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Abstract

Our goal in this paper is to study the performance of
the game-theoretic power control algorithms for wireless
data introduced by Saraydar et al [1] in two realistic chan-
nels: (a1) Fast flat fading channel and (a2) Slow flat fad-
ing channel. The fading coefficients under both (a1) and
(a2) are studied under an appropriate small scale channel
model that is used in the CDMA cellular systems, namely
Nakagami channel model. To do so, we derive a closed-
form expression of the average utility function which repre-
sents the number of bits received correctly at the receiver
per one Joule expended. Then, using this expression we
study the existence, uniqueness of Nash equilibrium (NE),
and the social desirability of NE in the Pareto sense.

1. Introduction

The mathematical theory of games was introduced by
Von Neumann and Morgenstern in 1944 [10]. A core idea of
game theory is how strategic interactions between rational
agents (players) generate outcomes according to the play-
ers’ preferences [7],[11]. Game theory thus forms a suit-
able framework to obtain more insight into the interactions
of self-interested agents with potentially conflicting inter-
ests. A player in a non-cooperative game responds to the
actions of other players by choosing a strategy (from its
strategy space) in an attempt to maximize a utility function
that quantifies its level of satisfaction.

In a cellular system each user desires to have a high SIR
at the base station (BS) coupled with the lowest possible

transmit power. It is important in such systems to have high
SIR, as this will reflect a low error rate, a more reliable sys-
tem, and high channel capacity, so that more users can be
served per cell. It is also important to decrease the trans-
mit power to lengthen battery life and to alleviate the near-
far problem. In power control algorithms exploiting game
theory however, the tendency of each user to maximize its
utility function in response to other users’ actions, leads to
a sequence of power vectors that converges to a point where
no user has incentive to individually increase its power. This
operating point is called a NE Point. Due to the lack of co-
operation between the users this point may not be efficient,
in the sense that it may not be the most desirable social point
[1]. In Pareto sense, the most desirable point is actually the
power vector that Pareto dominates all other power vectors.

The power control problem for wireless data CDMA sys-
tems was first addressed in the game theoretic framework in
[2],[1], then in [5],[6]. In this paper the work in [1], which
only dealt with deterministic (nonfading) channels, is stud-
ied in a realistic wireless CDMA channels by considering
the following two fading models: Nakagami fast flat fading
and Nakagami slow flat fading channel models. Here we
derive a closed-form expression of the average of the utility
function proposed in [1]. We then evaluate the performance
of their proposed game-theoretic algorithms through the ex-
istence, uniqueness and social desirability of NE operating
point under the assumed channel models.

The remaining of this paper is organized as follows:
In Section 2 we present the utility function and the sys-
tem model studied in this paper. In Section 3 we eval-
uate the performance of the system for the channel mod-
els mentioned above. Non-cooperative power control game
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(NPG) and Non-cooperative power control game with pric-
ing (NPGP) are discussed briefly in Sections 4 and 5, re-
spectively. We then point out the constraints on the new
modified strategy spaces to guarantee the existence and
uniqueness of NE points for NPG and NPGP under the as-
sumed channel models in Section 6. Simulation results are
outlined in Section 7, and our conclusions are given in Sec-
tion 8.

2. Utility function and system model

In general utility functions are used to quantify the satis-
faction level a player achieves by choosing an action from
its strategy profile, given the other players’ actions. A util-
ity function thus maps the player’s preferences onto the real
line. A formal definition of a utility function may be found
in [7]

In a CDMA cellular system, a number of users shar-
ing the spectrum and air interface. Henceforth, each user’s
transmission adds to the interference of all users at the BS.
Each user desires to achieve a high quality of reception at
the BS, i.e., a high SIR, while using the minimum possible
amount of power in order to extend the battery’s life. The
conflicting goal of each user to have a high SIR at the BS
makes the game theoretic framework suitable for studying
and solving the problem.

