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A Neural-Network Model of th.e Input/Output 
Characteristics of a High-Power 

Backward Wave Oscillator 
Chaouki Abdallah, Senior Member, IEEE, Wei Yang, Ed1 Schamiloglu, Senior Member, IEEE, and Laxald D. Moreland 

Abstruct- This paper discusses an approach to model the 
inputloutput characteristics of the Sinus-6 electron beam 
accelerator-driven backward wave oscillator. Since the Sinus-6 is 
extremely fast to warrant the inclusion of dynamical effects, and 
since the sampling interval in the experiment is not fixed, a static 
continuous neural network model is used to fit the experimental 
data. Simulation results show that such a simple nonlinear model 
is sufficient to accurately describe the inputloutput behavior of 
the Sinus-6-driven backward wave oscillator (BWO) and that 
the fitted output waveforms are basically noiseless. This model 
will be used to control the BWO in order to maximize the 
radiated power and the efficiency. This paper is also intended to 
introduce high-power microwave researchers to control concepts 
that may enhance the outputs of a wide spectrum of sources. 

I. INTRODUCTION 

HE UNIVERSITY of New Mexico Pulsed Power and T Plasma Science Laboratory, in collaboration with the 
systems group are currently engaged in an experimen- 
tautheoretical study of methods to identify and control the 
high-power repetitively pulsed electron beam accelerator 
known as the Sinus-6. Initial experimentation with the Sinus- 
6-driven backward wave oscillator (BWO) has been reported 
elsewhere [l], and has yielded inputloutput data which are used 
in this research. This paper focuses on the model identification 
for the Sinus-6 BWO. 

It is well known that a feedback control system typically 
consists of a “plant” and a “controller,” where the plant is 
generally expressed as a mathematical model which describes 
the behavior of the real-world physical system (Sinus-6 BWO), 
and the goal of the controller is to use the relevant plant 
information to obtain an overall behavior which satisfies some 
performance objectives. Obviously, how good a performance 
we obtain depends on our knowledge of the controlled plant. 
The model we search for is also dictated by, and may dictate, 
the control approach that we may eventually select for the 
Sinus-6 [2]. Many control approaches are available to us, a 
sample of which are classical control, learning control, and 
robust control. These different approaches require different 
mathematical models. For example, a linear-time-invariant 
(LTI) nominal model is required for the classical control 
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Fig. 1. Block diagram of system 

approach, both an LTI nominal model and uncertainty bound 
model are required for the robust control approach, while 
nonlinear models which generally carry more information 
about the plant can be used for learning control approaches. 
In any case, all these approaches require the knowledge of 
a nominal model. ’The initial stage of our research therefore 
focuses on obtaining a nominal model which can describe the 
behavior of the Sinus-6 BWO. 

Due to the compilexity of obtaining a physics-based model 
of high-power BW O’s, researchers utilize fully electromag- 
netic particle-in-cell (PIC) codes like MAGIC [3] in order to 
simulate certain aspects of the operation of these devices, In 
this paper, we choose instead to build a model based on the 
inputloutput data with the physics providing guidance, but little 
influence. Our paper is thus in the spirit of [4] where a neural 
network model was used to control a tokamak plasma. 

This paper is organized as follows. Section I1 describes 
the identification problem and setup. Section Ill  contains the 
identification results and their interpretation, while Section IV 
contains our conclusions. 

11. IDENTIFICATION 

Identification in controls terminology refers to the process 
of obtaining a mathematical model that can explain the in- 
putloutput behavior of a physical system. A block diagram of 
the experimental selup is shown in Fig. 1. (Detailed informa- 
tion on the experiment can be found in [ l].) The block labeled 
System S in the figure is identified as the mathematical model 
in our experiment. The model of the high-power BWO consists 
of an A-K gap (electron gun) delivering an intense electron 
beam current I that js guided through a slow wave structure by 
a strong axial magneitic field. The only input into this system is 
the cathode potential V and the two measured outputs are the 
microwave power y1 and the microwave frequency yz. The 
microwave conversion efficiency x1 is obtained by dividing 
the output microwave power by the input beam power V x I .  

