 =





0.2463 −0.9935 0.3908
0.8745 −0.8092 0.7600
0.1245 −0.1056 1.0363



 , Bws1 =





0

1

0





As2 =





−0.3492 −0.1346 0.5364
−0.1717 0.4711 0.5756
0.5425 0.1483 −0.4035



 ,Bws2 =





1

1

1





C1s1 =C1s2 =
[

1 0 1
]

,C2s1 =C2s2 =
[

−1 0 1
]

D1s1 = D1s2 =
[

0
]

,D2s1 = D2s2 =
[

1
]

.

In order to illustrate the efficiency of the proposed method,

Theorem 1 was contrasted with Corollary 2. With one iter-

ation, the H∞ upper bound γ was reduced in approximately
24.68%. This improvement is concerned with the use of
a path-dependent Lyapunov function in Theorem 1. It is

important to mention that robust filtering methods based

on quadratic Lyapunov functions, as the one proposed in

[29, Theo. 5], can also be applied in the framework studied

here, although it will be in general more conservative. In

this example, [29, Theo. 5] was not able to find a feasible

solution. The results are summarized in Table I.

TABLE I

RESULTS AND IMPROVEMENT ASSOCIATED TO THE PROPOSED

CONDITIONS AND [29, THEO. 5] IN THE ROBUST FILTERING DESIGN

GIVEN IN EXAMPLE II.

Method γ Improvement No. iteration

[29,Theo.5] infeasible – –
Corollary 2 10.3652 – 1
Theorem 1 7.8068 24.68 % 1

As the number of iterations increases, better bounds on

the H∞ cost can be obtained. The behavior of γ within 10
iterations is shown in Figure 3.

Number of iteration

γ

Theo. 1
Cor. 2

1 2 3 45 5

6

6

7

7

8

8

9

9

10

10

11

Fig. 3. H∞ upper bounds for Example II.
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V. CONCLUSION

The H∞ robust filtering for networked systems with time-

varying sampling rate modeled as a time-varying parameter

belonging to a polytope has been addressed in this paper.

A sufficient condition has been stated by using a path-

dependent Lyapunov function. Extra variables provided by

the Finsler’s Lemma were used to derive BMI conditions

that may be explored in the search for a better H∞ perfor-

mance. The filter design is accomplished by means of an

optimization problem described only at the vertices of the

polytope. H∞ robust filter design conditions based on affine

parameter-dependent Lyapunov functions can be obtained

as a particular case of the proposed method. The strategy

presented also provides some improvements when compared

with other methods from the literature in the context of robust

filter design for discrete-time systems with time-varying

uncertainties, what increases its reliability when applied in

networked systems.

REFERENCES

[1] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” IEEE Control Syst. Mag., vol. 21, no. 1, pp. 84–99,
February 2001.

[2] G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability analysis of
networked control systems,” IEEE Trans. Contr. Syst. Technol., vol. 10,
no. 3, pp. 438–446, May 2002.
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