In this paper we consider the same system model and
the same utility function of [1]: Single-cell direct sequence
code division multiple access (DS-CDMA) system with N
users, where each user transmits frames (packets) of M
bits with L information bits. The rate of transmission is
R bits/sec for all users. Let Pc represent the average prob-
ability of correct reception of a frame at the BS, and let p
represent the average transmit power level. The utility func-
tion for a CDMA system is given by:

u =
LR

M p
f(γ) (1)

where f(γ) is an efficiency function that approximates Pc.
Thus, u represents the number of information bits success-
fully received at the BS per joule of expanded energy. With
the assumption of no error correction, and correct packet
reception rate P̃c, i.e., Pc = E{P̃c}, is then given by∏M

l=1(1 − P̃e(l)), where P̃e(l) is the bit error rate (BER)
of the lth bit at a given SIR γi. Pe is the average BER, that
is Pe = E{P̃e} (c. f. (15)). It should be noted that the
efficiency function f(γ) has the same expression of Pc in
terms of P̃e, except that P̃e is replaced by 2P̃e (see [1] for
more details).

3. Evaluation of the performance

In this Section we derive a closed-form formulas of the
average utility functions under Nakagami fast/slow channel
models. The derived formulas are then used to study the
existence and uniqueness of NE point in Section 6.

The SIR of the ith user (γi) at the BS is assumed to be
large (γi � 1) to combat the fading effect, it is given by
[9]:

γi =
W

R

pi hi α
2
i∑N

k �=i pk hk α2
k + σ2

(2)

Where αi is the path fading coefficient between ith user and
the BS and is constant for each bit in a fast flat fading chan-
nels (a1), while it is constant for each packet in a slow flat
fading channels (a2). W is the spread spectrum bandwidth,
pk is the transmitted power of the kth user, hk is the path
gain between the BS and the kth user, and σ2 is the variance
of the AWGN (additive-white-gaussian-noise) representing
the background thermal noise in the receiver. For simplicity
we express the interference from all other users as xi, i.e.

xi =
N∑

k �=i

pk hk α
2
k (3)

therefore (2) can be written as:

γi = γi(αi, xi) =
W

R

pi hi

xi + σ2
α2

i = γ
′
iα

2
i (4)

For a given αi and xi, the BER, P̃ (e|αi, xi), of the ith user
using BFSK is given by [9]:

P̃ (e|αi, xi) =
1
2
e−

γi(αi,xi)
2 (5)

The average BER and average utility functions for this mod-
ulation scheme is evaluated next under the previously men-
tioned channel models.

3.1 Nakagami flat fading channel

Here, the fading coefficient αi is modelled as a Nak-
agami random variable with a probability distribution
given by [9]: fαi(ω) = 2mm

Γ(m)Ωm ω2m−1 e(−
m
Ω )ω2

; i =
1, 2, · · · , N where Ω = E{α2

i } controls the spread of the
distribution. The fading figure m = Ω2

E{(α2
i−Ω)2} is a mea-

sure of the severity of the fading channel, where m = ∞
corresponds to a nonfading channel. In the following it is
assumed that Ω = 1. Then the distribution of γi for fixed xi

is given as: fγi|xi(ω) = 1
Γ(m)

(
m
γ
′
i

)m

ωm−1 e
−( m

γ
′
i

) ω
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3.1.1 Nakagami fast flat fading channel

We find the conditioned error probability P̃ (e|xi) as:

P̃ (e|xi) =
∫ ∞

0

P̃ (e|ω, xi) fγi|xi(ω)dω

=
1

2Γ(m)

(
m

γ
′
i

)m ∫ ∞

0

ωm−1 e
−(

γ
′
i+2m

2γ
′
i

) ω
dω

=
1
2

(
2m

2m+ γ
′
i

)m

(6)

For fixed m and γ
′
i � 1, (6) can be rewritten as:

P̃ (e|xi) ≈ 1
2

(
2m
γ

′
i

)m

(7)

To find the average Pe, we need to find the mean of
(xi + σ2)m. Here, xi is a summation of independent ran-
dom variables each distributed according to a Gamma den-
sity function. This makes the evaluation of (xi + σ2)m te-
dious and it may be easier to find an approximate density
function of xi. To do this, let us recall Esseen’s inequality
which estimates the deviation of the exact distribution of a
sum of independent variables from the normal distribution
[12].

