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Preliminary Results on Interconnected Hybrid Systems

Jorge L. Piovesan, Chaouki T. Abdallah, and Herbert G. Tanner

Abstract— We present a new framework for describing multi-
agent systems with hybrid individual dynamics where the
interaction between agents occurs at both the continuous and
discrete levels. We formally define these multi-agent systems as
Interconnected Hybrid Systems and then recast fundamental
hybrid concepts such as a hybrid metric, hybrid execution,
and reachability in this new interconnected hybrid systems
framework. We then prove a necessary condition for the
existence of the interconnected hybrid executions. This work
extends results in [10], [16].

Index Terms— Interconnected hybrid systems, reachability,
metric, execution.

I. INTRODUCTION

In most of the work reported on cooperative systems,
individual models for cooperating agents are described by
purely continuous dynamics [2], [4], [6], [11], [13], [17].
There are few exceptions, where discrete event system theory
is applied [3]. In exploring new communication network
paradigms [7], [15] we sometimes find the use of purely
continuous dynamics to be restrictive as explained below.

We envision a network in which functions (e.g. routing)
are not fixed to physical nodes, but are instead implemented
by software agents that are free to migrate from node
to node, depending on resources that they may have to
compete for [14]. This approach gives rise to a new type
of multi-agent system where agent dynamics are composed
by discrete states that represent the location of the agent
in the network and its operating mode, and by continuous
states that represent the amount of resources that the agent
is receiving from the network. The node dynamics are also
composed by discrete and continuous states. The discrete
states represent changes in the agents hosted by the node,
while continuous states represent the evolution of the re-
source availability due to the competition of agents for such
resources. Agents start at initial locations in the network and
with a given set of resources. Nodes start at discrete states
that reflect the initial distribution of agents and at continuous
states corresponding the initial availability of resources. The
continuous states of the agents may then evolve according
the agents requirements affecting the availability of resources
in the nodes. Agents may also jump to different locations
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depending on the conditions in the nodes. These jumps will
affect the continuous evolution of other agents and nodes,
and will also cause discrete jumps in the nodes reflecting the
new agent distribution. A pictorial example of this situation
is depicted in Figure 1.

Fig. 1. Example of dynamical behavior of agents and nodes. Agents are
as hybrid automata. Each mode in an automaton corresponds to a possible
location of an agent in the network (Agents on top). Each transition between
modes represents a change of location made by an agent (agent at the
bottom). The dynamics of the nodes are also modeled as hybrid systems.
Each mode represents a number of agents residing at a node paired with the
availability of resources that varies in discrete manner. The agents on top are
located on a node, therefore have a discrete state fixed and the continuous
dynamics of agents and the nodes that hosts them are interacting. The agent
at the bottom is moving between nodes, so a discrete transition is happening.

It is not clear how to capture the operation of such a
system with existing hybrid frameworks. The interactions
between the hybrid systems that model agents and nodes
happen at both the continuous and discrete levels. The
continuous and discrete dynamics of the agents depend on
both the continuous and discrete states of the nodes and
viceversa. We attempt to capture this interaction with a new
class of systems: the interconnected hybrid systems. Such
systems are not mere parallel compositions, or products, of
the component subsystems [18]. The existence and evolution
of an individual subsystem can be meaningless if isolated.
Moreover, interactions are not limited to common or un-
common events. In our case, the hybrid state in one of the
systems modifies the execution in another one. Therefore
we formally define the interconnected hybrid system such
that the continuous evolution in one agent depends on the
continuous states of agents that are connected to it, and
similarly the discrete dynamics depend on continuous and
discrete dynamics of neighboring agents. This definition also
includes a description of the connectivity of the multi-agent
system in each agent’s hybrid state. We then extend our
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previous work [16] defining a metric for this new class of
systems and explaining the properties of this metric. Finally
we recast the reachability and the hybrid execution concepts
from hybrid systems theory into the new framework, and
provide a necessary condition for the existence of the inter-
connected hybrid execution (a global concept i.e., related to
the whole multi-agent system), in terms of the components
of each agent’s hybrid model (a local variable) extending
some work in [10].

The reminder of this paper is organized as follows: In
Section II we define the interconnected hybrid system and
explain the key features of this new concept. In Section III
we introduce an interconnected hybrid metric and provide
its properties, while in Section IV we extend the define the
interconnected hybrid execution and prove a necessary con-
dition for its existence. Section V outlines our conclusions.