.OO 0 1996 IEEE 
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In the most simple control objective, the output from the Inpub Hidden Layer Output Layer 
system would be fed back into the input to adjust the voltage 
applied to the system to maximize the power or the efficiency, 
or adjust the output frequency. From the research described 
in 111, we have access to a set of input cathode voltage V 
and output microwave efficiency z1, power y1, and frequency 
y2. Note that y1 and y2 represent data that are physically 
measurable, and available for feedback. On the other hand, 
x1 denotes a signal that is calculated and is required to satisfy 
some performance objectives, while not being available for 
feedback. As stated earlier, the task of identifying the system 
consists of obtaining a mathematical model which describes 
the behavior of the Sinus-6 so that it may be later controlled. 
We are then interested in finding a mathematical model which 
can predict the future behavior of the Sinus-6. In the feedback 
control configuration of Fig. 1, we cannot predict what the 
control input signal V to the plant is going to be, since it is 
the sum of an external command signal and the output signal 
of the controller. Generally, the control input signal V to the 

Fig, 2, A neural network architecture, 

plant is different in the feedback control configuration from 
the experimental input data collected in an open-loop fashion. 
We therefore require that our mathematical model “generalize” 
to explain the unknown control input signal set. This is the so- 
called model validation problem. Ljung [5] gives an overview 
of model validation in the standard identification framework. 
He suggests that one can take part of the experimental data 
for identification purposes, while keeping the remaining part 
for validation. This is known as the cross validation approach. 
This approach works best when there is an abundance of data. 
In this study, we only had access to a total of 318 experimental 
data for four experiments. Therefore, all of our experimental 
data is used in the identification procedure. The judgment 
of the “goodness” of our model will be evaluated by future 
experiments. It is the ability to extrapolate that could justify 
the use of neural networks. 

There is a large body of literature on system identification. 
Many identification approaches and methods are available to 
us, depending on the type and format of the available data. For 
our particular case, the sampling interval of the experimental 
data is not fixed. More importantly, due to the extremely fast 
dynamics of our system, a static neural network model is 
sufficiently rich to explain the experimental data for the Sinus- 
6. Note that our identification scheme relies on open-loop input 
signals since we do not currently have a feedback controller 
on the Sinus-6 BWO. The input signals and the different A-K 
gap Qettings were chosen to be representative of the normal 
operation of the high-power microwave (HPM) source. It is 
of course conceivable that the closed-loop input generated by 
a feedback controller may be outside the range of the open- 
loop signals. We plan to address this issue should it arise by 
iterating our modelingkontrol steps. 

When discussing neural networks, we are typically referring 
to a system built by linearly combining a large collection of 
simple computing devices (i.e., nodes), each of which performs 
a nonlinear transformation U (in general, a sigmoid function) 
on its inputs. These inputs are either external signals supplied 
to the system, or the outputs of other nodes (see, for example, 
Fig. 2). Neural network models have two important character- 

istics. First, since they consist of many nodes, individual nodes 
carry out only a small amount of the overall computational 
task. Thus the computational load is distributed throughout the 
network. Second, the large number of parallel connections typ- 
ically found in these systems provide many paths from input to 
output. These factors combine to make neural networks a very 
robust model of computing. In theory, damage to a few weights 
or nodes will not adversely affect the overall performance of 
the network. In fact, practical implementations indicate that the 
performance of neural networks tends to degrade gracefully 
as weights or nodes are destroyed 161, 171. A neural network 
with m inputs, p outputs, one hidden layer containing L nodes 
(similar to the ones used in this paper) may be compactly 
described by 

01 = Bu; where B E R L x m  
C ( a )  =o(ct.) E RLX1 

y = CC; where C E R p x L  (1) 

where U is the input to the neural network (V in our case) 
and y is the output of the network ([yl y2lT in our case). The 
output is then y = Ca[(Bu)] .  Note that B and C are matrices 
of weights to be learned or programmed, and that the notation 
~ ~ ( 1 c )  for 1c E RL denotes a(.) = [cr(zl) . . . u ( x L ) ] ~ .  In this 
work a(1c) = tanh(1c) = (eZ - e-.)/(e% + e-.). 