Theorem 1 let Y1, · · · , YN be independent random vari-
ables with EYj = 0, E|Yj |3 < ∞ (j =
1, · · · , N). Let σ2

j = EY 2
j , BN =

∑N
j=1 σ

2
j , LN =

B
−3/2
N

∑N
j=1E|Yj |3. Let ψN (z) be the c.f. (cumulative

distribution ) of the random variableB−1/2
N

∑N
j=1 Yj . Then

|ψN (z) − e−z2/2| ≤ 16LN |z|3 e−z2/3 (8)

Define Ỹk = pkhkα
2
k and Yk = Ỹk − pkhk. By sim-

ple calculations we can find that Ỹk, (k = 1, · · · , N) are
Gamma distributed random variables, such that f Ỹk(ω) =
(m/pkhk)m

Γ(m) ωm−1 e−(m/pkhk)ω and EỸk = pkhk, which
means that Yk, (k = 1, · · · , N) are zero mean random
variables. Note that σ2

k = EY 2
k = (pkhk)2/m,∀k =

1, · · · , N , and therefore, BN = 1
m

∑N
k=1(pkhk)2. It

is fairly simple to find out that the third moment

E|Yk|3 = EY 3
k = 2(pkhk)3

m2 (Yk ≥ 0), and LN =
2
∑N

k=1(pkhk)3√
m (

∑N
k=1(pkhk)2)3/2 . For large N , LN has a very small

value, i.e., LN << 1. Examining (8) for small values of
z, LN takes care of the bound and making it very small,
while for large values of z, the exponential will decrease the
bound and make it approach zero. In conclusion, we can ap-
proximate xi as a Gaussian random variable with mean ζxi

and variance σ2
xi

given by:

ζxi
= E{xi} = E




N∑
k �=i

α2
kpk hk




=
N∑

k �=i

pk hk E{α2
k} =

N∑
k �=i

pk hk (9)

and

σ2
xi

= E{x2
i } − ζ2

xi

= E




N∑
l �=i

N∑
k �=i

plhlpk hk α
2
l α

2
k


− ζ2

xi

=
1
m

N∑
k �=i

(pk hk)2 (10)

where (10) was obtained using the fact that αk and αl are
statistically independent for all k �= l. So, we can write fxi ,

the PDF of xi, as follows: fxi(w) = δi√
2πσxi

e
− (w−ζxi

)2

2σ2
xi ,

where w ≥ 0 and δi = 2/(1 + Erf [ζxi
/
√

2σxi
]) is a scal-

ing factor such that fxi(w) is a valid PDF. Erf [.] is the
error function. By examining equations (9) and (10), one
can see that ζxi

� σxi
, therefore δi ≈ 1. Averaging (7)

over fxi(ω) we obtain the average error probability Pe for
high SIR below:

Pe ≈ 1
2

(
2m

W
R pi hi

)m ∫ ∞

0

(
xi + σ2

)m

× 1√
2πσxi

e
− (xi−ζxi

)2

2σ2
xi dxi

=
1
2

(
2m

W
R pi hi

)m ∫ ∞

σ2
ym

× 1√
2πσxi

e
− (y−(ζxi

+σ2))2

2σ2
xi dy

≈ 1
2

(
2m

W
R pi hi

)m ∫ ∞

0

ym

× 1√
2πσxi

e
− (y−(ζxi

+σ2))2

2σ2
xi dy (11)

where we used the change of variable y = xi + σ2 and the
last approximation in (11) used the fact that σ2 	 1. By
examining (11) one can see that it is the mth moment of
a random variable y normally distributed with mean ζy =
ζxi

+ σ2 and variance σ2
y = σ2

xi
. Therefore, the average Pe
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is given by:

