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Regular Paper

ABSTRACT

In this paper, we present a new necessary and sufficient condition for simultaneous stabilization and new
sufficient conditions for the existence of a simultaneously stabilizing controller, both derived from a poly-
nomial approach. The additional requirements for the controller itself to be either stable or a Unit in H∞

are also given. These new sufficient conditions are general in nature and are shown to reduce in special
cases to several published papers. Examples illustrate the extensions.

Key Words. Simultaneous stabilization, strong stabilization, Unit stabilization, Hurwitz polynomials,
exactly proper.

1 Introduction

In this paper, sufficient conditions for the existence of a controller, that stabilizes a set of n SISO plants:
P1, P2, . . . , Pn (simultaneous stabilization), are derived using a polynomial approach. The new sufficient
condition used here is that the differences formed from an artificial plant, P0, with all of the n plants,
(P0 −P1), (P0 −P2), . . . , (P0 −Pn) form minimum phase difference plants. It is shown that this condition
is sufficient for (strong) simultaneous stabilization with a stable controller, when P0 is minimum phase. It
is also shown that this condition is sufficient for simultaneous stabilization with a unit in H∞, when P0 is
stable and minimum phase.

From this new sufficient condition, a plethora of new easily testable conditions arise. These conditions
are a generalization of Blondel’s result [3] in that the difference plants are allowed to be strictly proper,
when the high frequency sign of all the strictly proper difference plants are the same. These conditions are
a generalization of Barmish and Wei’s result [1] in that the high frequency sign condition of all the plants
are relaxed, and the plants are allowed to be non-minimum phase.

The proofs of these new sufficient conditions are related to a new necessary and sufficient condition for
simultaneous stabilization. Specifically, n plants are simultaneously stabilizable if and only if they can be
simultaneously stabilized with an exactly proper controller.

This paper is organized in the following manner. New necessary and sufficient conditions for simulta-
neous stabilization are stated in Section 2. Section 3 contains new sufficient conditions for simultaneous
stabilization. Section 4 converts these new sufficient conditions to testable conditions. Examples demon-
strate their extension and application. The summary and conclusions are in Section 5.



2 Necessary and Sufficient Conditions for Simultaneous Stabilization

Tractable necessary and sufficient conditions for the simultaneous stabilization of more than two plants is
an open problem. All existing forms of the necessary and sufficient conditions for this case are either an
unsolved problem, or a translation from one unsolved problem into another. Vidyasagar and Viswanadham
[13] showed that simultaneously stabilizing n MIMO plants is equivalent to strongly stabilizing (n−1) plants,
that is, stabilizing (n − 1) plants with a stable compensator, one with no right half plane (RHP) poles.
When (P2 − P1) is minimum phase (no RHP zeros) and exactly proper (zero relative degree), Blondel [2]
showed that the n plants can be simultaneously stabilized if and only if (n − 2) plants formed from the
difference plant numerators of (P2 − Pi) and (P1 − Pi) can be simultaneously stabilized with a unit.

In this section, a new necessary and sufficient condition for simultaneous stabilization of n continuous
time plants is stated. Although the simultaneous stabilization problem still remains an open problem for
more than two plants, this new necessary and sufficient condition restricts the search for existence of a
simultaneously stabilizing controller to exactly proper controllers. This fact is used in the proofs of the
sufficient conditions derived in Section 2.

It is assumed, without loss of generality, that the denominator polynomials, di, of all plants, Pi = ni

di
,

are monic, and that the numerator polynomial, ni, carries the high frequency coefficient for each plant. In
most practical applications, the plants to be controlled are proper. It is assumed throughout this paper
that the plants requiring simultaneous stabilization are proper. However, analogous derivations lead to
similar results for improper plants. Some frequently used notation is first defined.

1. Given two plants Pi = ni

di
and Pj =

nj

dj
, nij = (nidj −dinj) represents the numerator of the difference

of the two plants before denominator cancellations.

2. n+
ij = (nidj + dinj) represents the numerator of the sum of the two plants before denominator

cancellations.

3. o(ni) = the order of ni(s) = the highest power of s in the polynomial ni(s).

4. rd(Pi) = o(di) − o(ni) the relative degree of Pi).

5. MS = the set of strictly proper, minimum phase, rational functions.

The proofs in this paper are based upon the lemma proved by Barmish and Wei in [1], and variations
of it.

Lemma 1 (Barmish and Wei [1]) Given two polynomials, g(s) and h(s), of finite degree, o(g) and o(h)
respectively, with fixed real coefficients, where

1. h(s) is strictly Hurwitz with positive coefficients,

2. g(s) is monic,

3. o(g) ≤ o(h) + 1,

then there exists εmax > 0 such that ∀ε : 0 < ε < εmax, the polynomial f(s) = h(s) + εg(s) is strictly
Hurwitz with positive coefficients.

A minor variation is the following lemma.

Lemma 2 Given two polynomials, g(s) and h(s), of finite degree, o(g) and o(h) respectively, with fixed
real coefficients, where

1. h(s) is strictly Hurwitz with positive coefficients,



2. g(s) is monic,

3. o(g) ≤ o(h),

then there exists εmax > 0 such that ∀ε : 0 < ε < εmax, the polynomial f(s) = h(s) − εg(s) is strictly
Hurwitz with positive coefficients.