It is now known that a one-hidden layer static network is 
capable of approximating an arbitrary (continuous) function. 
In the next section we use such neural network models to 
fit the experimental input/output data for the Sinus-6 driven 
BWO when the outputs are power, frequency, and efficiency. 
Considering the expense of controller design for nonlinear 
systems, and due to some strong linear trends in the power 
and frequency data, we also investigate a linear fit to the 
experimental data. This may be considered as a special case of 
(1) where the nonlinear sigmoid degenerates to a linear term 
.(a) = Act. and the total inpuvoutput mapping degenerates 
into 

y = CABu = Fu. (2) 
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In our particular case, we are therefore searching for a model 
of the form 

21 = G(V, W )  ( 3 )  

or more compactly as 

where W are weights that will be learned from the experi- 
mental data, and F1, F2 and G are given structures (linear or 
nonlinear). 

111. IDENTIFICATION RESULTS 
A neural network approach has been used to fit the exper- 

imental inputloutput data for the Sinus-6 BWO. (See [l] for 
a detailed description of the experimental setup and Fig. 1 
for a block diagram description.) The experimental data were 
collected in four separate experiments, where the A-K gap was 
adjusted to four different values. The A-K gap determines the 
electron beam diode impedance. We shall denote these four 
experiments as El,  E2, E3, and E4. The four intervals were 
divided into 95 sampling points for the first experiment, 102 
sampling points for the second experiment, 78 sampling points 
for the third experiment, and 43 sampling points for the fourth 
experiment. The experimental data consist of the cathode 
voltage input V, the current I ,  and the two outputs: total peak 
power y1, frequency y2. The RF generation efficiency z1 was 
calculated from the formula 

Y1  

V X I ’  21 = - 

Both nonlinear neural network models with five weights in the 
hidden layer and a linear neural network model are used to fit 
the experimental inpudoutput data. The objective of the fit is 
to minimize the following performance objective: 

N 1 
J = - N [F(V,  W )  - y]’ 

i=l 

by a choice of the weights W. In general, this is accomplished 
by a gradient descent procedure of updating the weights as 
described, for example, in [8]. In this research, we have used 
the backpropagation training algorithm implemented in the 
Neural Network toolbox of MATLAB@ [9]. Several questions 
related to the choice of models are discussed below. 

A. Nonlinear Neural Network Models 
Can a single nonlinear network explain the behavior of the 

Sinus-6 BWO over the four operating conditions El ,  E2 , E3, 
and E4? In other words, should we have an A-K gap- 
dependent model of the input-output behavior, or is a single 
neural network appropriate? The neural networks used have 
one hidden layer with five nonlinear nodes that compute 
the function .(IC) = tanh(z), and one linear output node. 
More explicitly, the networks are performing the following 

TABLE I 
I’ARAMETERS OF LINEAR MODELS 

1 E4 1 Combined 1 

TABLE I1 
PARAMETERS OF NONLINEAR MODELS FOR 

POWER OUTPUT TRAINED WITH SORTED DATA 

-3.8208 
- 0.0 13 6 

0.4310 
0.1132 
6.1981 
7.0324 

-53.969 
-192.1514 
-4.4018 
-91.3155 

-5.7953 
24.7047 
323.7953 

-0.6665 2.5549 -0.2208 
0.4013 2.6283 1.0666 
0.1912 -0.0077 0.3381 
0.0102 -0.468 0.1507 
0.0967 31.6747 -0.0065 
11.1357 59.3318 -24.6393 

-22.8421 -83.3248 -20.9996 
13.5039 3.4993 -13.1203 tt -5.2089 -0.4675 25.5305 

-20.9698 -190.1057 -8.0299 
149.9427 51.4265 -6.4535 
-6.2397 -146 4174 -115.9052 ! 227.314 334.9528 197.9138 