II. INTERCONNECTED HYBRID SYSTEMS

A hybrid system is denoted Hi, where i ∈ I indexes the
systems in a group. νi denotes dependence of ν on i. νqi

denotes dependence of ν on both qi and i. νn, denotes the
nth element of a sequence in ν, and ν(t) denotes the value
of ν at time t. Finally, with some abuse of notation, ν0 marks
an initial condition.

Definition 1 (Interconnected Hybrid System) An
Interconnected Hybrid System (IHS) is a set H∗ = {Hi}i∈I
of Controlled Hybrid Dynamical Systems [1] Hi indexed
by the set I . For each i ∈ I , Hi = [Qi,Σi,Gi,Zi,Si], we
have that

• Qi is the set of discrete states: Qi = Oi × Di, where
Oi is the set of operating states and Di is the set of
connectivity states.

• Σi = {Σqi
}qi∈Qi

where Σqi
= (Xqi

, fqi
, Uqi

,R+) is
a dynamical system that corresponds to qi ∈ Qi with
Xqi

being the continuous state space, fqi
the continuous

dynamics, Uqi
the set of continuous controls, and R

+ =
[0,∞) the time set.

• Si = {Sqi
}qi∈Qi

is the set of discrete transition labels
of Hi ∈ H∗.

• Gi = {Gqi
}qi∈Qi

is the set of guard conditions for
Hi ∈ H∗.

• Zi = {Zqi
}qi∈Qi

is the set of transition maps of Hi ∈
H∗.

The state space of the IHS H∗ is H∗ =
∏

i∈I Hi where
Hi = Qi ×

⋃

qi∈Qi
Xqi

is the state space of hybrid system
Hi, and the state of the IHS is denoted as ~h = (~q, ~x~q) where
~q = (qi)

T
i∈I , and ~x~q = (xTqi

)Ti∈I , where qi ∈ Qi for all i ∈ I ,
and xqi

∈ Xqi
for all qi ∈ Qi and for all i ∈ I .

We refine the definition by the following remarks:
• Each oi ∈ Oi represents a different operating condition

of Hi. Each di ∈ Di, represents different connectivity
conditions. (oi, di) ∈ Qi is denoted as qi. Each qi has an
associated set V (qi) ⊆ I ∀qi ∈ Qi and ∀i ∈ I , which
stores the indexes of the systems that are connected to
Hi, i.e., if j ∈ V (qi) then Hj is connected to Hi. Note

that V (q) = V (q′) for all q = (o, d), q′ = (o′, d′) ∈ Qi

that satisfy d = d′.
• For all Hi ∈ H∗ the continuous control inputs in Uqi

are obtained with the function function uqi
: Xqi

×
∏

j∈V (qi)

(
⋃

qj∈Qj
Xqj

)

→ Uqi
. Therefore, the contin-

uous controls of any system Hi ∈ H∗, are obtained as
functions of the continuous states of the systems that
are connected to Hi.

• Symbol sqi
∈ Sqi

determines the discrete state after
a transition from qi ∈ Qi in system Hi. We consider
two types of transitions: Transitions triggered by local
external events and transitions that are functions of the
states of the local system and the systems connected to
it.

• A guard condition for an event-triggered transition is
denoted as GE

qi
. This guard must satisfy a condition on

the state of the system(s) and on the existence of an
event i.e, GE

qi
: Sqi

→ Ei ×Xqi
×

∏

j∈V (qi)
Hj where

Ei is the set of possible events of Hi ∈ H∗. A guard
condition for a state-based transition, denoted GS

qi
needs

to satisfy a condition on the state of the system(s) only
i.e, GS

qi
: Sqi

→ Xqi
×

∏

j∈V (qi)
Hj .

• Zqi
: Gqi

× Sqi
→

⋃

pi∈Qi
{Xpi

} determines the
continuous state of Hi ∈ H∗ after a transition sqi

∈ Sqi
.

We highlight the following features in Definition 1: The
discrete states of the systems are divided into operating
states, which are used to describe modes of operation of
each individual agent in the system, and connectivity states,
which describe the possible configurations for information
exchange between agents in the system. If one thinks in
the usual graph theoretic argument that describes the con-
nectivity between agents in multi-agent systems literature
[2], [4], [6], [8], [11]–[13], [17], [19] different connectivity
states in each agent correspond to its different possible
neighborhoods. We however, do not limit the connectivity
description of the IHS to the use of graph theory. Also
note that no assumptions are made about symmetry on the
connectivity, so this definition includes the possibility of
agent i ∈ I being connected to agent j ∈ I : j 6= i without j
being connected to i, which corresponds to a directed graph
on the graph theoretic argument.

