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FEASIBILITY ANALYSIS OF CHANNEL EQUALIZERS 
USING KHARITONOV-TYPE RESULTS 
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* BSP Group, D.T.C., ETSI Telecomunicacion, Universidad de Vigo. 36200-VIGO, SPAIN 
t BSP Group, EECE Dpt., University of New Mexico . Albuquerque, NM 87131, USA. 

ABSTRACT 
Necessary and sufficient conditions for determining the ro- 
bust location of the roots of a family of polynomials are pre- 
sented. This family appears when multipath fading chan- 
nels are considered due to the uncertainty in the channel 
impulse response. The uncertainty is reflected by means 
of confidence intervals for the channel parameters. A few 
sibility analysis of digital equalisers is performed in the 
frequency domain to answer the question of whether the 
poles are to be found in a pre-specified region of the com- 
plex plane. The resulting tests, which can be carried out 
in a graphical manner, are both analysis and design toole, 
that can help to decide the suitable length of a constrained 
equaliser. 

2 INTRODUCTION 
In many digital signal processing applications, one has to 
tackle the problem of having an uncertain response for 
which some common property needs to be determined. 
Usually, the margin of the uncertainty can be estimated, 
defining a bounded region in the parameter-space where 
the parameters are known to lie. In many cases, these 
bounds are based on some confidence intervals obtained for 
the parameters. Thus, the parameters will lie within these 
bounds with a certain probability. Of particular interest is 
the study of the so-called %stability, i.e., the determina- 
tion of whether the seros of the uncertain system lie inside 
a specific region of the complex plane. 

In recent yeara, there has been a great deal of work con- 
cerning the robust-stability of uncertain systems. Thin ac- 
tivity was motivated by Kharitonov's work on continuous 
time systems [l]. Kharitonov's celebrated result states that 
the stability (all the seros in the left half plane) of a fam- 
ily of uncertain polynomials contained in a hypurectangle 
in the parameter space can be deduced from the stability 
of only four corner polynomials. This number does not 
depend on the order of the system; therefore, an infinite 
member family of polynomials is reduced to the test of 
four of them. Kharitonov's results remained unknown in 

the west until about 1985. Since then, hia results have 
been extended in Merent  ways. Although a discrete-time 
version of the main result does not hold, some special cases 
have been found for which a Kharitonov-like result holds. 
These results find applications in the analysis and design 
of robust controllem. 

Of specif~c relevance to this paper is the frequency do- 
main approach to  the robust stability problem. This idea 
allows easy prook of most of the known results that rely on 
simple geometry on the complex plane. In fact, the uncer- 
tainty ret is evaluated along the boundary of the stability 
region obtaining the so-called evaluation set. This is then 
combined with the "aero-exclusion principle" to produce a 
stability test. However, most of the work on the stabil- 
ity analysis for uncertain polynomials has been developed 
only for real uncertain polynomials. While this approach 
is valid for many practical systems, it is sometimes appro- 
priate to consider complex uncertainties. With this moti- 
vation, Chapellat et al. [Z] have considered the problem 
of analysing the stability of (complex) disk polynomials. 
Thia case attempts to model the situation in which the co- 
efficient perturbations are in a complex neighborhood of 
their nominal valuer (center polynomial). 

Little work has been done to translate these analysis 
methods to the Sknal Processing area. Amongst the steps 
in thia direction we mention [3] where the robust station- 
arity of sparse predictors is studied and [4] where stability 
monitoring of recursive adaptive filters is accomplished by 
means of Kharitonov's polynomials. 

In the present paper, we address the problem of study- 
ing the feasibility of digital communications equalieers for 
fading channels. Thia is done by analyzing the sero lo- 
cations of the pocleible discrete-time equivalent channels. 
Of course, it is necessary to obtain confidence bounds for 
the channel taps so as to characterise the uncertainty. In 
the more general case, the resulting uncertainty bounds 
happen to be complex rings, possibly not centered at the 
origin. The conditions obtained for robust stability deter- 
mination are extremely easy and can be transformed into 
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a frequency-domain graphical test. 

3 UNCERTAINTY 
STRUCTURATION 

For our analysis, we will consider a channel model that 
takes into account the effects of multipath propagation [5]. 
If the received signal consists of a continuum of multipath 
components (M it is the case for the tropospheric ecatter 
channel), the channel impulee response can be defined by 
the attenuation that the signal experiments for every as- 
sociated delay. If, instead, the channel consists of a finite 
number of paths, the results that follow are merely con- 
servative. Since the distortion that the signal suffers is 
non-symmetrical about the carrier frequency, the low-pass 
equivalent channel i generally complex-valued. 

Since the transmitted signal can be considered band- 
limited, the channel response can be sampled at twice the 
Nyquist frequency to  yield a discrete equivalent. Further- 
more, the channel response can be truncated such that M 
taps are taken as significant. We will assume that M ie an 
even integer. 