TABLE 111 

Combined 
0.1948 
0.0411 

-0.0086 
-3.3343 
-3.6212 
-5.3918 
-87.758 
4.2614 

-17.2114 
15.6948 

-11.4091 
-1.0139 

-162.4521 
36.3118 

-14.8563 
311.2597 

PARAMETERS OF NONLINEAR MODELS FOR 
FREQUENCY OUTPUT TRAINED WITH SORTED DATA 

1 :I 1 0.2941 I 0.0~~ 1 0.0188 1 1 ;OOZp -0.0314 -0.0368 0.0157 
0.0369 -0.0361 0.0265 -0.0516 0.0213 
44.8811 -10.5713 -19 1059 -13.3277 
12.0024 17.4402 17.3944 -10.4735 9.5801 
17.1557 -19.1209 -9.4089 -15.9889 8.7238 

1 hz 1 go.:.; 1 -0.1904 I -0.0947 I -0.0331 1 -0.2783 4 
] 9.745 1 9.4697 1 9.2346 I 9.5531 

operations: 

y = WZ tanh(W1u + b l )  + b2 

where 

w, ==[wi  w; w; w; w,”] 
w, =:[w: w; w; w; w y  

bl =: [b: bf b; b; b?lT 

(7) 

and where b2 is a scalar. In fact, we can write y more explicitly 
as 

(9) 

The notation tanh(z) for an n-dimensional vector x denotes 
the vector 

[t .snh( z1) . . . t anh( IC~)]’. 

Tables I-IV contaiin the learned parameters under different 
conditions. 

The results of this study for the case where the input is 
cathode voltage anld the measured output is frequency are 
shown in Fig. 3, wlhere the top part of the figure shows the 
performance of four separate nonlinear neural networks trained 
on the four experiments El ,  E2, E3, and E4, and the bottom 
part of the figure shows the performance of a single nonlinear 

7 
g = wa tanh(w;u + b;)  + bz.  

2 . 5  
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17 7088 17.371 18.787 11.8571 
-14.7289 -14.0382 21.7969 -14.5578 

0.0003 -0.0308 -0.305 0.5002 
-0.4369 -0.0118 -0.3064 0.7581 

TABLE IV 
PARAMETERS OF NONLINEAR MODELS FOR 

EFFICIENCY OUTPUT TRAINED WITH SORTED DATA 1 1 E, 1 Ez 1 E3 1 E, , Combined 1 
00268 00175 0.0725 -00341 0.0231 

-00287 00327 -0.0266 0.0345 0.007 
0.0255 -0,0291 -0.0235 0.0336 0.001 
0.0243 -0.029 -0.0178 -0.0407 -0.00249 
-0.019 0.0324 00242 -0.0455 00048 

-16.1853 -16.4042 -12.0745 16.4413 -10.9904 
13.7635 -14.8839 10.953 -16.6445 -14.1524 
-12.131 17.7466 13.6433 -21.8055 -2.585 

-0 2618 
0 0066 

0.0369 00001 0.0271 0.4596 
0.4458 -0.0961 -0.0178 1.4762 

I W? 1 02374 1 -0.0251 I -0.0855 1 0.0156 I -3.078 1 

Separate functions (solid) for approx. given output (dotted) 
10 

I I 
50 100 150 200 250 300 350 

9.2' 

10, 

Samples 
One function (solid) for approx. given output (dotted) 

I 

-.. 
0 50 100 150 200 250 300 350 

Samples 

Fig. 3 .  
work. 

Experimental frequency output and that learned by the neural net- 

neural network trained on the total data. Note that the four 
experiments correspond to the horizontal axis labeling El : 
1-95, Ea: 96-197, E3: 198-276, and E4:  277-320. As can 
be seen from these results, a simple neural network efficiently 
models the experimental input/output relations for El E2 and 
E3, while there are some modeling errors for E4. The problem 
is much more severe if one tries to use a single neural network 
for the efficiency data [lo]. 

