
University of New Mexico
UNM Digital Repository
Electrical & Computer Engineering Faculty
Publications Engineering Publications

1-1-2008

Responsive Algorithms for Defending Recon
gurable Networks
Chaouki T. Abdallah

I-Ching Boman

Jared Saia

Edl Schamiloglu

Follow this and additional works at: https://digitalrepository.unm.edu/ece_fsp

This Article is brought to you for free and open access by the Engineering Publications at UNM Digital Repository. It has been accepted for inclusion in
Electrical & Computer Engineering Faculty Publications by an authorized administrator of UNM Digital Repository. For more information, please
contact disc@unm.edu.

Recommended Citation
Abdallah, Chaouki T.; I-Ching Boman; Jared Saia; and Edl Schamiloglu. "Responsive Algorithms for Defending Recon gurable
Networks." (2008). https://digitalrepository.unm.edu/ece_fsp/125

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp/125?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


Responsive Algorithms for Defending Reconfigurable Networks

I-Ching Boman ∗ Jared Saia∗ Edl Schamiloglu Chaouki T. Abdallah

Abstract
We present algorithms to self-heal reconfigurable networks when they are under attack.

These algorithms reconfigure the network during attack to protect two critical invariants. First,
they insure that the network remains connected. Second, they insure that no node increases its
degree by more than O(log n). We show both theoretically and empirically that our algorithms
can successfully maintain these invariants even for large networks under massive attack by a
computationally unbounded adversary.

1 Introduction
In this paper, we design responsive algorithms that provably protect critical invariants in re-
configurable networks. Our algorithms are responsive in the sense that they adaptively fix the
network while an attack is occuring. This is in contrast to the standard, non-responsive ap-
proach that designs a network that is robust from the very start to the worst conceivable attack.
The non-responsive approach assumes that a massive adversarial attack occurs instantaneously
and that the network can do nothing while the attack is occurring. In contrast, the responsive
approach assumes that the network can respond during the course of an attack.

There are many critical invariants that one would like to maintain while a network is un-
der attack, including: keeping the network connected, keeping node degrees low, keeping the
diameter low, and preserving the ability to route quickly. In this paper, we focus only on keep-
ing the network connected and keeping node degrees low. We present responsive algorithms
that can maintain these invariants even when the network is under attack by an omniscient and
computationally unbounded adversary.

Responsive algorithms are useful for networks that are dynamically reconfigurable: networks
that can change their topology during an attack. Following are three categories of dynamically
reconfigurable networks and the types of attacks that can occur on them.
• Reconfigurable networks of computational devices: These include peer-to-peer, ad-hoc and

sensor networks. Here the nodes are the devices, there is an edge between two nodes if a
communication link is established between the computational devices. An adversary may
remove nodes by, for example, launching EMP attacks against the computational devices.
After an attack, we want to reconfigure the network to ensure that the computation or
data aggregation the network is performing can continue uninterrupted.

• Infrastructure networks: An example dynamically reconfigurable infrastructure network
is the following air transportation network. Each node represents an airport and there
is an edge between two nodes if there are direct flights between the airports these nodes
represent. An attacker may remove nodes by incapacitating an airport. After an attack,
we want to reconfigure the edges to maintain invariants such as connectivity and low
diameter.

∗Department of Computer Science, University of New Mexico, Albuquerque, NM 87131-1386; email:
saia@cs.unm.edu. This research was partially supported by NSF grant CCR-0313160 and Sandia University Re-
search Program grant No. 191445.

1



• Social networks: In these networks, each node represents a person in an organization.
There is an edge between two nodes if, for example, information can be spread directly
between the two people represented by the nodes. An attacker may remove nodes by
incapacitating individuals. After an attack, we want to reconfigure the edges of the network
to ensure that information can still flow efficiently through the network.

There are two limitations of the responsive approach. First, it can only be used for networks
that are dynamically reconfigurable i.e. it must be possible to quickly add extra edges to the
network. While the networks mentioned above all have this property, not all networks do.
For example, networks where the edges are physical wires are not dynamically reconfigurable.
Second, the responsive approach only works in situations where there is time to respond to the
attack. In particular, the approach will not work in the case of a massive, instantaneous attack.