Proof of Lemma 2:
Hurwitz testing matrices H−

ε , H, and H” are generated for f(s), h(s), and g(s) respectively, as in Case
1 of the proof given by Barmish and Wei, but using H−

ε = H − εH” rather than H+
ε = H + εH”.

The norm of a matrix is understood to be the square root of the maximum eigenvalue of the product
of the matrix multiplied by its conjugate transpose. Observing that ‖H−

ε ‖ = ‖H − εH”‖ ≥ ‖H‖ − ε‖H”‖,
and ‖H+

ε ‖ = ‖H − εH”‖ ≥ ‖H‖ − ε‖H”‖ the remainder of the proof is identical.
Useful corollaries, which minimize the complexity of theorem proofs that follow, relax the monic re-

quirements on g(s) and the sign of the coefficients of h(s).

Corollary 1 Given two polynomials, g(s) and h(s), of finite degree, o(g) and o(h) respectively, with fixed
real coefficients, where

1. h(s) is strictly Hurwitz,

2. The sign of the coefficient of the highest order term of g(s) is the same as the sign of the coefficients
of all terms of h(s),

3. o(g) ≤ o(h) + 1,

then there exists εmax > 0 such that ∀ε : 0 < ε < εmax, the polynomial f(s) = h(s) + εg(s) is strictly
Hurwitz and the sign of all of the coefficients of f(s) are the same as the sign of all of the coefficients of
h(s).

Proof of Corollary 1:
Let g0 represent the highest order coefficient of g(s). Define q(s) and r(s) as

q(s) =
1

g0
· g(s), r(s) =

1

g0
· h(s)

Then q(s) is monic, r(s) is strictly Hurwitz with positive coefficients, and dq ≤ dr + 1, where dq and
dr represent the degree of q(s) and r(s) respectively. From Lemma 1, there exists εmax > 0, such that
p(s) = q(s)+εr(s) is strictly Hurwitz with positive coefficients ∀ε : 0 < ε < εmax. Therefore, f(s) = g0 ·p(s)
is also strictly Hurwitz and the sign of the coefficients of f(s) are the same as the sign of the coefficients
of h(s). This completes the proof.

Corollary 2 Given two polynomials, g(s) and h(s), of finite degree, o(g) and o(h) respectively, with fixed
real coefficients, where

1. h(s) is strictly Hurwitz,

2. o(g) ≤ o(h),

then there exists εmax > 0 such that ∀ε : 0 < ε < εmax, the polynomial f(s) = h(s) + εg(s) is strictly
Hurwitz and the sign of all of the coefficients of f(s) are the same as the sign of all of the coefficients of
h(s).



Proof of Corollary 2:
Let g0 represent the highest order coefficient of g(s). Define q(s) and r(s) as

q(s) =
1

g0
g(s), r(s) =

1

g0
h(s)

Then q(s) is monic, r(s) is strictly Hurwitz, and dq ≤ dr, where dq and dr represent the degree of q(s)
and r(s) respectively. If the sign of g0 is the same as the sign of the coefficients of h(s), then from
Lemma 1, there exists εmax > 0, such that p(s) = q(s) + εr(s) is strictly Hurwitz with positive coefficients
∀ε : 0 < ε < εmax. If the sign of g0 is the opposite of the sign of all the coefficients of h(s), then from
Lemma 2, there exists εmax > 0, such that p(s) = q(s) − ε[−r(s)] = q(s) + εr(s) is strictly Hurwitz with
positive coefficients ∀ε : 0 < ε < εmax. Therefore, f(s) = g0 · p(s) is also strictly Hurwitz and the sign of
all of the coefficients of f(s) are the same as the sign of all of the coefficients of h(s). This completes the
proof.

Theorem 1 The n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, are simultaneously stabilizable if and only if

the n plants are simultaneously stabilizable with an exactly proper controller.

Proof:
See [4]. The sufficiency proof is obvious. The necessity proof is as follows.
A controller, C(s), internally stabilizes a plant, P (s), when the following four transfer functions are

proper, have stable poles, and there are no RHP pole-zero cancellations in P (s)C(s).

1

1 + P (s)C(s)
,

P (s)

1 + P (s)C(s)
,

C(s)

1 + P (s)C(s)
,

P (s)C(s)

1 + P (s)C(s)

and when there are no RHP pole-zero cancellations in P (s)C(s). This is discussed in [12], [2], and [7]
among others. It should be noted, that the transfer function

1

1 + P (s)C(s)
∈ H∞ ⇔

P (s)C(s)

1 + P (s)C(s)
∈ H∞

as can be seen from the simple subtraction.