Pe =
1
2

(
2m

W
R pi hi

)m

E {ym}

=
1
2

(
2m

W
R pi hi

)m

E {((y − ζy) + ζy)m}

=
1
2

(
2m

W
R pi hi

)m m∑
k=0

(
m

k

)
ζm−k
y Ck

= 2m−1

(
m

γi

)m m∑
k=0

(
m

k

)
Ck

ζk
y

(12)

where γi is the ratio of the mean of the received power from
user i to the mean of the interference at the receiver and
given by:

γi =
W

R

pi hi∑N
k �=i pk hk + σ2

, (13)

and Ck is the kth central moment and it is given by [9]:

Ck =
{

1.3 · · · (k − 1)σk
xi

k even
0 k odd

By splitting up the summation in (12), we obtain:

m∑
l=0

(
m

l

)
Cl

ζl
y

= 1 +
(
m

2

)
σ2

xi

(σ2 +
∑N

k �=i pk hk)2
(14)

+ · · · +
(
m

m′

)
1.3 · · · (m′ − 1)σm

′−1
xi

(σ2 +
∑N

k �=i pk hk)m′

where m
′

= m if m is even and m
′

= m − 1 if m is
odd. Since σ2

x (see (10)) is very small compared to ζxi
(see

(9)), we can approximate the summation by its leading term
which is 1. Therefore the average Pe at high SIR behaves
like:

Pe ≈ 2m−1

(
m

γi

)m

(15)

And the average utility function of the ith user is given by:

ui =
L R

M pi

(
1 − 2m

(
m

γi

)m)M

(16)

3.1.2 Nakagami slow flat fading channel

ui(p|xi) can be determined as follows:

ui(p|xi) =
∫ ∞

0

ui(p|ω, xi)fγi|xi(ω)dω

=
∫ ∞

0

L R

M pi
(1 − e−ω/2)M 1

Γ(m)

×
(
m

γ
′
i

)m

ωm−1 e
−( m

γ
′
i

) ω
dω (17)

By factorizing (1 − e−γi/2)M and using the identity∫∞
0
yne−a y dy = Γ(n+1)

an+1 we obtain:

ui(p|xi) =
LR

M pi

M∑
k=0

(−1)k

(
M

k

)(
2m

k γ
′
i + 2m

)m

(18)
For fixedm and high SIR, γ

′
i � 1 (18) can be approximated

as:

ui(p|xi) ≈ LR

M pi

[
1 + (

1
γ

′
i

)m
M∑

k=1

(−1)k

(
M

k

)(
2m
k

)m
]

(19)
Averaging (19) with respect to the distribution of xi and
using the same argument as in (11), (12) and (14) we end up
with the final approximate averaged utility function given
by:

ui ≈ LR

M pi

[
1 + (

1
γi

)m
M∑

k=1

(−1)k

(
M

k

)(
2m
k

)m
]

ui ≈ LR

M pi

[
1 − ξ (

1
γi

)m

]
(20)

where ξ = −∑M
k=1(−1)k

(
M
k

) (
2 m
k

)m
> 0.

In the following two sections, we introduce briefly both
NPG and NPGP games.

4. Non-cooperative power control game (NPG)

Let N = {1, 2, · · · , N} be the index set of the users
currently served in the cell and {Pj}j∈N represent the
set of strategy spaces of all users in the cell. Let G =
[N , {Pj}, {uj(.)}] denote a noncooperative game, where
each user, based on local information, chooses a power
level from a convex set Pj = [pj−min, pj−max] and where
pj−min and pj−max are the minimum and the maximum
power levels in the jth user strategy space, respectively. As-
suming that the power vector p = [p1, p2, · · · , pN ] is the
result of NPG, the utility of user j is given by [1]:

uj(p) = uj(pj , p−j) (21)

where pj is the power of user j, and p−j is the vector of
powers transmitted by all other users. The right side of (21)
emphasizes the fact that user j can only control his own
power. We rewrite (1) for user j as:

uj(pj , p−j) =
LR

M pj
f(γj) (22)

The formal expression for the NPG is given in [1] as:

G : max
pj∈Pj

uj(pj , p−j), for all j ∈ N (23)
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This game will produce a sequence of power vectors until it
converges to an NE operating point where all users are satis-
fied with their utility level. Unfortunately, NE point of NPG
is not efficient in most cases. In order to reach Pareto dom-
inant NE point, a pricing technique was introduced in [1].
The resulted game is called non-cooperative power control
game with pricing (NPGP) and it is described briefly in the
next Section.

