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This paper deals with the class of nonlinear systems
described by the equation M(ql(t)lqit)= £(t) - W(q(t)},§(t)) with
f(t) a control inpat. Ve employ a simple method of control
design which has two stages. First, a global linearization is
performed to yield a decoupled controllable linear system. Then
a controller is designed for this linear systea.

¥e provide a rigorous analysis of the effects of uncertain
dynamics, which we stody using robustness results in the time
domain based on a Lyapunov equation and the total stability
theorem.  Using this approach we are able to give meaningful
robustness bounds which justify assumptions that are curreamtly
made in the literature in an ad hoc fashion.

1. INTRODUCYION

A class of nonlinear systems that has been extensively
stodied is described by the equation
Mlq)g= £ - N(q,q) {1.1)
vhere f is a control vector, and M(q) and N(g,§) are a matrix and
a vector containing system parameters. The argument t has been
dropped for comvenience. This class of systems includes robotic
systems in the Lagrange-Buler formulation {7]. The contributions
of this paper are a simple control design scheme and a rigorous
analysis of the effects of uncertainties present in the entries
of M(q) and N(q,q).

The proposed control design technique has two steps and is
similar to other approaches in the literature [8]. A global
linearization, is first performed to yield a controllable and
decoupled linear system. We then present two controllers, the
first being a pole-placement design and the second a linear-
quadratic tracking design. The results are easily interpreted

since the states of the linearized system and those of (1.1) are
the same.
A rigorous time-domain robustness amalysis based on a

Lyapunov equation {11) and the total stability theorem (2] is
then carried out to find bounds on the uncertainties in M{q) and
N(g,4) for closed-loop stability. Unmlike the analysis in (3,9],
our results allow the inclusion of siructured uncertainties. We
are also able' to vary two design parameter "a" and "b” which
affect a trade-off between the required accuracy of M(g) and that

of N{q,&4). Our result gives bounds for stability on the
uncertainties in the individual entrjes of M{q) and ¥(q,4),

yielding results which are easily interpreted from a practical
standpoint. This short paper is a preliminary exposition of
results to appear in more detail in {12], to which we defer for
all proofs.

II. CONTROLLER DESIGH

Let a nonlinear system be described by the differential
equation
K(g)g= £ - N(g,§) (2.1)

with q{t)e R~ and the control f(t)e B*. M and N contain the
system parameters, some of which may be unknown. We assume that

M(q) is invertible for all g.

Define a state by xT= {q® T]* and the desired trajectory

Xa by xa®= [qe™ §a”]T. Defining the error as e= (xa-x}, the
error dynamics become
0 I ]
= e+ | la = AetBg (2.2)
¢ 0 1
L
vhere v
u= KN - B3 + Qa . (2.3)

Note that we bhave simply described an implicit global
linearization of the kind used in (5] and that the resulting
linear system is decoupled. Since the input transformation (2.3)
is one-to-one, f£(t) can be recovered from u(t) by using

£= M{Ga - w ¢ N {2.4)

vhich does not require the inversion of M.

The problem of regulating the original nonlinear system has
therefore been transformed into the simpler problem of
stabilizing the (controllable) decoupled linear system (2.2).
The control (2.4) has been called partitioned contrel, or
computed torque control (7). In the following, we give two
methods of finding the control u(t) for (2.2).

First, let the control objective be the pole placement of
the linear system in (2.2). Consider the closed-loop systea

é= Ace (2.5)
vheze
u= -Ke (2.6}
so that
[ §
Ac=A-B = . (2.7
K1 K2
Let the 2n desired eigenvalues of A- be : ¥, Kz,. » ., Mza and
define D and B by
D= diag(}s), B= diag(}sea); i=1,..,n (2.8)
Theores 2.1
The gain X= [Ki Kz] required to place the poles of (2.2)
has K, K: diagonal and given by:
Ki= ED (2.9)
K2= -(D + B) (2.10)
]

Next, consider the control objective to be the minimization of
the linear-guadratic {LQ) performance index

S

i
(e'ge + a'Ru) at

0

(2.11)

L]
"
L I
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vhere
0= diagfQ.}, i= 1,..,n

with 020, R>0, and 0., 0z, and R nxn diagonal (to obtain simple
explicit formmlas in the sequel). HNote that the state of the
nonlinear system is not changed by the linearization, so that
performance index (2.11) is meaningful in terms of real
performance objectives for (2.1).