1 −
1

1 + P (s)C(s)
=

P (s)C(s)

1 + P (s)C(s)

Therefore, the system is internally stable when the three transfer functions

1

1 + P (s)C(s)
,

P (s)

1 + P (s)C(s)
,

C(s)

1 + P (s)C(s)
(1)

are elements of H∞, and when there are no RHP pole-zero cancellations in P (s)C(s).
If there exists a controller that simultaneously stabilizes the n proper plants, then the controller is

either improper, strictly proper, or exactly proper. If it is exactly proper, the proof is complete. The
remainder of the proof consists of showing that if there exist a simultaneously stabilizing controller that is
strictly proper or improper, then there also exist an exactly proper simultaneously stabilizing controller.

If C0
sp = nc

dc
is a strictly proper controller of relative degree rc, that simultaneously stabilizes the n

proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, then from Equation (1),

1

(1 + PiC0
sp)

,
Pi

(1 + PiC0
sp)

,
C0

sp

(1 + PiC0
sp)

are all elements of H∞, ∀i = 1, 2, . . . , n and Pi and C0
sp have no pole-zero cancellations. Note that for a

strictly proper controller to internally stabilize a plant, the plant must be proper.



Choosing

Cj
sp = Cj−1

sp · (εjs + 1), ∀j = 1, 2, . . . , rc

then from Corollaries 1 and 2, ∃ εj > 0 sufficiently small for each j, such that

1

(1 + PiC
j
sp)

,
Pi

(1 + PiC
j
sp)

,
Cj

sp

(1 + PiC
j
sp)

are also elements of H∞. In fact, when j = rc, Crc
sp is exactly proper, and

(1 + Crc
spPi) ∈ H∞

and is exactly proper ∀i = 1, 2, . . . , n. Therefore, C rc
sp is an exactly proper controller that simultaneously

stabilizes the plants.
Similarly, if C0

ip = nc

dc
is an improper controller of relative degree rc = −rd(C0

ip), that simultaneously
stabilizes the n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, then

1

(1 + PiC0
ip)

,
Pi

(1 + PiC0
ip)

,
C0

ip

(1 + PiC0
ip)

are all elements of H∞, ∀i = 1, 2, . . . , n and Pi and C0
sp have no pole-zero cancellations. Note that for an

improper controller to internally stabilize a plant, the plant must be either improper or exactly proper.
Choosing

Cj
ip = Cj−1

ip ·
1

(εjs + 1)
, ∀j = 1, 2, . . . , rc

then from Corollaries 1 and 2, ∃ εj > 0 sufficiently small for each j, such that

1

(1 + PiC
j
ip)

,
Pi

(1 + PiC
j
ip)

,
Cj

ip

(1 + PiC
j
ip)

are also elements of H∞. In fact, when j = rc, Crc

ip is exactly proper, and

(1 + Crc

ip Pi) ∈ H∞

and is exactly proper ∀i = 1, 2, . . . , n. Therefore, C rc

ip is an exactly proper controller that simultaneously
stabilizes the plants.

Theorem 1 is also true for improper plants. The following theorem and associated corollaries are
restatements of Theorem 1 for proper plants and are used in the proofs of theorems for sufficient conditions.

Theorem 2 The n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, are simultaneously stabilizable, if and only if

there exists an exactly proper artificial plant, P0 = n0

d0
, such that

1. (n0di − nid0) is strictly Hurwitz ∀i = 1, 2, . . . , n

2. (P0 − Pi) is exactly proper ∀i = 1, 2, . . . , n

Proof:
See [4]. This proof is simply derived by replacing the exactly proper simultaneously stabilizing controller

with the substitution Cep = − 1
P0

.

Corollary 3 The n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, are (strongly) simultaneously stabilizable with

a stable controller, if and only if there exists an exactly proper, minimum phase artificial plant, P0 = n0

d0
,

such that



1. (n0di − nid0) is strictly Hurwitz ∀i = 1, 2, . . . , n

2. (P0 − Pi) is exactly proper ∀i = 1, 2, . . . , n

Proof:
See [4]. This proof is again complete by replacing the stable exactly proper simultaneously stabilizing

controller with the substitution Cep = − 1
P0

.

Corollary 4 The n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, are simultaneously stabilizable with a unit in

H∞, if and only if there exists a unit, P0 = n0

d0
, such that

1. (n0di − nid0) is strictly Hurwitz ∀i = 1, 2, . . . , n

2. (P0 − Pi) is exactly proper ∀i = 1, 2, . . . , n

Proof:
This proof is obvious by replacing the simultaneously stabilizing Unit in H∞ with Cep = − 1

P0
.

3 Sufficient Conditions for Simultaneous Stabilization

New sufficient conditions are presented in this section. These conditions are quite general in nature and
offer a wide range of testable conditions, which are briefly discussed in Section 4. The main result of this
section is stated in the following theorem. Since strong or Unit stabilization extends the number of plants
which could be simultaneously stabilized by 1 or 2 respectively, the corollaries associated with the main
result pertain to the plausibility of a strictly Hurwitz characteristic for the numerator or denominator
polynomials of the simultaneously stabilizing controller.