5. NPGP

In NPGP each user maximizes the difference between its
utility function and a pricing function. This aims to allow
more efficient use of the system resources within the cell,
as each user is made aware of the cost of aggressive usage
of resources, and of the harm done to other users in the cell.
We use here a linear pricing function, i.e., a pricing factor
multiplied by the transmit power. The base station broad-
casts the pricing factor to help the users currently in the cell
reach a NE that improves the aggregate utilities of all users
at power levels lower than those of the pure NPG. In other
words, the resulting power vector of NPGP is Pareto domi-
nant compared to the resulting power vector of NPG, but is
still not Pareto optimal.

Let Gc = [N , {Pj}, {uc
j(.)}] represent an N -player

noncooperative power control game with pricing (NPGP),
where the utilities are [1]:

uc
j(p) = uj(p) − c pj for all j ∈ N (24)

where c is a positive number chosen to get the best possible
improvement in the performance. Therefore, NPGP with a
linear pricing function can be expressed as:

Gc : max
pj∈Pj

{uj(p) − c pj} for all j ∈ N (25)

6. Existence and uniqueness of NE point

In this Section we show that NPG and NPGP introduced
by [1] admit a unique NE points under the assumed channel
models. However, to guarantee the existence and unique-
ness of the NE point in both games, the terminals’ strategy
spaces defined in [1] should be constrained more. That is,
some transmit power values which were allowed in a non-
fading channel, may not be allowed under a fading channel.
In the following, we refer to the unconstrained maximiz-
ing transmit power level of user i by pmax

i . Pi refers to the
convex strategy space of user i.

Lemma 1 In NPG under Nakagami fast flat fading chan-
nel with the average utility function ui given in (16) with
m = 2, the existence of a NE point is guaranteed if
the strategy space is modified to the following convex set

Pi = {pi : γi ∈ (
γi−min, γi−max

)}, where γi−min =
√

8
√

2 + 5M −√M (8 + 17M) and γi−max =
√

8
√

2 + 5M +
√
M (8 + 17M). The best response vec-

tor of all users r5(p) =(r51(p), r52(p), · · · , r5N (p)), where
r5i (p) = min(pmax

i , pi−max), and

pmax
i = 4

√
1 + 2M Ii, (26)

is a standard interference function, therefore by [8] NE
point is unique.

Proof 1 In all following proofs we make use of the clas-
sical results of game theory, where the existence of a NE
point is guaranteed if the utility function is quasiconcave
and optimized on a convex strategy space. Thus, to prove
the existence of NE point, it is enough to prove that the util-
ity function ui is concave (a concave function on some set
is also a quasiconcave function on the same set) in pi given
p−i on the convex set Pi = {pi : γi ∈

(
γi−min, γi−max

)}.
Let us find the first and second order derivatives of ui in
(16) after setting m = 2 with respect to pi as follows:

∂ui

∂pi
=

LR

M p2
i

(
16(2M + 1)

γ2
i

− 1) (1 − 16
γ2

i

)M−1, (27)

then

∂2ui

∂p2
i

=
1

M p3
i (−16 + γ2

i )2

(
2LR (1 − 16

γ2
i

)M

× [256(1 +M)(2M + 1) − 16(2 + 5M) γ2
i + γ4

i

])
and this implies that ∂2ui

∂p2
i
< 0,∀ γi ∈

(
γi−min, γi−max

)
,

where γi−min =
√

8(2 + 5M) − 8
√
M (8 + 17M) and

γi−max =
√

8(2 + 5M) + 8
√
M (8 + 17M). Hence-

forth, the strategy space should have the following convex
set: Pi = {pi : γi ∈

(
γi−min, γi−max

)} to guarantee that
ui is strict concave on Pi, then a NE exists. By setting (27)
to zero we find the maximizing transmit power level that lies
in the convex strategy space Pi is given as in (26).

