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A SURVEY OF STATE-FEEDBACK
SIMULTANEOUS STABILIZATION TECHNIQUES !

R.A. LUKE?, P. DORATO?, and C.T. ABDALLAH?
Department of Electrical and Computer Engineering
University of New Mexico, U.S.A.

ABSTRACT

This paper surveys the control theory literature having to do with the
simultaneous stabilization of countably finite sets of systems in the state-
space domain. Design methods based upon control parameterization, lin-
ear equation solution, and linear matrix inequalities are discussed. The
roles of nonlinear programming and convex programming techniques are
included, as is a brief description of the applicability of software-based
quantifier elimination techniques.
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INTRODUCTION

The problem of simultaneous stabilization of a countably finite number of systems
is important in control theory. Applications have been cited in the literature regarding
the control of several different linearized operating points of a nonlinear plant and
the anticipation of failure modes of a mechanical and/or electronic device. Other
situations are also applicable.

The problem, briefly stated, is one of finding a single controller that will stabilize
each member of a finite and countable set of plants. In terms of state-feedback, a

single controller
wi(t) = —Ka(t) | (1)

is sought, where z;(t) € R", u;(t) € R?, and K € R?", that stabilizes a set of
continuous-time state-space linear time-invariant ordinary differential equations

(1) = Aja(t) + Bjuy(t) . j € In = {1,....m} . (2)

!This is a preprint of the paper that was presented at the 2nd World Automation Congress,
Montpellier, France, May 27 30, 1996. It can be found in the Proceedings for that conference.
This work was supported in part by the NASA Center for Autonomous Control Engineering at the
University of New Mexico.
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The papers discussed in this survey consider both the single-input case (¢ = 1 in [1],
[14], [18], and [19]) and the multiple-input case (¢ > 1 in [6] and [9]). In the former,
the state control vector is k™ = [ki, ko, ..., k,] and in the latter, the control matrix
is a ¢ X n array.

Blondel [5] demonstrates that it is not possible to rationally decide® whether or not
a set of three or more systems is simultaneously stabilizable. Fortunately, however,
testable sufficient conditions are available. This means that, as happens frequently in
engineering design, the sufficient conditions must be used and the consequent design
conservatism accepted.

The papers approach the problem from a number of different directions. Schmit-
tendorf and Hollot [19] show that simultaneous stabilization is possible if there exists a
vector ¢ such that systems ¢! (s — A;)'b; satisfy several conditions, the most restric-
tive of which is that all must be minimum phase. Ackermann [1] considers a space K
containing all linear state-feedback control gain vectors k. He then partitions K to ob-
tain a subspace guaranteed to simultaneously stabilize systems. Howitt and Luus [14]
give a nonlinear programming problem which produces the linear controller. Boyd, et
al. [6] show that simultaneous stabilizability can be guaranteed if there exists a single
solution to a set of m linear matrix inequalities. Paskota, et al. [18] simultaneously
stabilize systems by solving nonlinear Liénard-Chipart constraints. Dorato, et al. [10]
apply a relatively new computational technique known as quantifier elimination to
verify Liénard-Chipart stability conditions. Finally, Chow [9] defines a “multimode”
system controllability matrix which simultaneously describes the controllability of all
m systems {(A;, B;) }ier,,- He gives a sufficient condition to simultaneously place the
closed-loop system poles in regions containing the user-specified locations.

MINIMUM PHASE APPROACH

The method due to Schmittendorf and Hollot [19] applies only to those single-input
transfer functions with relative degree unity, a significant limitation. They define the
jth plant in the frequency domain to be (sI — A;) 'b; = n;(s)/d;(s) where n;(s) is a
column vector with polynomial entries and the polynomial d;(s) = det(sI — A;).