Theorem 3 The n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, are simultaneously stabilizable, if there exists

an artificial plant, P0 = n0

d0
, not necessarily proper, such that

1. (n0di − nid0) is strictly Hurwitz ∀i = 1, 2, . . . , n

2. The difference plants, (P0 − Pi), that are strictly proper, have the same high frequency sign

Proof Outline:
This proof is split into 2 parts depending upon whether the maximum relative degree of all the difference

plants, rd = max{ri} = max{rd(P0 − Pi)}, is greater than the relative degree of P0, rc = rd(P0).

If rd > rc, then the plant P 0
0 = P0 =

n0
0

d0
0

, is modified (rd − rc) times as follows:

Pm
0 = P m−1

0 ·
(hm + εmam)

hm

=
nm

0

dm
0

, ∀m = 1, 2, . . . , (rd − rc)

where

1. am is any arbitrary polynomial of finite order with the sign of the leading coefficient equal to the
sign of the leading coefficient of hmnm−1

0i nm−1
0 , ∀i ∈ K.

2. nm−1
0i = nm−1

0 di − dm−1
0 ni

3. K = {i : (P0 − Pi) ∈ MS}

4. hm is any strictly Hurwitz polynomial of degree equal to o(hm) = o(am) + rm−1 − rc − 1

5. rm−1 = max{rd(P m−1
0 − Pi) ∀i = 1, 2, . . . , n}



With this choice of modified plant, it is shown in [4] from Corollaries 1 and 2 that there exists an εm > 0
sufficiently small such that the following conditions are true for each step, m = 1, 2, . . . , (rd − rc)

1. rd(P m
0 − Pi) = rd(P m−1

0 − Pi) − 1, ∀i ∈ Jm−1

⇒ rm = rm−1 − 1

2. rd(P m
0 − Pi) = rd(P m−1

0 − Pi), ∀i /∈ Jm−1

3. nm
0i := (nm

0 di − nid
m
0 ) is strictly Hurwitz ∀i

4. The high frequency signs of nm
0i are the same ∀i ∈ K.

5. rd(P m
0 ) = rd(P m−1

0 ) = rc

where rm = max{rd(P m
0 − Pi), ∀i = 1, 2, . . . , n} and Jm = {i : rd(P m

0 − Pi) = rm}

After (rd − rc) steps, there exists a proper plant, P
(rd−rc)
0 , of relative degree rc, such that (n

(rd−rc)
0 di −

nid
(rd−rc)
0 ) is strictly Hurwitz and rd(P

(rd−rc)
0 −Pi) ≤ rc, ∀i, and that the high frequency sign of (P

(r0−rc)
0 −

Pi) is the same ∀i ∈ K. If rd ≤ rc, then these steps mentioned above can be skipped. If rc = 0, then the
proof is complete.

If rc > 0 and rm = rc or rd ≤ rc, then we redefine the original plant as P 0
c = P

(rd−rc)
0 = n0

c

d0
c

when

rm = rc or P 0
c = P0 = n0

c

d0
c

when rd ≤ rc. The plant P 0
c is then modified rc times as follows:

Pm
c = P m−1

c ·
(hm + εmam)

hm

=
nm

c

dm
c

where

1. am is any arbitrary polynomial of finite order with the sign of the leading coefficient equal to the
sign of the leading coefficient of hmnm−1

ci nm−1
c , ∀i ∈ K.

2. nm−1
ci = nm−1

c di − dm−1
c ni

3. K = {i : (P0 − Pi) ∈ MS}

4. hm is any strictly Hurwitz polynomial of degree equal to o(hm) = o(am) − 1

With this choice of modified plant, it is shown in [4] from Corollaries 1 and 2 that there exists an εm > 0
sufficiently small such that the following conditions are true for each step, m = 1, 2, . . . , rc

1. rd(P m
c − Pi) = rd(P m−1

c − Pi) − 1, ∀i ∈ Qm

2. rd(P m
c − Pi) = rd(P m−1

c − Pi), ∀i /∈ Qm

3. nm
ci := (nm

c di − nid
m
c ) is strictly Hurwitz ∀i

4. The high frequency signs of nm
ci are the same ∀i ∈ K.

5. rd(P m
c ) = rd(P m−1

c ) − 1 = rc − m

where Qm = {i : rd(P m
c − Pi) = rd(P m

c )}.
After rc steps, we have an exactly proper plant, P rc

c , which forms exactly proper, minimum phase
difference plants, (P rc

c − Pi), ∀i = 1, 2, . . . , n. From Theorem 2, the controller C = − 1
P

rc
c

simultaneously
stabilizes the n plants.

There is an equivalent interpretation of the sufficient conditions in Theorem 3 from a unit interpolation
viewpoint. When a plant, P0, exists, which forms minimum phase difference plants with all the other



plants, (P0 − P1), (P0 − P2), . . . , (P0 − Pn), then there exists a unit which interpolates to d1

d2
, at all finite

zeros of (P2 − P1) in the RHP, and interpolates to n1

n2
at the zeros of n12

n
in the RHP, while avoiding all

other finite intersections with n1i

n2i
, ∀i = 3, 4, . . . , n in the RHP. The high frequency sign conditions on the

strictly proper difference plants are sufficient conditions for the unit to interpolate to the points at s = ∞
as well without causing the unit to intersect with any of these curves at any other point in the RHP. This
is discussed in more detail in [4].