The interactions between the agents in the systems are
achieved in the continuous dynamics through the continuous
control inputs. The continuous control inputs of agent i ∈ I
in the IHS are functions of the continuous state of agent
i ∈ I and the continuous states of the agents that are directly
connected to agent i ∈ I . Therefore the continuous evolution
of each agent is influenced by the continuous dynamics of
the agents that are connected to it.

The interactions between the discrete dynamics of the
agents in the system are achieved through the transition
guards. In both cases (the event-triggered, and the state-based
transition) the transition guards of agent i ∈ I set conditions
on the continuous states of agent i ∈ I and on the hybrid
states of the agents that are connected to agent i ∈ I . So,
for the case of state-based transitions, a discrete transition
may occur when both the continuous state of agent i and
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the hybrid states the the agents connected to i ∈ I reach
a guard condition. In the event-triggered case, a discrete
transition occurs on agent i ∈ I when this agent experiences
an external event if the condition on the states of agent i
and the agents connected to it is satisfied. Therefore in both
state-based and event-triggered transitions of agent i ∈ I ,
the discrete dynamics are influenced by the hybrid states of
the agents that are connected to agent i ∈ I . Note that the
events are assumed to be local, i.e an event in agent i ∈ I
has direct influence only on this agent’s dynamics. However,
since an event will generate an state change in agent i ∈ I ,
such state change will potentially affect the dynamics of the
agents that are connected to agent i ∈ I . For this reason we
believe that the assumption of the events being local should
not represent a restriction.

To summarize, Definition 1 essentially extends to the
hybrid level, the standard multi-agent setting [2], [4], [6],
[8], [11]–[13], [17], [19] where each agent uses the states of
its neighbors to update its own evolution.

III. A METRIC FOR INTERCONNECTED HYBRID
SYSTEMS

In [16] we introduced a new notion of hybrid metric. We
extend this concept for interconnected hybrid systems. Let
the directed graph that represents the hybrid system H [9]
be denoted as GH .

Assumption 1 For each i ∈ I , there exist a vector space
Xi such that Xqi

⊆ Xi for all qi ∈ Qi.

Definition 2 (Discrete Distance [16]) Let the distance be-
tween two discrete states of a hybrid system q and q′ be the
length of the shortest path1 from node q to node q′ in GH .
This distance is denoted by dD(q, q′).

Definition 3 (Interconnected hybrid distance (IHD)) Let
the distance from ~h ∈ H∗ to ~h′ ∈ H∗ be:

d∗H(~h,~h′) = max
i∈I

(dD(qi, q
′
i)) + tanh(‖~x~q − ~x

′
~q′‖)

where for each i ∈ I , qi and q′i are the components of ~q =
(qi)

T
i∈I and ~q′ = (q′i)

T
i∈I .

Note that ~x~q = (xTqi
)Ti∈I and ~x′~q′ = (x′Tq′

i
)Ti∈I where

each xTqi
and x′Tq′

i
is a vector. Then ~x and ~x′ are vectors

formed by concatenating the vector states of each individual
system in H∗. Therefore the norm ‖~x~q − ~x′~q′‖ is well
defined on

∏

i∈I Xi. In the reminder of this section we
drop the subindex notation on ~x~q for simplicity because the
correspondence between ~x~q and ~q is clear from the context.

Remark 1 (Use of the hyperbolic tangent) The tanh(.)
function of the norm in the interconnected hybrid distance
provides a mechanism to distinguish the discrete and the
continuous parts of the distance between two interconnected
hybrid states: The interconnected hybrid distance is

1For a definition of a path, see [5].

composed by an integer and a fractionary part. The integer
part provides the exact number of discrete transitions that
the system needs to experience to reach one discrete state
from another, while the fractionary part results from the
application of an invertible function to the standard notion
of distance between two continuous states.

Theorem 1 (Properties of the IHD) Given three intercon-
nected hybrid states ~h = (~q, ~x),~h′ = (~q′, ~x′),~h′′ =
(~q′′, ~x′′) ∈ H∗, the following properties hold:

1) d∗H(~h,~h′) ≥ 0 for all h, h′ ∈ H∗.
2) d∗H(~h,~h′) = 0 if and only if ~h = ~h′.
3) d∗H(~h,~h′′) ≤ d∗H(~h,~h′)+d∗H(~h′,~h′′) for all h, h′, h′′ ∈

H∗.