When the responsive approach can be used, however, it has several significant advantages
over the non-responsive approach. First, we can guarantee better protection than with the
non-responsive approach. For example, using the responsive approach, we can guarantee that
all nodes in the network stay connected even if a constant fraction of the nodes are deleted by
an adversary. It is easy to show that this type of guarantee is not possible for non-responsive
networks. Second, the responsive approach is more resource efficient than the non-responsive
approach. In particular, the non-responsive approach requires the network to be designed from
the start to resist the worst conceivable adversarial attack. In contrast, the responsive approach
adjusts the amount of resources it commits to network protection based on the severity of the
current attack. Finally, the responsive approach works for any type of initial network topology.
The non-responsive approach requires that the network topology be carefully designed from the
start to be robust to attack.
Our Model: We now describe our model of attack and network response. We assume that the
network is initially a connected graph over n nodes. We consider the case of both directed and
undirected graphs. We assume that every node knows not only its neighbors in the network but
also the neighbors of its neighbors i.e. neighbor-of-neighbor (NoN) information. In particular,
for all nodes x,y and z such that x is a neighbor of y and y is a neighbor of z, x knows z.

We assume that there is an adversary that is attacking the network. This adversary knows
the network topology and our algorithms, and it has the ability to delete carefully selected nodes
from the network. However, we assume the adversary is constrained in that in any time step it
can only delete a small number of nodes from the network. We further assume that after the
adversary deletes some node x from the network, that the neighbors of x become aware of this
deletion and that they have a small amount of time to react.

When a node x is deleted, we allow the neighbors of x to react to this deletion by adding
some set of edges amongst themselves. We assume that these edges can only be between nodes
which were previously neighbors of x. This is to ensure that, as much as possible, edges are
added which respect locality information in the underlying network. We assume that there is
very limited time to react to deletion of x before the adversary deletes another node. Thus, the
algorithm for deciding which edges to add between the neighbors of x must be fast and localized.
Our Results: The main theoretical result of this paper is an responsive algorithm that we call
the Line Algorithm, whose properties are summarized in the following theorem, which is proven
in Section 4

Theorem 1. The line algorithm has the following properties
• It ensures that the network is always connected
• It increases the degree of any vertex by at most log2 n where n is the number of vertices in

the network before attack
• It is locality aware in the sense that it adds edges only between nodes that have just had a

neighbor deleted.

This results is quite interesting in lieu of the following theorem which we prove in Section 4.

2



Theorem 2. Locality aware algorithms can increase a node’s degree by at least log3 n.

The main empirical result in this paper is a comparison of the line algorithm and several
heuristics we have designed on a family of power-law networks(also known as scale-free). We
find that the line algorithm is the most effective algorithm at limiting maximum degree increase.
However, many of the heuristics are able to keep the average degree increase to O(log n), where
n is the number of nodes in the initial graph. Moreover, these heuristics are likely to run much
faster than the line algorithm in a distributed setting.

2 Related Work
There have been various papers that discuss strategies for adding spare capacity and rerouting
in anticipation of failures [12, 15, 8, 3, 14, 4]. Médard, Finn, Barry, and Gallager [9] propose
constructing redundant trees to make backup routes possible when an edge or node is deleted.
Anderson, Balakrishnan, Kaashoek, and Morris [1] modify some existing nodes to be RON
(Resilient Overlay Network) nodes to detect failures and reroute accordingly. Some networks
have enough redundancy built in so that separate parts of the network can function on their
own [5]. In all these cases, the network (nodes and edges) is fixed.

Our algorithm and heuristics, on the other hand, add edges to the network as node failures
occur. We guarantee that the network remains connected but do not dictate routing paths.