Corollary 5 The n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, are (strongly) simultaneously stabilizable with

a stable controller, if there exists a minimum phase artificial plant, P0 = n0

d0
, not necessarily proper, such

that

1. (n0di − nid0) is strictly Hurwitz ∀i = 1, 2, . . . , n

2. The difference plants, (P0 − Pi), that are strictly proper, have the same high frequency sign

3. If P0 is strictly proper, then the high frequency sign of P0 is the same as the high frequency sign of
all of the difference plants, (P0 − Pi), that are strictly proper

Proof:
The proof of this corollary follows that of Theorem 3 with the additional requirement of showing that

for the very same plant modifications εm can also be chosen sufficiently small to ensure that nm
0 and nm

c

remain strictly Hurwitz polynomials. The proof then follows from Theorem 3. See [4] for more detail.

Corollary 6 The n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, are simultaneously stabilizable with a unit in

H∞, if there exists a minimum phase, stable artificial plant, P0 = n0

d0
, not necessarily proper, such that

1. (n0di − nid0) is strictly Hurwitz ∀i = 1, 2, . . . , n

2. The difference plants, (P0 − Pi), that are strictly proper, have the same high frequency sign

3. If P0 is strictly proper, then the high frequency sign of P0 is the same as the high frequency sign of
all of the difference plants, (P0 − Pi), that are strictly proper

Proof:
The proof of this corollary follows that of Theorem 3 with the additional requirements of showing that

for the very same plant modifications εm can also be chosen sufficiently small to ensure that nm
0 , nm

c , dm
0 ,

and dm
c remain strictly Hurwitz polynomials. The proof then follows from Theorem 4. See [4] for more

detail.

4 Conversions from Sufficient Conditions to Testable Conditions

In this section, the new sufficient conditions derived in Section 3 are used to create easily testable conditions.
Examples illustrate some of the applications.

Theorem 4 The n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, are simultaneously stabilizable, if one of the

plants, P1 = n1

d1
, is such that

1. (n1di − nid1) is strictly Hurwitz ∀i = 2, 3, . . . , n

2. The difference plants, (P1 − Pi), i 6= 1, that are strictly proper, have the same high frequency sign



Proof: Assume there exists a proper plant, P1, such that n1i := (n1di − nid1) is strictly Hurwitz and the
difference plants, (P1 − Pi), that are strictly proper, have the same high frequency sign ∀i = 2, 3, . . . , n.
Since each of the plants, Pi, are proper ∀i, (P1 − Pi) cannot be improper.

Consider the plant P0,

P0 =
n0

d0
=

(n1h + ε0a0nk1nj)

(d1h + ε0a0nk1dj)
(2)

where

1. j, k ∈ 2, 3, . . . , n. j and k may be equal, but are not required to be.

2.

a0 =

{

1, when the high frequency sign of n1i > 0, ∀i ∈ K
−1, when the high frequency sign of n1i < 0, ∀i ∈ K

}

3. h is any strictly Hurwitz polynomial of degree o(h) ≥ max{o1, o2}, where

o1 = o(njk)

o2 = o(n1k) + o(nji) − o(n1i), ∀i 6= 1, k, j

The difference plants formed with this choice of P0 become

(P0 − Pi) =
hn1i + ε0a0nk1nji

di(d1h + ε0a0nk1dj)

It is shown in [4] from Corollaries 1 and 2 that ∃ε0 > 0 sufficiently small such that each of these
difference plants are minimum phase, and those that are strictly proper have the same high frequency sign.
The proof then follows from Theorem 3.

Corollary 7 The n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, are (strongly) simultaneously stabilizable with

a stable controller, if one of the plants, P1 = n1

d1
, is minimum phase such that

1. (n1di − nid1) is strictly Hurwitz ∀i = 2, 3, . . . , n

2. The difference plants, (P1 − Pi), that are strictly proper, have the same high frequency sign ∀i =
2, 3, . . . , n

3. If the plant, P1, is strictly proper, then the high frequency sign of P1 is the same as the high frequency
sign of the difference plants, (P1 − Pi), that are strictly proper.

Proof:
The proof of this corollary follows that of Theorem 4 with the additional requirement of showing that

for the very same plant formation ε0 can also be chosen sufficiently small to ensure that n0 remains a
strictly Hurwitz polynomial. This requires that the the strictly Hurwitz polynomial, h, chosen in Equation
(2), be of order o(h) ≥ max{o1, o2, o3}, where

o1 = o(njk)

o2 = o(n1k) + o(nji) − o(n1i), ∀i 6= 1, k, j

o3 = o(n1k) + o(nj) − o(n1)

The proof then follows from Corollary 5. See [4] for more detail.



Corollary 8 The n proper plants: Pi = ni

di
, ∀i = 1, 2, . . . , n, are simultaneously stabilizable with a unit in

H∞, if one of the plants, P1 = n1

d1
, is minimum phase, and stable such that

1. (n1di − nid1) is strictly Hurwitz ∀i = 2, 3, . . . , n

2. The difference plants, (P1 − Pi), that are strictly proper, have the same high frequency sign ∀i =
2, 3, . . . , n

3. If the plant, P1, is strictly proper, then the high frequency sign of P1 is the same as the high frequency
sign of the difference plants, (P1 − Pi), that are strictly proper.