Proof:
1) From Def. 2 here, and Def. 11 and Prop. 2 in [16]

dD(qi, q
′
i) ≥ 0 ∀i ∈ I , then maxi∈I dD(qi, q

′
i) ≥ 0.

By properties of norm and of tanh, tanh ‖~x−~x′‖ ≥ 0
for all ~x, ~x′ ∈

∏

i∈I Xi. Thus d∗H(~h,~h′) ≥ 0 for all
h, h′ ∈ H∗.

2) (⇒) If ~h = ~h′, ~q = ~q′ and ~x = ~x′. ~q = ~q′ implies qi =
q′i ∀i ∈ I . Then dD(qi, q

′
i) = 0 ∀i ∈ I , which implies

maxi∈I(dD(qi, q
′
i)) = 0. ~x = ~x′ implies tanh(‖~x −

~x′‖) = 0. Thus ~h = ~h′ ⇒ d∗H(~h,~h′) = 0.
(⇐) Since maxi∈I dD(qi, q

′
i) ≥ 0 and tanh(‖~x −

~x′‖) ≥ 0 ∀~h,~h′ ∈ H∗, d∗H(~h,~h′) = 0 implies that
maxi∈I dD(qi, q

′
i) = 0 and tanh(‖~x− ~x′‖) = 0. From

Def. 2 maxi∈I dD(qi, q
′
i) = 0 implies dD(qi, q

′
i) =

0 ∀i ∈ I , which together with Prop. 1 in [16] implies
qi = q′i ∀i ∈ I , which implies ~q = ~q′. tanh(‖~x −
~x′‖) = 0 implies ‖~x− ~x′‖ = 0, which implies ~x = ~x′.
Thus d∗H(~h,~h′) = 0⇒ ~h = ~h′.
(⇒) and (⇐) imply d∗H(~h,~h′) = 0⇐⇒ ~h = ~h′.

3) Discrete: From Lemma 2 in [16] dD(qi, q
′′
i ) ≤

dD(qi, q
′
i) + dD(q′i, q

′′
i ). Suppose ∃~q, ~q′, ~q′′ ∈

∏

i∈I Qi

such that maxi∈I dD(qi, q
′′
i ) > maxi∈I dD(qi, q

′
i) +

maxi∈I dD(q′i, q
′′
i ). Then, ∃i, j, k ∈ I such that

dD(qi, q
′′
i ) > dD(qj , q

′
j) + dD(q′k, q

′′
k ). Note that this

implies dD(qj , q
′
j) ≥ dD(qi, q

′
i) and dD(q′k, q

′′
k ) ≥

dD(q′i, q
′′
i ). This implies dD(qi, q

′′
i ) > dD(qi, q

′
i) +

dD(q′i, q
′′
i ), which contradicts Lemma 2 in [16].

Therefore maxi∈I dD(qi, q
′′
i ) ≤ maxi∈I dD(qi, q

′
i) +

maxi∈I dD(q′i, q
′′
i ) ∀~q, ~q

′, ~q′′ ∈
∏

i∈I Qi.
Continuous: tanh(‖x − x′′‖) ≤ tanh(‖x − x′‖) +
tanh(‖x −′ x′′‖) follows from Lemma 3 in [16].
Discrete and Continuous parts imply the claim.

Remark 2 (Asymmetric distance) The interconnected hy-
brid distance does not satisfy the symmetry property that
metrics usually do because of the use of the discrete distance
of Definition 2. However, we believe that the absence of
this property is actually desirable because the number of
transitions that are required to reach ~q from ~q′ may be
different from the number of transitions required to reach
~q′ from ~q.
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It is possible to reformulate Definition 3 and Theorem 1
to prevent simultaneous discrete transitions among different
individual systems. In such case a more meaningful notion
of distance would be d∗H(~h,~h′) =

∑

i∈I(dD(qi, q
′
i)) +

tanh(‖~x− ~x′‖).

IV. INTERCONNECTED HYBRID EXECUTION

In this section we introduce the Interconnected Hybrid
Execution (IHE) based on the concept of hybrid execution
in [10]. The IHE is the analog of the state evolution of a
continuous multi-agent dynamical system, and captures the
system’s hybrid behavior with respect to both discrete and
continuous interactions of the agents among themselves and
with and with its environment. Then we provide a necessary
condition for the existence of an infinite IHE. This condition
is stated as a function of each agent in the system. Therefore
the desired global behavior of the system (existence of its
execution), can be guaranteed by the specification of local
design variables inside each agents dynamics.