3 The Line Algorithm
Our main algorithm, which we call the Line algorithm, stems from two observations. First,
when a graph loses connectivity, it is broken into connected components. Connecting these
components in a tree will reestablish connectivity. Second, a line is a tree with minimal edges,
and therefore minimal degrees. Since each connected component will contain at least one vertex
that was a neighbor of the deleted vertex, connecting them in a line will limit their degree
increase to one or less (lose one edge, gain at most two). In addition, the neighbors that become
the two endpoint of the line do not increase their degrees.
We now define several variables to aid with the description of our algorithm. For a fixed time
step we define the following:
• The actual network at that step is G(V,E)
• Let E′ be the edges that have been added by the algorithm up to that time step. (note
E′ ⊆ E).

• Let G′ = (V,E′). Note that G′ is a forest (see Lemma 1)
• Let N(v,G) be the neighbors of vertex v in graph G.
• Let T (v, x) be the tree in G′ − x that contains v.
• Let each vertex v have a weight, w(v).
• For vertices v and x, let W (v, x) =

∑
v′∈T (v,x)

w(v′)

• For vertex v, let rem(v) =
∑

u∈N(v,G′)

W (u, v)− max
u∈N(v,G′)

W (u, v) + w(v)

The Line algorithm is defined in Figure 1; an example of how it works is given in Figure 2.

4 Theoretical Analysis
We prove the following lemmas about the Line algorithm:

Lemma 3. The edges added by the algorithm, E′, form a forest.

Proof. At the start of the algorithm, there are no cycles because E′ is empty. Each vertex is
in its own tree, so G′ forms a forest. During any timestep in the algorithm, deleting a vertex x
from the forest forms another forest. Since at most one vertex gets new edge(s) per tree in G′,

3



Line Algorithm:
Initialize each vertex v to have weight w(v) = 1 before the first
timestep. Then, for each timestep:
• Let G,G′ be the graphs at a fixed timestep as defined above,

and let x be the node deleted by the adversary at the timestep.
• Let N∗(x) be a maximal set of neighbors of x that are uncon-

nected in G− x.
1. Let v1, v2 be vertices in N∗(x) with maximal W (∗, x) values, i.e.
W (v1, x) ≥ W (v2, x) and ∀j ∈ N∗(x) s.t. vj 6= v1, W (v2, x) ≥
W (vj , x)

2. w(v1)← w(v1) + w(x).
3. Add edges to connect the vertices in N∗(x) in a line, L, such

that v1 and v2 are the endpoints of L.

Figure 1: The Line Algorithm

x
v2v1

v4 v5

v3

v1 v3 v4 v5 v2

Figure 2: An example of the Line algorithm. Circles are vertices, triangles are the associated trees,
and the hollow circle is the vertex to be deleted. The size of the triangles are proportional to the
tree weight of the attached vertices.

the new edges do not introduce cycles within a tree. Since the new edges form a line, they also
do not introduce cycles between trees.

Lemma 4. The algorithm increases a vertex’s degree by at most one in each time step. The
degree of a vertex only increases if the vertex becomes an interior point in L.

Proof. The algorithm only connects vertices in a line. In a line, the highest degree vertices are
the interior vertices, so interior vertices get the maximum degree gain. Since all vertices in the
line were neighbors of x, they all lose one edge through x’s deletion. The net edge gain for the
interior vertices in the line is therefore −1+2 = 1. All other vertices have a net gain of zero.

Lemma 5. Whenever the algorithm increases a vertex v’s degree, rem(v) at least doubles.

Proof. Let rem(v) be v’s rem value before x is deleted, and rem′(v) be v’s rem value after
x is deleted and edges of L are added. To prove that rem′(v) ≥ 2rem(v), we will show that
rem(v) ≤W (v, x) and rem′(v) ≥ 2W (v, x).

4



t

t

W(t,x)

v

W(v,x)

W(s,x)

New Edge (from the set E’)

Old Edge (from the set E−E’)

x

v

s

s

W (x, v) = max(W (u ∈ N(v, G′), v)

Figure 3: The dashed and solid lines belong to E, the solid lines belong only to E′. The dotted lines
define subtrees. For v’s degree to increase, x must have two neighbors that have W (∗, x) values
larger than W (v, x).