It is well known [1,6] that the solution to the LQ problea
described by (2.2) and (2.11) is given by the state feedback
(2.6) where

K= R™3B7S§
-0= A%™S + SA - SBR™1B”S.

(2.12)

The simple structure of our linear system leads to an explicit
expression for K, as we novw shov.

Theores 2.2

The feedback gain X= [Ky K] minimizing (2.11) is given by

Ka= (Q:R72)3/2,  Ka= (2K, + Q2R°2)2/2 {2.13)

Moreover, the closed-loop poles are described by {2.8) with

Q.R"2= D72, Q:R-2= D + B2 (2.14)

It is therefore possible in this special case to relate the
weighting matrices 0., Q. and R to meaningful physical parameters
such as the damping ratios and natural frequencies of the closed-
loop poles. Using the expression for K given in equations
{2.9),(2.10) in evaluating f as in (2.4) one gets:

f= -M[D2B2  -(D2 + B?]le + MGa + K (2.15)
This nonlinear feedback lav will make the nonlinear system {2.1)
follow the desired trajectory xa.

III. ROBUSTERSS ANAMLYSIS

In practice, the system described by (2.1) suffers from
uncertainty in the entries of M(q) and ¥(g,§). This will cause
the calculated control law f. to be different from the one found
when M and ¥ are completely known {3,9].

One of our contributions is the capability to deal with
structured uncertainties in M(q) and M(q,q) and so obtain tighter
bounds than those in ({9], Let the calculated control for the
nonlinear system be given by

fo= Mc(Ga - U) + Ke (3.1)
vhere X and N are the calculated values of X and N. M. and N
differ from M and N due to simplifying assumptions and/or
uncertain values of some parameters. Let u be given by (2.6) so
that
fo= Mo(Ga + Ke) + Mo (3.2)
One therefore obtains a calculated version uc of the input u to
the linear system (2.2). Let u. be given by

Uc= Ga + NN - N1 (3.3}
or

W= AGat 8+ (/AA-1Ee (3.4)
vhere

A= (1 - KM}, 6 = N2(N - Be).

One is nov concerned with the stability of the system
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é= Ae + Bu. (3.5)

or
&= (A - BX + B/\K)e + B{/\a + &) (3.6)
é= (A + B/AK)e + B(/\Qa ¢+ 8}
6= he + Bv (3.7}

The objective is to find bounds on /\ and & to keep the
above system stable given that (2.5) is stable. Consider the
system (3.7). It is clear that its stability is dependeat on A
and on v. The effect of } is the stability robustness problea
stodied in (4,10,11). Ve can therefore use the results from
[11] which allow for structured uncertainties, taking advantage
of the special form of the matrices A and B, to define

0 0
F= B/\K = (3.8)
hh Fa
vhere
Fi= AKy ; i=1, 2, (3.9)
Let
Pys $ l?l:l-gE €1y and £z max £44. (3.10)

wvhere Py, denotes the {i,j)th term of matrix F.

Suppose that K bas been selected so that A. has a stability
margin of -a, where the constant "a" is a design parameter which
my be selected to trade off the stability of A: (guaranteed by
the feedback K) against the required accuracy in M. and K, as
vill become clear in our development.

Theores 3.1

Let (Ac -al) be asymptotically stable (aS].
P of the Lyapunov equation

Then the solution

(Ac-al)®P + PlAc-al) + 2I= 0 (3.11)
P; pz
is given by P=
Pz p!

where Py, i= 1,2,3 are diagonal and
P2z (4331 + 4a2K: + a{Kz® + 3K1) + KiKz)2 Kz ¢+ al2l-Ky))

Py= (K2 + 2al)"%(I + P2), Pi= (Kz + 2al)Pz + PxKy (3.12)

In the next theorem, conditions on /\ are given for the
eigenvalues of (A-+F) to be less than -b vhere b is a positive
design parameter (b<a) selected to trade off requirements on the
accuracy of M. against reguirements on the accuracy of e, as
shown next. Let us define

£'s Hx[?;: + (a-b)]—.. (3.13)
Theores 3.2
Let A. have eigenvalues with real parts less than -a. Then

the eigenvalues of (A + F) have real parts less than -b if

E' { (Smax{Palle)™® z 1/s (3.14)
vherze:

Smax(.)= maximam singular value of (.)