A Time Trajectory is a sequence τ̄ =
{τ̄0, τ̄1, . . . , τ̄n, . . . , τ̄ N̄}, where τ̄n ≤ τ̄n+1 for all
n = {0, 1, . . . , N̄ − 1}. τ̄ is infinite if N̄ = ∞ and is finite
otherwise. τ is an Interconnected Hybrid Time Trajectory
(IHTT) if τ is a time trajectory and if 1) τ 0 is the time
when H∗ starts its evolution, 2) τn is the time at which
there is a system Hi ∈ H∗ that makes a discrete transition
from qni to qn+1

i for n = {0, 1, . . . , N − 1}, such that
the Interconnected Hybrid System H∗ makes a discrete
transition from ~qn to ~qn+1, and 3) τN is the time when H∗

ends its evolution. τ̂ is an Event Time Trajectory (ETT), if
τ̂ is a time trajectory and τ̂n is the time when there is a
system Hi ∈ H∗ that experiments a discrete event eni ∈ Ei

for all n ∈ {0, 1, . . . , N̂} where N̂ is the number of events
that H∗ experiments.

The IHTT and the ETT are used to encode timing infor-
mation for the continuous and discrete dynamics of the IHS
H∗. The IHTT stores the times when a discrete transition
takes place at least on one of the agents in the system.
As a consequence the IHTT also specifies time intervals
between two consecutive elements in the sequence where
uninterrupted continuous evolution takes place. On the other
hand the ETT stores information about the specific times
that events happen somewhere in the system. Note that
these two sequences are considered completely independent.
This is useful because the occurrence of an event does not
necessarily imply that a discrete transition takes place.

The IHTT and the ETT as defined above allow to have
more than one hybrid system in the overall IHS taking a
discrete transition or experimenting an event at the same
time. These definitions may be reformulated to exclude this
possibility. Any time trajectory τ̄ is linearly ordered by the
relation ≺ defined by t1 ≺ t2 for t1 ∈ [τ̄i, τ̄i+1] and t2 ∈
[τ̄j , τ̄j+1] if t1 < t2 or i < j. We say τ̄ = {τ̄0, τ̄1, . . . , τ̄ N̄}

is a prefix of τ̃ = {τ̃ 0, τ̃1, . . . , τ̃ Ñ} (written τ̄ v τ̃ ) if either
they are identical, or τ̄ is finite, N̄ ≤ Ñ , τ̄n = τ̃n for all
n ∈ {0, 1, . . . , N̄ − 1}, and [τ̄N−1, τ̄N [⊆ [τ̃N−1, τ̃N [, where
[ is either ] or ).

A Group Event Sequence of H∗ is a collection E∗ =
(τ̂ ,Es) where τ̂ is an ETT and Es = (e0α0 , e1α1 , . . . , eN̂

αN̂
) is

the sequence of events that H∗ experiments, where αn ∈ I
for all n ∈ {0, 1, . . . N̂}, such that enαn ∈ Eαn specifies the
event that occurs at τ̂n, and the individual system Hαn that
experiments such event for all n ∈ {0, 1, . . . N̂}.

In the following, in order to simplify the description of
our results we divide the transition guards into a local part,
a remote part, and an event part when needed. The local part
verifies that the state of the agent experimenting a discrete
transition satisfies the transition guard. The remote part
verifies that the states of the agents connected to the one that
is experimenting the transition satisfy the transition guard,
and finally the event part (in the case of an event-triggered
transition) verifies that the agent experimenting the transition
has also experimented a discrete event that enables such tran-
sition. Let GS/Local

qi (s) ⊆ Xqi
denote the first element in the

cartesian product of the state-based transition guard GS
qi
(s).

Let GS/Remote
qi (s) ⊆

∏

j∈V (qi)
Hj denote the reminder of the

elements of the cartesian product of the state-based transition
guard GS

qi
(s). Let GE/E

qi (s) ⊆ Ei denote the first element in
the cartesian product of the event-triggered transition guard
GE

qi
(s). Let GE/Local

qi (s) ⊆ Xqi
denote the second element in

the cartesian product of the event-triggered transition guard
GE

qi
(s). Finally let GE/Remote

qi (s) ⊆
∏

j∈V (qi)
Hj denote

the reminder of the elements of the cartesian product of
the event-triggered transition guard GE

qi
(s). We also use the

following notation: qi∈̄~q if qi is a component of the vector ~q.
xqi
∈̄~x~q if xqi

is a component of ~x~q where qi∈̄~q (Similarly for
sqi
∈̄~s and uqi

∈̄~u). hi∈̄~h if hi is a component of ~h. Finally
since ~h = (~q, ~x~q) we also say qi∈̄~h if qi∈̄~q and xqi

∈̄~h if
xqi
∈̄~x~q .