Before x is deleted, by definition:

rem(v) =
∑

u∈N(v,G′)

W (u, v)− max
u∈N(v,G′)

W (u, v) + w(v).

Thus, ∀u′ ∈ N(v,G′), rem(v) ≤
∑

u∈N(v,G′)

W (u, v)−W (u′, v) + w(v).

There are two cases:
• Case 1: x ∈ N(v,G′)

rem(v) ≤
∑

u∈N(v,G′)

W (u, v)−W (x, v) + w(v);

= W (v, x).

Where the second step follows because W (v, x) is the sum of w(v) and all the subtrees of
v except for the subtree with x before the deletion of x (see Figure 4).

• Case 2: x /∈ N(v,G′)
x and v must be connected by an edge because x ∈ N(v,G) in order for v to be eligible to
be an interior point in L and gain a degree. Since x /∈ N(v,G′), x and v must be connect
by an edge in E − E′. Therefore

rem(v) ≤
∑

u∈N(v,G′)

W (u, v) + w(v)

= W (v, x)

Where the second step follows because no substree of x can be counted in rem(v) because
x is not in N(v,G′) or in any of the subtrees of v (see Figure 4).

For both cases, in order for v to gain degree, it needs to be an interior point in L, by Lemma
4. Let’s call L’s endpoints s and t (see Figure 3). In order for s and t to be endpoints of L,

5



w(v)v

W(x,v)
W(x,v)

v

x

Case 1 Case 2

W(v,x) W(v,x)w(v)

x

∑
u∈N(v,G′)

W (u, v)
∑

u∈N(v,G′)

W (u, v)

Figure 4: Lemma 3: cases before x is deleted.

either W (s, x) ≥W (t, x) ≥W (v, x) or W (t, x) ≥W (s, x) ≥W (v, x). Without loss of generality,
assume

W (s, x) ≥W (t, x) ≥W (v, x) (1)

Therefore after the deletion of x, the rem value becomes:

rem′(v) = W (v, x) +
∑

u∈N(x,G−x), u 6=s

W (u, x)

≥ W (v, x) +W (t, x)
≥ 2W (v, x) (by equation 1).

Thus, rem′(v) ≥ 2 rem(v). Therefore, the rem value of a vertex at least doubles when that
vertex gains a degree.

Lemma 6. For every vertex v, rem(v) is non-decreasing over any vertex deletion where v has
not been deleted.

Proof. By Lemma 3, every vertex v in G′ belongs to some tree, which we will call Tv. For every
Tv in G′, let the sum of the weights of all vertices in Tv be called w(Tv).

By definition: rem(v) =
∑

u∈N(v,G′)

W (u, v)− max
u∈N(v,G′)

W (u, v) + w(v)

Therefore: rem(v) = w(Tv)− max
u∈N(v,G′)

W (u, v)

Observe first that w(Tv) cannot decrease because even when no new vertices are added to
Tv because the deleted vertex’s weight is not “lost”, but added to some member of Tv.

Initially, v does not have any subtrees, so rem(v) = 0. When one edge is added to v, there is
only one subtree, therefore, rem(v) is still zero. When two edges have been added to v, rem(v)
increases to some positive number.

For all subsequent steps, since w(Tv) cannot decrease, rem(v) would only decrease if the
maximum subtree weight increases more than the tree weight’s increase. Since the maximum
subtree is a subset of the tree, Tv, any increases or decreases in the maximum subtree is also
counted in w(Tv). Therefore the maximum subtree weight cannot increase by more than the
tree weight and rem(v) cannot decrease.

Lemma 7. For all vertices, v, rem(v) is always no more than n.

6



Proof. Since the subtrees of a vertex are disjoint, no vertex is counted twice in a rem value.
Since the set of subtrees cannot include more than the number of vertices remaining, the rem
value is always no more than the sum of the weights of all undeleted vertices in G′. Let’s call
this value W ∗.

After initialization, all vertices have weight 1. Since there are n vertices, W ∗ is n. Therefore
the rem value is no more than n at initialization. At each step of the algorithm, the weight of
the deleted vertex is added to one of the remaining vertices, so W ∗ remains constant at n. Thus
the rem value of any vertex remains no more than n.