Proof:
The proof of this corollary follows that of Theorem 4 with the additional requirement of showing that

for the very same plant formation ε0 can also be chosen sufficiently small to ensure that n0 and d0 remain
strictly Hurwitz polynomials. This requires that the the strictly Hurwitz polynomial, h, chosen in equation
2 be of order o(h) ≥ max{o1, o2, o3, o4}, where

o1 = o(njk)

o2 = o(n1k) + o(nji) − o(n1i), ∀i 6= 1, k, j

o3 = o(n1k) + o(nj) − o(n1)

o4 = o(n1k) + o(dj) − o(d1)

The proof then follows from Corollary 6. See [4] for more detail.

Example 1 Find a simultaneously stabilizing controller for the following three plants.

P1 =
n1

d1
=

1

(s + 1)
, P2 =

n2

d2
=

1

(s2 − s + 1)
, P3 =

n3

d3
=

−1

3s

It is easy to verify that (P3 −P1) and (P3 −P2) are minimum phase, strictly proper, and have the same
high frequency sign.

(P3 − P1) =
n31

d3d1
=

−(4s + 1)

3s(s + 1)

(P3 − P2) =
n32

d3d2
=

−(s2 + 2s + 1)

3s(s2 − s + 1)

From Corollary 7, there exists a stable controller that simultaneously stabilizes all three plants. In this
case, the plant forming minimum phase difference plants is of subscript 3. Therefore, by choosing k = 1,
and j = 2, then the minimum order of h is o(h) ≥ 2, and we can let

P0 =
(n3h0 + ε0n31n2)

(d3h0 + ε0n31d2)
, where h0 = (2s2 + 6s + 2), ε0 = 1

⇒ P0 =
−(2s2 + 10s + 3)

(2s3 + 21s2 + 3s − 1)

The corresponding difference plants become

(P0 − P1) =
−(4s3 + 33s2 + 16s + 2)

(2s3 + 21s2 + 3s − 1)(s + 1)
=

−(s + 0.25)(s + 0.258)(s + 7.74)

(2s3 + 21s2 + 3s − 1)(s + 1)

(P0 − P2) =
−(2s4 + 10s3 + 16s2 + 10s + 2)

(s2 − s + 1)(2s3 + 21s2 + 3s − 1)
=

−(s + 0.38)(s + 1)2(s + 2.62)

(s2 − s + 1)(2s3 + 21s2 + 3s − 1)

(P0 − P3) =
−(4s3 + 9s2 + 6s + 1)

(3s)(2s3 + 21s2 + 3s − 1)
=

−(s + 0.25)(s + 1)2

(3s)(2s3 + 21s2 + 3s − 1)



P0 is strictly proper, minimum phase and has the same high frequency sign as all of the strictly proper
minimum phase difference plants. Therefore, from Corollary 5, there exists a stable controller that simul-
taneously stabilizes all three plants. Since the relative degree of all three difference plants is less than or
equal to the relative degree of P0, the next modified plant can be of the form

P 1
0 = P0 · (ε1s + 1)

where a1 = s and h1 = 1. Choosing ε1 = 0.2,

⇒ P 1
0 =

−(0.4s3 + 4s2 + 10.6s + 3)

(2s3 + 21s2 + 3s − 1)

Forming the difference plants,

(P 1
0 − P1) =

−0.4(s2 + 15.5s + 81.2)(s + 0.277)(s + 0.222)

(s + 1)(2s3 + 21s2 + 3s − 1)

(P 1
0 − P2) =

−0.4(s + 6.46)(s2 + 1.72s + 4, 54)(s2 + 0.8s + 0.17)

(s2 − s + 1)(2s3 + 21s2 + 3s − 1)

(P 1
0 − P3) =

−1.2(s + 0.26)(s + 7.17)(s2 + 0.9s + 0.45)

(3s)(2s3 + 21s2 + 3s − 1)

C = −
1

P 1
0

C(s) = (5s3+52.5s2+7.5s−2.5)
(s+5)(s+4.68)(s+0.32)

Example 2 Find a simultaneously stabilizing controller for the following three plants.

P1 =
n1

d1
=

(s − 1)

4(s2 − 2s + 4)
, P2 =

n2

d2
=

1

3(s − 5)
, P3 =

n3

d3
= −

(s2 − s + 1)

6(5s2 − s + 3)

The difference plants formed from P2 have strictly Hurwitz numerator polynomials. There is only one
difference plant, which is strictly proper. Since P2 is minimum phase, strictly proper, and has the same
high frequency sign as the difference plant, which is strictly proper, it follows from Corollary 7 that these
plants are strongly simultaneously stabilizable.