Pass= lpa:;

0,
Usss
'

(Pall}e = Symmetric part of Pull.

if Pig = 0,

otherwise.

Bov that the global asymptotic stability of A has been
guaranteed with a desired margim of stability -b, we shift our
atteatios to the effect of the disturbance v{t) on the closed-
loop bebavior. The following lemma is meeded in the sequel.

lenmn 3.3

Lat & = Ae vhere A = A + F(t)
the conditions of Theorem 3.2.
X(t,0) is then bounded as follows,

t,

, with 3 and A. satisfying
The state transition matrix

[IX(t,8) ) s ge v a -{2nse'+ptja-b])>0 and 021  {3.15)
vhere |X(t,0){] = (iil:j X13%)22,
K=z max real part of eigenvalues of A., J<¢-a, {3.16)
€' and s defined in (3.13) and (3.14).
[ |
In the next theorem the error is bounded, when v(t) is not
zero.
Theoren 3.4

Let é(t) = Ae(t) + Bv(t) where A-is asymptotically
¢ Lr for some comstant L

stable with a margin -b and ||Bv{e(t})}}|

vhen ”e(t)“ sr. If lle(n < t/g and (Lo/e)<1 there exists
a unique solution e{t) of (3.7) and

Hett)]] € e[ jeto)f] + (Woserzi1 - &™) < (3.17)
for all t 20. "

leamp 3.5

1f in Theorem 3.4 one has ”Me(t))” $ Ljjef| then undexr
the conditions of that Theorea

[le(t)]] ¢ oe ™ " [{e(0)]] vhere a's Zleo + . (3.18)

Moreover, e{t) is asymptotically stable if e'>0.
u

Note that s)-(j+b)/ (2n£'+|a—bl) is always guaranteed because
of Theorem 3.2. Therefore, (Lo/e)<l is satisfied if

L ¢ -e(2ne'+ a-bl)/(llfa). This gives an upper hound on the
magnitude of v{t) for stability. In order to get a bound on v(t)
using a norm of the type defined inm (3.10) let us note that
HBV” < /nV  vhere Va= ]Bv]... and V= max V.. Next, we wvill
assume that »aV ¢ Lr and £ind stability robustness bounds on the
differences between the jpdividual truve entries of M and ¥ and
their calculated ones. These bounds are useful im practical
applications.

Theores 3.6
Let the computed entries of M and ¥ in (3.1) be {Mei4} and

{Kc1} and the true ones be {M.,} and {N.}. If a= b, then the
error in {2.2) is bownded as ia (3.18) if
1 n
{Msa - H“’l <: £ !Kt-i (3.19)
=l

vhere
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k= maxk, , i=1,..,2n
ki= ith diagonal element of X, if i ¢ n
{i - n)th diagonal element of X, if ntl ¢ i s 2n,

and
n
|8 - l=;| s #'L LIS {3.20)
»=l
vhere §'z nx[i;i_.. 2

IV. COnCLESION

Using a global limearization, a nonlinear systes was
transformed into a decoupled linear systea. A controller was
designed for the latter by two methods, pole-placement and LOR
theory, and from this was derived the control for the nonlinear
systea.

Controllers in robotics, for example, are often designed by
ad hoc means which amount to omitting certain nonlinear terms and
assuming a decoupled dynamical description of the system, but
little work has been done on rigorously justifying the
simplification, notable exceptions being found in [3,9]. In this
paper, the robustmess of the closed-loop systea was stodied using
a time-domain Lyapunov approach, and stability robustness bounds
were found in terss of meaningful physical parameters. Our
approach exploits the strocture of the disturbances, and presents
bounds on the actual mageitode of the disturbances rather than on
their L. nora.
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