We are now ready to prove Theorem 1.

Proof. It is immediate that the line algorithm is locality-aware and that it preserves connectivity.
We now show that the degrees of all vertices do not increase too much. Every vertex v starts
with rem(v) = w(v) = 1. By Lemma 6, v’s rem value never decreases at any time step of the
algorithm. By Lemma 5, whenever the degree of v increases, rem(v) at least doubles. Since
rem(v) is always at most n by Lemma 7, the rem value of v can double at most log2 n times.
Therefore, vertex v can increase its degree at most log2 n times. Each time, it increases its
degree by only one (Lemma 4). Thus, the maximum degree increase is log2 n.

We next show that the latency of the line algorithm is small. Given a graph with n vertices
and m edges, we run depth first search [2], which takes O(n + m) time, to find disconnected
neighbors of the deleted vertex. Then we connect at most n vertices in a line. Assuming it takes
constant time to add one edge, it takes O(n) to connect n vertices in a line. The total time is
still O(n+m).

We now prove Theorem 2

Proof. We prove this by construction. We observe that whenever G is broken into three con-
nected components, one component is forced to increase its degree. Let µ be the maximum
increase in degree experienced by any vertex. The adversary can selectively delete vertices so
that no matter how the components are connected, µ has to increase.

We build a graph in the following manner. Starting with a single level tree with three leaves,
T1, we connect the root node of three such trees to a new node to make a new tree, T2, with
the new node as the root. We connect the root node of three T2 trees to another new node to
make a new tree, T3, and so forth.

For each node, v, let ∆(v) be the increase in its degree from its initial degree. The adversary
first deletes nodes that were root nodes in T1 trees, forcing a leaf node to become an interior
node and gain a degree, and µ to become 1. See Figure 5 Then, the adversary deletes nodes
that were root nodes in T2 trees, forcing one of the ∆(v) = 1 nodes to increase its degree and µ
to increase to 2. See Figure 6.

1 2 31

2

34

Figure 5: Max degree increase changes from zero to one

With selective trimming of nodes to position the maximal degree increase vertices, this
technique of forcing the algorithm to join three nodes with the highest ∆(v) values will increase
µ for each level of the tree. Since there are log3 n levels in the tree, µ = log3 n eventually.
Through this example, we have shown that a node can be forced to increase its degree by log3 n
by the adversary.

7



1

2

7

4 8

5

3

(+1)

(+1)

(+1)

9

(+1)10

(+1)12
1

2

4 8

5

(+1)

(+1)

(+1)

9

(+1)10

(+1)12
7

1

2

7

10

1

2

7

10

12

84 4 8

5

6 6

33

(+1)

11

9

1

2

7

10

4 8

5

3

(+1)

(+1)

(+1)

11

9

12 12

1

2

4 8

5

(+2)

(+1)

(+1)

9

(+1)10

(+1)12

11

9

Figure 6: Max degree increase changes from one to two

5 Empirical Results
If the Line algorithm is implemented distributedly, the latency can be large. In order to find
the trees in G′ after deletion, a distributed depth first search would have to be done. This takes
time linear in the diameter of the network. The large diameters of lines increases the latency.

Thus, in this section, we investigate what will happen if all the neighbors of the deleted
vertex are connected in a line, without regard to being in the same tree or not. In this case,
a depth first search is not be necessary, and the run time is independent of the diameter. We
experimented with several criteria for determining endpoints, as we did with the Line algorithm.

5.1 Setup
Sets of power-law graphs with degree distribution Ck−γ where C = 20 and γ = 3 were randomly
generated using the procedure giving in [13]. Then, an adversary deletes a vertex from the graph
using one of two attack schemes and a responsive algorithm is applied. This deletion-response
pattern was repeated n−2 times. 1 One attack scheme removes the maximum degree vertex from
the remaining vertices, the other scheme removes a random vertex. The responsive algorithms
are:
• maxIncNbrs: All neighbors of the recently deleted vertex are connected in a line unless

they already share an edge. Neighbors with the most degree increase(s) are placed at the
ends.