Definition 4 (Interconnected Hybrid Execution) An
Interconnected Hybrid Execution (IHE) χ(~h0, E

∗) with
initial conditions ~h0 and group event sequence E∗ is a
collection (τ,q, s,x,u), where:

• τ is an interconnected hybrid time trajectory.
• q = {~q0, ~q1, . . . , ~qn, . . . , ~qN} is a sequence of vectors

of discrete locations ~qn = (qni )
T
i∈I where qni is the

discrete mode of system Hi at the n step on the
sequence.

• s = {~s0, ~s1, . . . , ~sn, . . . , ~sN} is a sequence of vectors
of switching labels ~sn = (snqi

)Ti∈I where snqi
is the

switching label of system Hi at n step in the execution.
• x = {~x0, ~x1, . . . , ~xn, . . . , ~xN} is a sequence of continu-

ous evolution ~xn = (xTqn
i
)Ti∈I where xqn

i
is an absolutely

differentiable map xqn
i
: [τn, τn+1) → Xqn

i
of system

Hi at the n step on the sequence for all i ∈ I .
• u = {~u0, ~u1, . . . , ~un, . . . , ~uN} is a sequence of contin-

uous control inputs ~un =
(

uqn
i
(t)

)T

i∈I
where uqn

i
(t) ∈

Uqn
i

(Definition 1 and following remarks2) for all t ∈

2Note that uqn
i

is originally defined as uqi
: Xqi

×
∏

j∈V (qi)

(
⋃

qj∈Qj
Xqj

)

→ Uqi
in Definition 1 and the following

remarks, but since xqn
i

is defined above as a function of time, function
composition allows us to express uqn

i
as a function of time.
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[τn, τn+1), and i ∈ I .
The interconnected hybrid execution χ(~h0, E∗) satisfies the

following conditions:
• Initial Condition: ~h0 = (~q0, ~x0(0)) is an initial condi-

tion of H∗.
• Continuous Dynamics: for all t ∈ [τn, τn+1), all
n ∈ {0, 1, 2, . . . , N − 1}, and all i ∈ I , ẋqn

i
(t) =

fqn
i
(xqn

i
, uqn

i
, t), xqn

i
∈ Xqn

i
and uqn

i
∈ Uqn

i
where

qni ∈̄~q
n, xqn

i
∈̄~xn, and uqn

i
∈̄~un.

• Discrete Dynamics: Either the event-triggered transi-
tion conditions or the state-based transition conditions
hold for each n ∈ {0, 1, 2, . . . , N−1} and for all i ∈ I .
The event-triggered transition conditions are:

– qn+1
i = sqn

i
∈ Sqn

i
, where qn+1

i ∈̄~qn+1 and sqn
i
∈̄~s,

– There exists a (τ̂ n̂, en̂αn̂) ∈ E
∗ such that αn̂ = i,

τ̂ n̂ = τn+1, and en̂i ∈ G
E/E
qn

i
(sqn

i
),

– xqn
i
(τn+1) ∈ G

E/Local
qn

i
(sqn

i
), and

(hqn
j
)j∈V (qn

i
)(τ

n+1) ∈ G
E/Remote
qn

i
(sqn

i
), where

xqn
i
∈̄~x~q and hqn

j
∈̄~hn,

– xqn+1

i
(τn+1) ∈ Zqn

i
(GE

qn
i
, sqn

i
).

The state-based transition conditions are:
– qn+1

i = sqn
i
∈ Sqn

i
, where qn+1

i ∈̄~qn+1 and sqn
i
∈̄~s,

– xqn
i
(τn+1) ∈ G

S/Local
qn

i
(sqn

i
) and

(hqn
j
)j∈V (qn

i
)(τ

n+1) ∈ G
S/Remote
qn

i
(sqn

i
), where

xqn
i
∈̄~x~q and hqn

j
∈̄~hn, and

– xqn+1

i
(τn+1) ∈ Zqn

i
(GS

qn
i
, sqn

i
).

The IHE provides the information about the continuous
and discrete states and inputs of the system at each instant
of its evolution. It is the analog of the state-input trajectory
in continuous time systems. The conditions imposed in the
second part of Definition 4 are required for it to be valid to
H∗. Therefore an IHE should start at a valid initial condition.
The continuous evolution between two times in the intercon-
nected hybrid time trajectory should satisfy the continuous
dynamics of each agent, and the discrete transitions should
have valid transition guards and transition maps.