To prove the uniqueness of NE point we need to prove
that r5(p) is a standard function, see for example [8] for
the definition of the standard function. To prove that r5(p)
is a standard interference function we proceed as follows:
The proof of positivity is trivial, since Pi ⊂ R

+ and
r1i (p−i) ∈ Pi, ∀ i ∈ N , where r5i (p−i) = r5i (p). Also,
it is obvious that pmax

i (p) > pmax
i (p̂) for all i if p > p̂

by looking at (26), henceforth the monotonicity of r5(p) is
satisfied. To prove the scalability, it is enough to prove that
pmax

i (p−i) is a scalable function and then the scalability of
r5(p) comes through. Let us rewrite equation (26) as fol-

lows: pmax
i (p−i) =

4R
√

2M+1 (
∑N

k �=i hkpk+σ2)

W hi
then

pmax
i (δp−i) =

4R
√

2M + 1 ( δ
∑N

k �=i hkpk + σ2)
W hi

, (28)
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while

δpmax
i (p−i) =

4 δ R
√

2M + 1 (
∑N

k �=i hkpk + σ2)
W hi

(29)

It is clear that δpmax
i (p−i) > pmax

i (δ p−i), therefore r5(p)
is a standard interference function, and the NE point is
unique.

In the following lemmas we omit the proof of existence
and/or uniqueness as they are similar to those of lemma 1.

Lemma 2 In NPG under Nakagami slow flat fading chan-
nel with the average utility function ui given in (20), a NE
point is guaranteed if and only if the strategy space is the
following convex set Pi = {pi : γi ∈ (

1,
√

6 ξ
)}. The

best response vector of all users r6(p) = (r61(p), r62(p),
· · · , r6N (p)), where r6i (p) = min(pmax

i , pi−max), and
pmax

i =
√

3ξ Ii, is a standard interference function, there-
fore by [8] NE point is unique.

Proof 2 The first derivative and second order derivatives
of ui after setting m = 2 with respect to pi are given

by: ∂ui

∂pi
= L R

M p2
i

(
3 ξ
γ2

i
− 1
)
, and ∂2ui

∂p2
i

= 2 L R
M p3

i

(
1 − 6 ξ

γ2
i

)
,

therefore ∂2ui

∂p2
i
< 0,∀ γi ∈

(
1,
√

6 ξ
)
. As a result, the con-

vex strategy space should be Pi = {pi : γi ∈
(
1,
√

6 ξ
)} to

guarantee the strict concavity of ui and then the existence
of a NE point is guaranteed.

Now, we turn to the existence and uniqueness of NE point of
NPGP under the assumed channel models discussed above.

Lemma 3 In NPGP under Nakagami fast flat fading chan-
nel model with utility function uc

i = ui − c pi, where
ui is given in (16), a NE point existence is guaran-
teed if and only if the strategy space is the convex
set: Pi = {pi : γi ∈ (

γi−min, γi−max

)}, where

γi−min =
√

8
√

2 + 5M −√M (8 + 17M) and γi−max

= 4
√

1 + 2M . The best response vector of all users
r11(p) = (r111 (p), r112 (p), · · · , r11N (p)), where r11i (p) =
min(pmax

i , pi−max), and

pmax
i ≈

√
LR

2M c

√
−1 +

√
1 +

64 (1 + 2M) I2
i M c

LR
(30)

is a standard interference function, therefore by [8] NE
point is unique.