Theorem 1 (Schmittendorf and Hollot [19]) If there exists ¢ € R" satisfying,
for each j € I, (i) ¢'ni(s) is of order n — 1, (ii) ¢"'n;(s) is Hurwitz, and (iii) the
sign of the leading coefficient of ¢"n;(s) is invariant over all j; then the control u =
—vcl'aw = kTx, where v is chosen by a short algorithm omitted here, simultaneously
stabilizes the m plants (2). n

The proof follows from simple root-locus arguments on the transfer functions P;(s) =
(s — A)~'b;.

LINEAR EQUATION SOLUTION FOR FEEDBACK GAIN

Ackermann Formula Approach

5« . rationally undecidable: it is not possible to find a general criterion that involves only the

coefficients of three or more linear systems, rational operations, logical operations (‘and’ and ‘or’)
and sign tests operations (equal to, greater than, greater than or equal to, etc.) and that is necessary
and sufficient for simultaneous stabilizability of the systems.”



Ackermann [1] considers the problem of bounding the single-input system closed-
loop eigenvalues with a region I' in the complex plane which depends explicitly on
system design specifications. Let I" be the space of complex scalars containing all pos-
sible user-specified closed-loop poles. When simultaneous stabilization is considered,
I is the open left hand plane (LHP). When stabilization is extended and simulta-
neous performance design is considered (such as system overshoot and settling time
responses) then I' is a subset of the open LHP.

Define I C R" to be the space containing all static feedback gain vectors k£ € IR".
Let K be the set of all gains k£ which place closed-loop poles inside I'. The idea is to
map the system eigenvalue constraints I into the space K, thus defining the subspace
Kr that is equivalent (via an affine transformation) to I

First, the given region I' is used to construct an equivalent space based on the
values of the coefficients of the equivalent closed-loop characteristic polynomials. Con-
sider the characteristic polynomials for each of the m systems

det [S] — (A] — b]]{iT)] =\" + Clu)\nil + -t Gny, ] € Im (3)

and define for each a vector of coefficients p; = [anj, @n_1,,-..,a1;]. Let P denote the
space of all vectors p; and let Pr C P denote the space of all vectors p; that result
in closed-loop system eigenvalues being contained by I'.

Then define W; to be the matrix that transforms each system (A;, b;) into control-
lable canonic form. It is then possible to use the affine mapping k] =k +pl W, ! to
characterize a space Kr; for each system j that corresponds to characteristic polyno-
mial coefficient space Pr. The bias vector kg is found with a short algorithm omitted
here. After spaces Kr, have been found for each of the systems, define the total space
as Kr = NJL;Kr,. This means that in the context of nonlinear programming the opti-
mization variables will include the components of the gain vector k. The constraints
to be satisfied will include the mathematical characterization of region Ky-.

Simultaneous Stability Design

Howitt and Luus [14] use the brute force idea of minimizing the scalar objective
7 subject to nonlinear inequality constraints on closed-loop eigenvalues R[A;;(A; —
bik)] < v, Vi € I,, j € I, as their point of departure. They note the difficulty
in optimizing such systems, specifically the nonlinear eigenvalue constraints so they
add the eigenvalues to the list of optimization variables and constrain system modes
linearly. Additional constraints are also required to enforce the conjugacy of complex
eigenvalues. They point out that their method can be derived from that of Ackermann
[1].

The nonlinear programming constraints that explicitly describe the relationship
between feedback vector k£ and the eigenvalues can be posed by relating £ to the
coefficients of the characteristic polynomial. Let eJT be the bottom row of the inverse
of the controllability matrix for the jth system and define arrays

Gj = - [ €; A?Ej (A]”.fl)Tej ]71 e R™*"
h; = G, (A?)Tej e R™.



It turns out that the relationship between the eigenvalues of each of the m closed-loop
systems on the one hand, and the feedback vector k being sought on the other, can
be written as Gk + h; =0, for all j € I,,,.