Note that we used χ(~h0, E
∗) to denote an IHE with

initial condition ~h0 and group event sequence E∗. We
say that an IHE χ(~h0, E

∗) = (τ,q, s,x,u) of H∗ is
a prefix of another IHE χ̃(~h0, E

∗) = (τ̃ , q̃, s̃, x̃, ũ) of
H∗ (written χ(~h0, E

∗) v χ̃(~h0, E
∗)) if τ v τ̃ , and

for all n ∈ {0, 1, . . . , N} and for all t ∈ [τn, τn+1[
(~qn, ~sn, ~xn(t), ~un(t)) = (~̃qn, ~̃sn, ~̃xn(t), ~̃un(t)). We say that
χ(~h0, E

∗) is a strick prefix of χ̃(~h0, E∗) (written χ(~h0, E∗) @

χ̃(~h0, E
∗)) if χ(~h0, E

∗) v χ̃(~h0, E
∗), and χ(~h0, E

∗) 6=
χ̃(~h0, E

∗).
An IHE χ(~h0, E

∗) is called maximal if it is not a strick
prefix of any other execution. An IHE χ(~h0, E

∗) is finite if τ
is a finite sequence and the last elements of u and x are de-
fined over compact intervals of time, i.e. ~uN : [τN−1, τN ]→
∏

i∈I Uqn
i

, and ~xN : [τN−1, τN ]→
∏

i∈I Xqn
i

. χ(~h0, E∗) is
infinite if τ is an infinite sequence or if τN =∞.
χS(~h0, E

∗) denotes the set of all IHEs with initial con-
dition ~h0 and group event sequence E∗, and similarly

χF (~h0, E
∗) denotes the set of all finite IHEs, χ∞(~h0, E

∗)
denotes the set of all infinite IHEs, and χM (~h0, E

∗) denotes
the set of all maximal IHEs with initial condition ~h0 and
group event sequence E∗. Init denotes the set of all initial
conditions, and ESS denotes the set of all possible group
event sequences.

We say that χ(~h0, E∗) = (τ,q, s,x,u) ∈ χF (~h0, E
∗)

that maps ~h0 to ~h with group event sequence E∗ if τ =
{τ0, τ1, . . . , τN} and ~h = (~qN , ~xN (τN )). An interconnected
hybrid state ~h ∈ Reach(~h0, E

∗) if there exists a finite
IHE χ(~h0, E

∗) ∈ χF (~h0, E
∗) that maps ~h0 to ~h with

group event sequence E∗. The set of states ~h that can be
reached from any initial condition and with any group event
sequence ReachH∗ =

⋃

(~h0,E∗)∈Init×ESSReach(
~h0, E

∗) is
called Interconnected Reachable Set.

Let ψ(qi, xqi
, uqi

, t) denote the flow of fqi
(xqi

, uqi
, t) for

all i ∈ I . We define the set for which continuous evolution
is impossible as OutH∗ = {~h ∈

∏

i∈I Xi ×
∏

i∈I Qi;∀ε >
0,∃t ∈ [0, ε) and ∃i ∈ I, such that ψ(qi, xqi

, uqi
, t) /∈

Xqi
, where qi∈̄~h, xqi

∈̄~h}.
We say that H∗ is deterministic if given ~h0 and E∗,

χM (~h0, E
∗) contains at most one element.

Theorem 2 (Existence of infinite IHE) Suppose H∗ is de-
terministic. Then given an initial condition ~h0 and a group
event sequence, if E∗, χ∞(~h0, E

∗) is nonempty then for
all ~h ∈ ReachH∗

⋂

OutH∗ either one of the following
conditions holds:

1) There exist a Hi ∈ H∗ s.t. there exists a s ∈ Sqi
with

xqi
∈ G

S/Local
qi (s), and (hqj

)j∈V (qi) ∈ G
S/Remote
qi (s)

where qi∈̄~h, xqi
∈̄~h, and hqi

∈̄~h for all i ∈ I .
2) There exist a Hi ∈ H∗ and an element (τ̂k, ekαk) ∈
E∗ with αk = i s.t. there exists a s ∈ Sqi

with
xqi

∈ G
E/Local
qi (s), (hqj

)j∈V (qi) ∈ G
E/Remote
qi (s),

and τ̂k = τN and ekαk ∈ G
E/E
qi (s) where τN is

the time of the last element of the finite execution
χ(~h0, E

∗) = (τ,q, s,x,u) that maps the system H∗

from ~h0 to ~h with group event sequence E∗, and where
qi∈̄~h, xqi

∈̄~h, and hqi
∈̄~h for all i ∈ I ..