Proof 3 The maximizer transmit power pmax
i is the feasible

solution of ∂ ui

∂ pi
− c = 0, where ∂ ui

∂ pi
is given in (27), and

results in a polynomial of degree 2M + 4. It is a tedious
and may be impossible to find a closed-form for the feasible
solution of this polynomial. Recall that γi > 4 to guarantee

ui(p) > 0, so the maximizer transmit power level pmax
i can

be approximated by the feasible solution of the following
equation.

p4
i +

LR

M c
p2

i −
16 (1 + 2M)LR I2

i

M c
= 0 (31)

The only feasible solution of the equation above is given by
(30).

Lemma 4 In NPGP under Nakagami slow flat fading chan-
nel model with utility function uc

i = ui − c pi, where
ui is given in (20), a NE point existence is guaranteed if
and only if the strategy space is the following convex set:
Pi = {pi : γi ∈ (

1,
√

3 ξ
)}. The best response vector

of all users r12(p) = (r121 (p), r122 (p), · · · , r12N (p)), where
r12i (p) = min(pmax

i , pi−max), and

pmax
i =

√
LR

2M c

√
−1 +

√
1 +

12 ξ I2
i M c

LR
(32)

is a standard interference function, therefore by [8] NE
point is unique.

Proof 4 The maximizer transmit power level pmax
i is the

feasible solution of the following equation.

p4
i +

LR

M c
p2

i −
3ξ LR I2

i

M c
= 0 (33)

The only feasible solution of the equation above is as given
by (32). It is simple to check that r12(p) with the maximizer
power in (32) satisfies all the conditions of a standard in-
terference function. Henceforth, the NE point is unique.

Observing lemmas 1-2, we see that the maximizing SIR
γmax

i for all users are the same: γmax
i = 4

√
1 + 2M ∀ i ∈

N under fast Nakagami fading channels, and γmax
i =√

3 ξ ∀ i ∈ N under slow Nakagami fading channels. For
nonfading channels it was shown in [1] that γmax

i =
12.4, ∀ i ∈ N . This implies, as expected, that in order to
overcome the fading effect, users in fading channels have to
target higher SIR values.

Next, we introduce the algorithms that converges to Nash
equilibria points of NPG and NPGP. We need to keep in
mind that the strategy space denoted by Pi in the algorithm
differs according to the channel model. The algorithm is the
same as in [1] except that the strategy spaces are modified
to the forms given in lemmas 1-2 to guarantee the existence
of NE point under the studied channel models.

Assume user j updates its power level at time instances
that belong to a set Tj , where Tj = {tj1, tj2, · · · }, with
tjk < tjk+1 and tj0 = 0 for all j ∈ N . Let T =
{t1, t2, · · · } where T = T1

⋃
T2

⋃ · · ·⋃ TN with tk <
tk+1 and define p to be the smallest power vector in the
modified strategy space P = P1

⋃
P2

⋃ · · ·⋃ PN .
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Algorithm 1 Consider non-cooperative game G as given
in (23) and generate a sequence of power vectors as fol-
lows: (a) Set the power vector at time t = 0: p(0) = p, let
k = 1 (b) For all j ∈ N , such that tk ∈ Tj: Given p(tk−1),
calculate pmax

j (tk) = arg max
pj∈Pj

uj(pj , p−j(tk−1)) (c) If

p(tk) = p(tk−1) stop and declare the Nash equilibrium
power vector as p(tk), else let k := k + 1 and go to b.

The next algorithm finds the best pricing factor c for NPGP,
keeping in mind that the strategy space should be according
to lemmas 3-4.

Algorithm 2 (a) Set c = 0 and broadcast c to all users
currently in the cell. (b) Use Algorithm 1 to obtain uc

j for
all j ∈ N at equilibrium. (c) Increment c := c + ∆c, ∆c
is a positive constant, and announce c to all users, and then
go to b. (d) If uc+∆c

j ≥ uc
j for all j ∈ N go to (c), else

stop and declare the best c as cBest

7. Simulation results

We show the effects of time-varying, fast and slow Nak-
agami fading wireless channels on the equilibrium utilities
and powers of NPG and NPGP proposed in [1].