B. Noise 

Are the collected data noisy? It may be possible that the 
neural networks in attempting to fit the data are also trying 
to fit some noise. Therefore, we need to test for the existence 
and the amount of noise in our data. One way to check this 
is to sort the input voltage data by their magnitude while 
keeping the corresponding outputs. Note that this amounts 
only to changing the order of input-output pairs and does 
not change the static relations between input and output. In 
this fashion, we can assume that the input is basically a 
continuously increasing function. Therefore, if a sorted output 
is also basically continuous, we can conclude that the output 
is noiseless. This idea also suggests that we can train the 
neural network based on the sorted experimental inputloutput 
data mentioned above. Fig. 4 shows the results of four neural 

-.1 

400 450 500 550 600 650 700 
Voltage (sampling points 1 :95) 

" "- -._- 
nonlinear associator IFained with unsorted data 

' 
- .I :- nonlinear associator trained with s o i e d  data 

I 
450 500 550 600 650 700 

9 6 '  ,' ' 
400 

Voltage (sampling points 96:197) 

Fig. 4. 
work. 

Experimental frequency output and that learned by the neural net- 

nonlinear associalor trained with unsorted data 
nonlinear associator trained wilh sorted data 
linear associalor , r.. ~ ' ::.- 

200' I 
400 450 500 550 600 650 700 

Voltage (sampling points 1 95) 

- 
-- nonlinear associalor trained with sorted data 

nonlinear associator trained wilh unsorted data 

given data 

450 500 550 600 650 700 
100 

400 
Voltage (sampling points 96 197) 

Fig. 5 
network. 

networks trained on the four experiments phases El ,  Ez, E3 
and E4 with sorted and unsorted microwave power data. Fig. 5 
presents the same information when the output is efficiency. 
From these results, we can see that 

1) The waveforms obtained from both the unsorted data 
and sorted data are basically noiseless. 

2) The waveforms obtained from sorted data are better than 
the waveforms trained with unsorted data in the sense 
that the former are lees noisy than the latter 

According to results from neural networks, the order in 
which the training data is presented to the network should have 
very little effect on the learned parameters, especially as the 
number of training samples and training time increase [1 11. 
However, we propose to sort the experimental inputloutput 
data before training a neural network for the purpose of 
removing any measurement noise. 

Expenmental total power output and that learned by the neural 

C. Nonlinear Versus Linear 

Can a linear neural network be used? This investigation is 
motivated by the fact that the linear model can simplify the 
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- nonlinear assoc~ator trained with unsorted data ’ 

0 05‘ 
350 400 450 500 550 600 650 700 

Voltage (sampling points 1:318) 

Fig. 6. 
work. 

Experimental efficiency output and that learned by the neural net- 

control system design. The learned parameters are given in the 
tables displayed earlier and the results are shown in Figs. 4 
and 5. It turns out that, for the case in which the outputs are 
frequency and total power, four linear neural networks can be 
used to approximate four experiment phases El ,  Ez, E3, and 
E4. But, for the case in which the output is the efficiency, 
it cannot. This is obvious because, from (3, we see that RF 
efficiency is not a linear function of the voltage. Instead, we 
obtain a bilinear fit of the efficiency by taking the ratio of y1 
by the product V x I ,  where I itself is fitted linearly as a 
function of V, as shown in Fig. 6. Note that the fit in Fig. 6 is 
much worse than the previous ones since the errors in fitting 
V and I combine to produce larger efficiency errors. This 
will be corrected in future experiments by attempting a more 
complex linear fit of the efficiency. 

Iv. CONCLUSIONS AND FUTURE WORK 

In this paper we have reported on an effort to identify 
the input/output characteristics of the Sinus-6 electron beam- 
driven BWO. In addition, we introduce some identification and 
control systems concepts to the field of HPM tubes. These con- 
cepts are well known to the control systems community, but 
have not yet been fully exploited within the HPM community. 

At this stage of our research, we have obtained both linear 
and nonlinear models to explain the input/output behavior of 
the Sinus-6 when the input is the cathode voltage. We will 
next be considering the more realistic model when both the 
cathode voltage and current (or more accurately, the pressure 
and A-K gap) are the physical inputs to our system. Using the 
resulting mathematical model, we can then design a controller 
to maximize both the efficiency and the power in addition to 
operating with enhanced frequency agility [ 121. 
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