Since A; and b; are real, the eigenvalues will be complex conjugate pairs and /or re-
als as \j; = «y;+j3;; for even numbers of eigenvalues. When J;; is real the correspond-
ing B;; = 0. It can be shown that the nonlinear programming problem will require
the following additional constraints to enforce this behavior: g; = [61; + (o, 1025 +
2 1j, B35+ Baj, 3B + i Bag, - -+, Bt + Bnjs an—1;0nj +aniBn-1;]" = 0 where
N =nifniseven and N =n —1if n is odd. The numerical nonlinear programming
Problem 1 can be used to construct a static k if one exists (that is, if 7 < 0).

Nonlinear Programming Problem 1 (Howitt and Luus [14])

Minimaze the scalar objective function v where the feedback gains k, bound vy, and
eigenvalues \;; are the optimization variables, subject to the state equations (2), the
control equation (1) and the following equality and inequality constraints o;; < 7,
Gik+h; =9;, and g; =0, Vi€ I,,, j € I,. ]

In a subsequent paper [15], Howitt and Luus present an algorithm based on the
positive-definite secant BFGS (Broyden, Fletcher, Goldfarb, and Shanno) algorithm.

LINEAR MATRIX INEQUALITIES

Boyd, et al. [6] discuss the simultaneous stabilization of m systems in the context
of quadratic stabilizability of a continuum of systems. It can be shown that all
multi-input systems {(A;, B;)}jer,, can be simultaneously stabilized by a single static
feedback gain K if there exists a matrix solution P = P* > 0 to the set of m matrix
Lyapunov inequalities

(A - BjK)" P+ P(A; — B;K)+W <0 (4)

for some W > 0 dictated by the particular application.

The intent is to solve these inequalities for P and K, but they are not convex
in those matrix variables. But it is possible to use a change of variables to arrive
at a convex reformulation. As suggested by Bernussou, et al. [4], let P =Y ' and
K = XY !, then pre- and post-multiply each term in inequalities (4) by Y = Y1 > 0
to obtain

—YAT + X"B] =AY + B X YWY > 0. (5)

This inequality is now quadratic in Y and can also be linearized through the invocation
of the LMI Lemma which states:

Theorem 2 (LMI Lemma, Boyd, et al. [7])
Consider matrices Q = Q1 >0 and R = R" > 0. Then

Q S
ST R

R > 0

>0 9 9_spist s 0.




Let Q; = —YA]T—A]-Y—FXTB]-T—BjX, S =Y, and R = W', This allows inequalities
(5) to be rewritten as Q; — SR™'S > 0; and W > 0 implies R = W' > 0. Via the
LMI Lemma, each of the quadratic matrix inequalities can be rewritten as the convex
and linear matrix inequalities

YAl - A)Y + X"Bl + B;X YV

>0 .

Y w-!

If there is a single solution (X, Y") to each of the j LMIs, there exists a simultaneously

stabilizing static feedback gain controller K = XY ~!. That is, to prove simultaneous

stabilizability, one need only look for solutions to this collection of m different LMIs.

It has been reported in the literature that convex optimization methods known

as interior-point programming (see Nesterov and Nemirovskii [16]) are particularly

adept at numerically solving such LMI-constrained convex programming problems.

Computational tools specifically designed to solve LMI problems are available (LMmI-

TOOL, in El Ghaoui, et al. [12] and Nikoukhah, et al. [17]) and nonlinear convex

optimization problems in general (Sp, Vandenberghe and Boyd [20]; and SpDPSOL,
Boyd and Wu [8]). There is also an LMI toolbox for MATLAB.

Quantifier Elimination

Paskota, et al. [18] describe the simultaneous stabilization of single-input sys-
tems (2) by enforcing nonlinear Liénard-Chipart conditions (see Gantmacher [11])
on the coefficients of each of the corresponding characteristic polynomial equations
(3). Barnett and Cameron [3] provide four different sets of conditions, each of which
is necessary and sufficient for the characteristic polynomials to be Hurwitz. One of
those sets is a,;(k) > 0, an_9,;(k), ...and Hy; > 0, H3; > 0 ...where H;; is the ith
leading principal minor of an n x n Hurwitz matrix, for all j € [,,,. Coefficients of the
jth characteristic polynomial can be calculated with Leverrier’s method (Ackermann
[1]) a;;(k) = —tr{fl;- —I-aljfl;*l - ta; A} )i where Aj = A; — bik” for all i € I,,.
It turns out that a,; = 0 for all r > n.