• minIDNbrs: All neighbors of the recently deleted vertex are connected in a line unless
they already share an edge. A neighbor with minimal ID is selected as an endpoint. The
minimal ID propagates its ID to all other vertices connected to it. Each vertex starts with
a randomly assigned ID in a fixed range.

• maxIncTrees: Uses the Line algorithm described in the previous section. One neighbor
from each connected component in G′ (a tree) is selected. They are connected in a line.
The neighbors with the most tree weight(s) are placed at the ends.

• maxIncComps: One neighbor from each connected component in G (not G′, the forest)
is selected. They are connected in a line. Neighbors with the most degree increase(s) are
the endpoints.

1Source code is available at http://www.cs.unm.edu/homes/iching/SELFHEALING/programs.tar.gz.

8



Figure 7: Maximum degree increase. The left plot shows random adversarial attack. The right plot
shows adversarial attack that repeatedly deletes the node with maximum degree.

5.2 Results
We measured the following, where each vertex vj starts with degre vj(0), and has degree deg(vj)
at the end of a timestep:
• Maximum Degree Increase over time and vertices:
∀ timestep 1 ≤ t ≤ n− 1 and vertex j : max

t
(max

j
(deg(vj)− vj(0)))

• Average Maximum Degree Increase over all time steps:
1
n

∑
j

(max
t

(deg(vj)− vj(0)))

We found that connecting all neighbors leads to a much greater maximum degree increase
than the logarithmic bound with the components-only algorithms (see Figure ??). The average
maximum degree increase, although still worse than the components-only algorithms, was log-
arithmic for the all-neighbors line algorithm. (see Figure 8). This is not unexpected, because
once a node has been deleted, its degree can no longer increase. As more vertices are deleted, al-
though some nodes keep increasing their degree and increasing the maximum degree increase of
the graph, more nodes stay constant in their degree increase. An example of the Line algorithm
in action is given in Figure 9.

6 Conclusions and Future Work
We have developed an algorithm, called the Line algorithm, that maintains connectivity after
node deletions by adding locality aware edges. It guarantees a degree increase of at most log2 n,
which we have shown to asymtotically match a lower bound on locality aware algorithms. We
have shown empirically that this algorithm performs well in protecting large-scale networks.

In addition, we compared hueristics that connect all neighbors with heuristics that connect
only components in a line. We found empirically that connecting all neighbors, which is likely
to run much faster in a distributed setting, limits average degree increase to be logarithmic. On
the other hand, taking the time to find the connected components that formed upon deletion of
a vertex is essential if one has to limit the maximum degree increase.
The following is a description of some ideas for future work:
Modify Randomized Minimum ID Heuristic The heuristic that assigns random IDs to

9



Figure 8: Average Maximum degree increase. The left plot shows random adversarial attack. The
right plot shows adversarial attack that repeatedly deletes the node with maximum degree.

vertices and connects them using the minimum ID vertex as an endpoint failed to limit
degree increase because the number of ID changes does not measure the number of degree
increases. However, perhaps the heuristic can be modified without sacrificing its speed and
simplicity. Some other method besides changing IDs may be applied that can measure the
number of degree changes.

Decrease Diameter In the worst case, the diameter of the reconnected graph can become
rather large, since lines have large diameters. Improving the diameter would be the next
logical step. One idea is to connect the components into binary trees instead of lines. The
inner nodes of the tree would experience a degree increase of two, as opposed to a degree
increase of one experienced by the inner nodes of a line. On the other hand, there can be
more than two nodes (leaf nodes) that do not gain any net degree. In a line of more than
three nodes, only two can be spared from degree increases.

Add Edge Costs Another variable that deserves further investigation is the cost of adding
edges. Currently we only add edges to nodes that are at most two edges apart before
deletions. If a cost is associated with each potential edge, and each node is allocated a
certain “budget” initially, we can model the problem more accurately.