(P2 − P1) =
n21

d1d2
=

(s2 + 10s + 1)

12(s − 5)(s2 − 2s + 4)

(P2 − P3) =
n23

d2d3
=

(s3 + 4s2 + 4s + 1)

6(s − 5)(5s2 − s + 3)
=

(s + 0.38)(s + 1)(s + 2.62)

6(s − 5)(5s2 − s + 3)

By choosing k = 3 and j = 1, it is easy to verify that the minimum order required for h to ensure existence
of a sufficiently small ε0 is o(h) ≥ 4. Choosing P0 as

P0 =
h0n2 + ε0a0n32n1

h0d2 + ε0a0n32d1
, where a0 = 1, h0 = [4s2 + 5s + 6]2, ε0 = 1

⇒ P0 =
n0

d0
=

(13s4 + 31s3 + 73s2 + 69s + 39)

(36s5 − 144s4 − 381s3 − 1023s2 − 960s − 588)



Forming the difference plants with P0,

(P0 − P1) =
(16s6 + 200s5 + 489s4 + 830s3 + 709s2 + 420s + 36)

4(s2 − 2s + 4)(36s5 − 144s4 − 381s3 − 1023s2 − 960s − 588)

(P0 − P2) =
(3s5 + 42s4 + 135s3 + 135s2 + 42s + 3)

3(s − 5)(36s5 − 144s4 − 381s3 − 1023s2 − 960s − 588)

(P0 − P3) =
(36s7 + 210s6 + 651s5 + 1452s4 + 1872s3 + 1419s2 + 636s + 114)

6(5s2 − s + 3)(36s5 − 144s4 − 381s3 − 1023s2 − 960s − 588)

All difference plants and P0 are minimum phase, and P0 has the same high frequency sign as the two
strictly proper difference plants (P0 − P1) and (P0 − P2). Therefore, from Corollary 5, the plants are
strongly simultaneously stabilizable. Since the relative degree of all of the difference plants are less than
or equal to the relative degree of P0, the next modified plant may be of the form,

P 1
0 =

n0(ε1s + 1)

d0

where a1 = s and h1 = 1. Choosing ε1 = 0.01,

P 1
0 =

0.01(s + 100)(13s4 + 31s3 + 73s2 + 69s + 39)

(36s5 − 144s4 − 381s3 − 1023s2 − 960s − 588)

The corresponding difference plants formed from P 1
0 are

(P 1
0 − P1) =

0.0036(s + 0.098)(s2 + 28.57s + 311)(s2 + 1.8s + 1.6)(s2 + 1.3s + 1.4)

(s2 − 2s + 4)(s − 6.44)(s2 + 1.16s + 2.693)(s2 + 1.279s + 0.942)

(P 1
0 − P2) =

0.0036(s + 1.27)(s + 1.76)(s2 + 1.65s + 92.4)(s2 + 0.4s + 0.004)

(s − 5)(s − 6.44)(s2 + 1.16s + 2.693)(s2 + 1.279s + 0.942)

(P 1
0 − P3) =

0.0369(s + 0.36)(s + 1.1)(s + 2.24)(s2 + 0.94s + 5.26)(s2 + 0.82s + 0.6)

(s2 − 0.2s + 0.6)(s − 6.44)(s2 + 1.16s + 2.693)(s2 + 1.279s + 0.942)

P 1
0 is exactly proper and minimum phase, and all of the difference plants are exactly proper and minimum

phase,

⇒ C = −
1

P 1
0

C(s) = −276.9(s−6.44)(s2+1.16s+2.693)(s2+1.279s+0.942)
(s+100)(s2+1.071s+3.299)(s2+1.314s+0.909)

Theorem 5 Let n1i := (n1di − nid1) and n2i := (n2di − nid2). The n proper plants: Pi = ni

di
, ∀i =

1, 2, . . . , n, are simultaneously stabilizable, if

1. (n2i − n1i) is strictly Hurwitz ∀i = 1, 2, . . . , n

2. The plants, (n2i−n1i)
di(d2−d1) , that are strictly proper, have the same high frequency sign

Proof of Theorem 5:
Let P0 = (n2−n1)

(d2−d1) . Then all of the difference plants formed with P0 become

(P0 − Pi) =
(n2i − n1i)

di(d2 − d1)

The remainder of the proof follows from Theorem 3.
The following example illustrates, that with the use of Theorem 5, it is sufficient for only one of the

difference plants to be minimum phase.



Example 3 Find a simultaneously stabilizing controller for the following three plants.

P1 =
−4

(s − 1)
, P2 =

(s − 1)

(s + 2)
, P3 =

−7

3(s − 2)

When forming all difference plants, only one is minimum phase.

(P2 − P1) =
n21

d2d1
=

(s2 + 2s + 9)

(s + 2)(s − 1)

(P3 − P1) =
n31

d3d1
=

(5s − 17)

3(s − 1)(s − 2)

(P3 − P2) =
n32

d3d2
=

−(3s2 − 2s + 20)

3(s + 2)(s − 2)

Since n21 is strictly Hurwitz, we can check n23 − n13.

n23 − n13 = (3s2 − 2s + 20) + (5s − 17)

n23 − n13 = 3(s2 + s + 1)

⇒ P0 =
(n2 − n1)

(d2 − d1)
=

(s + 3)

3

Checking the difference plants with P0 results in

(P0 − P1) =
(s2 + 2s + 9)

3(s − 1)
, (P0 − P2) =

(s2 + 2s + 9)

3(s + 2)
, (P0 − P3) =

(s2 + s + 1)

3(s − 2)

Since the difference plants are all minimum phase and improper, and all of the plants are proper, and
P0 is minimum phase, it follows from Corollary 5 that the controller, C = − 1

P0
, strongly simultaneously

stabilizes all plants.