Proof: Suppose for the sake of contradiction that H∗

is deterministic, and for any ~h0 and E∗ χ∞(~h0, E
∗) is

nonempty, but there is a ~h ∈ ReachH∗

⋂

OutH∗ for which
none of 1) or 2) hold. Since ~h ∈ ReachH∗ there is a finite
execution χ(~h0, E∗) = (τ,q, s,x,u) ∈ χF (~h0, E

∗) such that
τ = {τ0, τ1, . . . , τN} and ~h = (~qN , ~xN (τN )).
a) Suppose there exists another execution χ̌(~h0, E

∗) =
(τ̌ , q̌, š, x̌, ǔ) such that χ(~h0, E∗) v χ̌(~h0, E

∗) and τ̌ =
{τ0, τ1, . . . , τN−1, τN + ε} for some ε > 0. Then there
exists t ∈ [0, ε) such that ψ(qi, xqi

, uqi
, t) ∈ Xqi

for all
i ∈ I , violating ~h ∈ OutH∗ .
b) Suppose there exists χ̌(~h0, E

∗) = (τ̌ , q̌, š, x̌, ǔ)
such that χ(~h0, E

∗) v χ̌(~h0, E
∗) and τ̌ =

{τ0, τ1, . . . , τN , τ̌N+1}, then there exists Hi ∈ H∗

that executes either a state-based transition or a an event-
triggered transition at τN , therefore one of the following
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holds:
• If Hi executes a state-based transition, Definition 4

implies there exists a s ∈ SqN−1

i
such that xqN−1

i
(τN ) ∈

G
S/Local

qN−1

i

(s), (hqN−1

j
)j∈V (qN−1

i
)(τ

N ) ∈ G
S/Remote

qN−1

i

(s),

and xqN
i
(τN ) ∈ ZqN−1

i
(GS

qN−1

i

, s) where qni ∈̄
~hn,

xqn
i
∈̄~hn, hqn

j
∈̄~hn for all i, j ∈ I and for all n ∈

{N,N − 1}. Note that this violates assumption that 1)
does not hold.

• If Hi executes an event-triggered transition, Definition
4 implies there exists a s ∈ SqN−1

i
and a (τ̂k, ekαk) ∈

E∗, such that αk = i, τ̂k = τN , ekαk ∈ G
E/E

qN−1

i

(s),

xqN−1

i
(τN ) ∈ G

E/Local

qN−1

i

(s), (hqN−1

j
)j∈V (qN−1

i
)(τ

N ) ∈

G
E/Remote

qN−1

i

(s), and xqN
i
(τN ) ∈ ZqN−1

i
(GE

qN−1

i

, s),

where qni ∈̄~h
n, xqn

i
∈̄~hn, hqn

j
∈̄~hn for all i, j ∈ I and for

all n ∈ {N,N − 1}. Note that this violates assumption
that 2) does not hold.

a) and b) imply that χ(~h0, E∗) = (τ,q, s,x,u) is maximal.
However by assumption χ∞(~h0, E

∗) is nonempty, therefore
there exists an infinite execution χ̃(~h0, E

∗) ∈ χ∞(~h0, E
∗).

This execution is also maximal and different from χ(~h0, E
∗),

which implies that χM (~h0, E
∗) has at least two different

elements violating the assumption that H∗ is deterministic,
which proves our claim.

Note that Theorem 2 states the necessary condition for
the existence of an IHE in terms of each agent’s model. We
are currently working on the formal proof for the sufficient
condition. These two conditions may be used together to
design the dynamics of each agent in local form such that the
existence of the multi-agent system’s execution is guaranteed
globally.

V. CONCLUSION

We have presented an interconnected hybrid systems
framework: a set of hybrid systems with interweaved contin-
uous and discrete dynamics that form a multi-agent system
with hybrid individual dynamics. We extended the work in
[10], [16] defining a metric, reachable sets, and executions
for interconnected hybrid systems. We explained the prop-
erties of the new metric and proved a necessary condition
for the existence of interconnected hybrid executions that is
written in terms of the local model of each hybrid agent.

We are currently working on the sufficient condition for
existence and on the necessary and sufficient conditions for
the uniqueness of such execution. We expect hat this new
theoretical framework will enable us to analyze, control and
perform abstractions on multi-agent systems with hybrid
individual dynamics.
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