Investigate Cascading Failures It would be interesting to test how our algorithm handle
cascading failures. Each vertex starts with a certain capacity. When a vertex is deleted,
some of its “load” (often defined as the number of shortest paths that go through the
vertex) is diverted to the remaining vertices. The remaining vertices, in turn, can fail
if the extra load exceeds their capacities. Studies have shown that power-law networks
are vulnerable to cascading failures ([11] [7]). Motter and Lai had a strategy for prevent-
ing cascading failures with intentional removals [10]. Hayashi an Miyazaki had another
strategy that also adds edges, called emergent rewirings [6]. It would be interesting to
compare how the Line algorithm compares against these algorithms, and perhaps modify
the algorithm to also deal with cascading failures.

10



References
[1] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient overlay

networks. SIGOPS Oper. Syst. Rev., 35(5):131–145, 2001.
[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. McGraw-Hill, second edition, 2001.
[3] Robert D. Doverspike and Brian Wilson. Comparison of capacity efficiency of dcs network

restoration routing techniques. J. Network Syst. Manage., 2(2), 1994.
[4] T. Frisanco. Optimal spare capacity design for various protection switchingmethods in atm

networks. In Communications, 1997. ICC 97 Montreal, ’Towards the Knowledge Millen-
nium’. 1997 IEEE International Conference on, volume 1, pages 293–298, 1997.

[5] Sanjay Goel, Salvatore Belardo, and Laura Iwan. A resilient network that can operate under
duress: To support communication between government agencies during crisis situations.
Proceedings of the 37th Hawaii International Conference on System Sciences, 0-7695-2056-
1/04:1–11, 2004.

[6] Yukio Hayashi and Toshiyuki Miyazaki. Emergent rewirings for cascades on correlated
networks. cond-mat/0503615, 2005.

[7] Petter Holme and Beom Jun Kim. Vertex overload breakdown in evolving networks. Phys-
ical Review E, 65:066109, 2002.

[8] Rainer R. Iraschko, M. H. MacGregor, and Wayne D. Grover. Optimal capacity placement
for path restoration in stm or atm mesh-survivable networks. IEEE/ACM Trans. Netw.,
6(3):325–336, 1998.

[9] Muriel Medard, Steven G. Finn, and Richard A. Barry. Redundant trees for preplanned
recovery in arbitrary vertex-redundant or edge-redundant graphs. IEEE/ACM Transactions
on Networking, 7(5):641–652, 1999.

[10] Adilson E Motter. Cascade control and defense in complex networks. Physical Review
Letters, 93:098701, 2004.

[11] Adilson E Motter and Ying-Cheng Lai. Cascade-based attacks on complex networks. Phys-
ical Review E, 66:065102, 2002.

[12] Kazutaka Murakami and Hyong S. Kim. Comparative study on restoration schemes of
survivable ATM networks. In INFOCOM (1), pages 345–352, 1997.

[13] M E J Newman, S H Strogatz, and D J Watts. Random graphs with arbitrary degree
distributions and their applications. Physical Review E, 64:026118, 2001.

[14] B. van Caenegem, N. Wauters, and P. Demeester. Spare capacity assignment for different
restoration strategies in mesh survivable networks. In Communications, 1997. ICC 97
Montreal, ’Towards the Knowledge Millennium’. 1997 IEEE International Conference on,
volume 1, pages 288–292, 1997.

[15] Yijun Xiong and Lorne G. Mason. Restoration strategies and spare capacity requirements
in self-healing atm networks. IEEE/ACM Trans. Netw., 7(1):98–110, 1999.

11



Figure 9: The top image is a power-law network with 100 nodes. The bottom left image is a
snapshot of this network after 25 adversarial deletions of maximum degree nodes, healing using the
Line algorithm. The bottom right image is a snapshot of the same network after 75 adversarial
deletions of maximum degree nodes, healing using the Line algorithm.

12


	University of New Mexico
	UNM Digital Repository
	1-1-2008

	Responsive Algorithms for Defending Recon gurable Networks
	Chaouki T. Abdallah
	I-Ching Boman
	Jared Saia
	Edl Schamiloglu
	Recommended Citation


	tmp.1478296445.pdf.vEZOP