C(s) = −3
(s+3)

In this case, the simultaneously stabilizing controller is strictly proper, which, in general, is more difficult
to achieve than an exactly proper simultaneously stabilizing controller, per Theorem 1.
Comments:

There is an interesting special case of Theorem 5. If n21 is strictly Hurwitz, (P0 − Pi) has the same

relative degree as P0 = (n2−n1)
(d2−d1) , (n2i −n1i) = n21, ∀i = 3, 4, . . . , n, and (d2−d1)

(n2−n1) is proper, then C = (d1−d2)
(n2−n1)

simultaneously stabilizes the n plants. It is easy to verify that the closed loop characteristic polynomials
of all plants, hi, in this case are the same. This is Emre’s result [8]. However, with the application of the
more general theorems described in this paper, it is much easier to see all of the special conditions required
for common closed loop poles.

There are two corollaries associated with Theorem 5 as well as with the three theorems that follow.
Each corollary corresponds to the cases where the controller is stable, minimum phase or both. Since they
are similar to Corollaries 5 and 6, they are omitted.

Theorem 6 Let n1i := (n1di − nid1) and n2i := (n2di − nid2). The n proper plants: Pi = ni

di
, ∀i =

1, 2, . . . , n, are simultaneously stabilizable, if

1. (n2i + n1i) is strictly Hurwitz ∀i = 1, 2, . . . , n

2. The plants, (n2i+n1i)
di(d2+d1) , that are strictly proper, have the same high frequency sign



Proof:
Let P0 = (n2+n1)

(d2+d1) . Then all of the difference plants formed with P0 become

(P0 − Pi) =
(n2i + n1i)

di(d2 + d1)

The remainder of the proof follows from Theorem 3.

Theorem 7 Let n+
1i := (n1di + nid1) and n2i := (n2di − nid2). The n proper plants: Pi = ni

di
, ∀i =

1, 2, . . . , n, are simultaneously stabilizable, if

1. (n2i − n+
1i) is strictly Hurwitz ∀i = 1, 2, . . . , n

2. The artificial plants,
(n2i−n+

1i
)

di(d2+d1) , that are strictly proper, have the same high frequency sign

Proof:
Let P0 = (n2−n1)

(d2+d1) . Then all of the difference plants formed with P0 become

(P0 − Pi) =
(n2i − n+

1i)

di(d2 + d1)

The remainder of the proof follows from Theorem 3.

Theorem 8 Let n+
1i := (n1di + nid1) and n2i := (n2di − nid2). The n proper plants: Pi = ni

di
, ∀i =

1, 2, . . . , n, are simultaneously stabilizable, if

1. (n2i + n+
1i) is strictly Hurwitz ∀i = 1, 2, . . . , n

2. The artificial plants,
(n2i+n+

1i
)

di(d2−d1) , that are strictly proper, have the same high frequency sign

Proof:
Let P0 = (n2+n1)

(d2−d1) . Then the difference plants formed with P0 become

(P0 − Pi) =
(n2i + n+

1i)

di(d2 − d1)

The remainder of the proof follows from Theorem 3.
By now, it should be obvious that there are many combinations of the n plant numerator and denomi-

nator polynomials, which could be used to test for sufficient conditions for simultaneous stabilization. The
new sufficient conditions of this paper reduce in special cases to published results as summarized below.

1. By choosing P0 = ±ε
(s+1)r , where r is the maximum relative degree of all minimum phase, strictly

proper plants with the same high frequency sign, then these new sufficient conditions are a general-
ization of the results published in [1], [5], [9], and [11].

2. By choosing P0 = ε, where the plants are all minimum phase and exactly proper, then these new
sufficient conditions are equivalent to the results published in [10].

3. By choosing P0 = P1, where the difference plants formed from P1 are all minimum phase and exactly
proper, then these new sufficient conditions are a generalization of the results published in [3] and
[6].

4. By choosing P0 = (n2−n1)
(d2−d1) , then these new sufficient conditons are a generalization of the results

published in [8].



5 Summary and Conclusions

In this paper, new necessary and sufficient conditions for the simultaneous stabilization of n plants were
derived. It was shown that if a controller exists, there must be an exactly proper controller.

New sufficient conditions for the simultaneous stabilization of n plants were also presented. These
conditions offer many new tests for the existence of a controller. When these new conditions are satisfied,
the controller can be designed in a step by step procedure following the construction steps in the proof.
These new sufficient conditions are a generalization of and establish a link to the results published in [1],
[3], [5], [6], [8], [9], [10],and [11]. These new sufficient conditions could be used in conjunction with unit
interpolation techniques to satisfy interpolation points at infinity.
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