Dorato, et al. [10] extend similar work by Anderson, et al. [2]. They apply a
relatively new computational method known as quantifier elimination® to the neces-
sary and sufficient Liénard-Chipart conditions. Until recently such decision theoretic
problems have been essentially intractable due to computational complexity. They
discuss the robust stabilization of a single system so their results are extended herein.
If the parameters in feedback gain vector k enter the coefficients of the characteristic
polynomial as polynomial functions, then the Liénard-Chipart inequality constraints
can be thought of as polynomial inequality contraints. Denote those inequalities as
u;j(k) > 0. Then simultaneous stabilizability is equivalent to the quantified formu-
lae: (Vi,7)(3 K) u;;(K) > 0. This quantifier-based expression can then be processed
with software known as QEPCAD (see Hong [13]) to automatically produce statements
with some of the quantifiers eliminated. The statements can be used to establish the
existence of a solution and to obtain sets of admissible &.

SIMULTANEOUS PLACEMENT OF POLES IN DISKS

6That is, the elimination of all universal ¥ and existential 3 quantifiers to produce an equivalent
quantifier-free expression.
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Figure 1: Disks ¢;; in the Complex s-Plane

Several papers have been written on the problem of pole-placement through feed-
back design. Chow [9] wrote in 1990 about using pole placement for multiple-input
“systems with multiple operating conditions” (read: “simultaneous pole-placement”).
He constructs a controller that places poles “locally” near design specifications

)\(Aj - BjK) = Oij, Vi€l ,

0i; being the n-vector of desired eigenvalues for the jth system. There exists a solution
to the precise simultaneous pole placement problem if and only if there exists K
satisfying det[s] — (A; — B;K)| = p;(s), j € I,, where p;(s) is the characteristic
polynomial corresponding to the user-specified poles. But this is unlikely so the
placement of the poles in discs centered at points o;; is sought instead.

Let Cjp = [bje, Ajbje, - -, A;-l’lbjd be the controllability matrix of the jth system
with respect to the /th control. Note that v € IR? and that the control coefficient
matrix B; for the jth system is considered to be composed of ¢ column vectors as
B; = [bj1,bjo,...,bj,]. Let the multimode controllability matrix C associated with
the (A;, B;)-controllable pairs be a block matrix with the (j, £)th block being C;; as
C = [Cieljern, te1,- Let 055, 1 € I,, be aset of n disks in the complex s-plane centered at
the eigenvalues of the jth open-loop system A(A;), for each of the open-loop systems.
In Figure 1, each disk 4;; has fixed radius e. Chow then proves a local pole-placement
Theorem 3.

Theorem 3 (Chow [9]) (Sufficiency) If rank C = mn then there exists e* > 0 such
that for all e € (0,e*], there exists a gain K placing the eigenvalues of the closed-loop
systems (A;, Bj), j € I, within disks d;; (not necessarily completely contained by the
left-half plane) for all j € I, i € I,,. |

The condition of exact placement of poles is therefore relaxed to one of placing poles in



regions 0;; provided that one eigenvalue is located in each disk and that the conjugacy
of complex poles is satisfied.

SUMMARY AND CONCLUSIONS

This paper surveys the control theory literature on methods useful for the simul-
taneous stabilization of an integer number of dynamical systems. It concentrates on
methods having to do with state-space descriptions of systems, rather than the input-
output frequency domain descriptions. Based on the numbers of papers counted on
each side, it seems that we move in a relatively less congested direction. The areas
of linear static state feedback are covered, especially those involving control parame-
terization, mapping techniques, and nonlinear and convex programming design.
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