The system under study is a single-cell DS-CDMA cel-
lular mobile system with 9 stationary users, all are using
the same data rate R = 104 bps and the same modulation
scheme (non-coherent BFSK). The system parameters used
in this study are given in Table 1. The distances between the
9 users and the BS are d = [310, 460, 570, 660, 740, 810,
880, 940, 1000] in meters. The path attenuation between
user j and the BS using the simple path loss model is
hj = 0.097/d4

j , where 0.097 approximates the shadowing
effect. The simulations results show that under Nakagami
fast flat fading channels with spreading gain W/R = 102,
users do not reach a NE point. Where all users except the
nearest user to the BS are using the highest power level in
the strategy space without achieving the maximizing SIRs.

Fig.1 demonstrates the equilibrium utilities and the equi-
librium powers of NPG under a fast fading channels (a1)
with spreading gain W/R = 103. All users were able
to achieve their maximizing SIR under Nakagami chan-
nels. The equilibrium utilities and equilibrium powers of
the NPGP under (a1) are shown in the left and right graphs
of Fig.2, respectively. Results show that a Pareto improve-
ment over NPG in Nakagami channels was obtained such
that all users succeeded to attain SIRs more than their cor-
responding NPG SIRs.

Fig. 3 presents the effect of the Nakagami slow flat fad-
ing channels (a2) on the equilibrium utilities and powers.
This figure shows that, unlike fast fading channels, all users
succeeded to achieve the maximizing SIR γmax

i =
√

3ξ =
25.1182.

Table 1. the values of parameters used in the
simulations.

L, number of information bits 64
M length of the codeword 80
σ2, AWGN power at the BS 5 × 10−15

N , number of users in the cell 9

W/R, spreading gain 102, 103

m, fading figure 2

pi−max, ith user’s maximum power 1 Watts

As for the effect of slow fading channels on the outcomes
of NPGP, equilibrium utilities and equilibrium powers, the
simulations results showed that Pareto improvement (dom-
inance) over NPG was not possible under Nakagami small
scale models. At c = cBest, simulation results showed that
the best policy for all users is to target a fixed SIR, that is
γmax

i = 25.1182, which is exactly the same situation as
in NPG. To demonstrate this result more clearly, we present
Fig. 4 for Nakagami channel model. Fig. 4 shows that pmax

i

given in (32) behaves with feasible values of Ii the same as
pmax

i =
√

3 ξ Ii given in Lemma 2. Surprisingly, both fig-
ures suggest that NPGP with linear pricing does not admit a
Pareto dominance over NPG in a Nakagami slow flat fading
channels.

8. Conclusions

We studied a noncooperative power control game (NPG)
and noncooperative power control game with pricing
(NPGP) introduced in [1] under realistic channel models.
We studied the impact of power statistical variation in Nak-
agami fast/slow flat fading channels on the powers and utili-
ties vectors at equilibrium. The results showed that an equi-
librium with an equal maximizing SIR is not attainable in
both games with spreading gain (W/R = 102). In fast
fading with spreading gain W/R = 103, fixed target SIR
NPG admitted NE point only under Nakagami small scale
models. Results demonstrated that in Nakagami slow flat
fading channels, NPGP with linear pricing does not exhibit
a Pareto dominance over NPG outcomes at equilibrium.
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Figure 1. Equilibrium powers and equilibrium
utilities of NPG for Nakagami fast flat fading
(�) and deterministic channel gain (*) versus
the distance of a user from the BS in meters
with W/R = 103.
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Figure 2. Equilibrium utilities and equilibrium
powers of NPGP for Nakagami fast flat fading
(�) and deterministic channel gain (*) versus
the distance of a user from the BS in meters
with W/R = 103.
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Figure 3. Equilibrium utilities and equilibrium
powers of NPG in Nakagami slow flat fading
(�) versus the distance of a user from the BS
in meters with W/R = 103.
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Figure 4. pmax
i as a function of Ii as in Eq.

(32) (o), and the expression of pmax
i =

√
3 ξ Ii

given in Lemma 2 (solid line) with c = cBest .
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