Central limit theorem arguments lead to the conclusion 
that the received demodulated signal consists of Gaussian 
quadrature components. Conversely, the channel response 
c ( t )  can be viewed M having a Rayleigh-distributed enve- 
lope and a uniformly distributed phase over the interval 
[ 0 , 2 i ) .  Nonetheless, when strong scatterers are present, 
it is better to characterise the envelope p.d.f. M having a 
Rice distribution. 

We will also assume that the channel discrete taps e, 
parameters, considered uncorrelated, can be estimated ac- 
curately, so it is possible to obtain the corresponding con- 
fidence intervals. Different possibilities can be suggested 
for the determination of these confidence bounds. For in- 
stance, when the two quadrature components have zero 
mean and equal variance, the interval on the modulus of 
c, can leave either a two-sided region or one tail to the 
right; the former gives a ring on the complex plane of each 
coefficient and the latter produces a complex ring. In both 
cases, the center is in general not at origin. When the 
mean of the coeffiaents in non-zero, the phase is no longer 
uniformly distributed. In this case, the consideration of 
constant p.d.f. contours leads to  a disk-shaped confidence 
interval centered at the mean point. 

Once the channel model has been outlined, we will set 
a common frame for the channel-reros analysis. It can be 
readily seen that in the more general CMC, the complex taps 
E,, have annular confidence intervals in the complex plane, 
with centers d, being not zero. If the inner radius of the 
ring is zero, then we have a disk for that coefficient. Since 
the channels are assumed to have M taps, every particular 
channel can be represented by a complex M-vector, c = 

[col c1, - - CM-I] where 

c; = di + ai.@< (1) 

We need also to  define the confidence set of channels C M 

C = { c : a f  1 a ; i a i + , ~ i ~ [ 0 , 2 r ) , i = 0 , . . . , ~ - 1 )  ( 2 )  

where a i  and a' are the extremes of the obtained confi- 
dence intervals. 

4 STABILITY ANALYSIS 
We are interested on finding complex regions in which all 
the roote for every possible channel in C are contained. For 
thin purpose, we define the open region Vr as 

Vr = {z E,C : 1.1 < r I 1 or 1.1 > 1/r} (3) 

Let q(t) denote the combined transmit-receive filter re- 
sponee which we assume has less than 100% excess band- 
width so it can be sampled without loss of information at 
T/2, where T is the signaling interval. Moreover, we make 
the practical assumption that the samples of q(t) can be 
truncated after a certain time, so q ( n T + T / 2 )  = 0,I.I > L. 
We will then write Q ( z )  = E:.,-, p(nT + T / ~ ) z - " .  It 
can be shown that for a T-spaced equaliser the discrete- 
equivalent channel response can be written as 

H ( z )  = Q(z)Ci(z) + G(z) (4) 

where Ci(z) = Cm=O Mf2-1 C2m+lz-" and C ~ ( Z )  = 

E:$-' czmz-" with C, = c ( n T f 2 ) .  We ale0 need to  de- 
fine l l ~ ( ~ )  and l l ~ ( ~ )  as the Z-transform of respectively the 
sequences dam+1, dam, m = 0, - - a ,  M / 2  - 1 and the follow- 
ing functions 

Rto(z) = 

Ra,(z) = 

&i(z) = 

& ( E )  = 

where 

m = O  

m=O 

Our objective is to  answer the following question. For each 
of the channels H ( z )  determine whether all its zeros are 

111-580 



contained in V,. This in solved by the next theorem 

Theorem: H(z) has all its seros in V, for every c E C 
if and only if the following three conditions hold 

The proof of thin Theorem [0] follows from the fact that 
the set H(rd') is, for a k e d  w ,  an annulus centered at 
Q(z)Dl(z) + Dz(z) with inner radius Rin(z) and outer ra- 
dius Rout(z). 

Note that when the inner radius of every ring ia sero 
(i.e., we are dealing with dish), the test can be simplified 
since R;,(z) = 0. Also note that the conditions in the the- 
orem can be readily transformed into a frequency-domain 
graphical test similar to those proposed in [7]. 

The given method may be transformed to search for the 
maximum r ,  if any, for which all the reros of H(z) or its 
reciprocals lie inside the region V,. Of course,.when r = 1 
our result allows a spectral nulls search on H(e") for every 
possible channel c. Indeed, conditions i i )  and iii) in the 
theorem become identical and condition i) is not needed 
for r = 1. Condition i) may be checked in a graphical way 
by means of the following result: 

Lemma: The system H ( z )  has all its reros inside Vr if 
and only if the net .change of argument of H(z)H*(l/z*) 
when z traverses re3' , w E [0,2r) is 0. 

With the given method, many applications can be de- 
vised. We are currently using the previous Kharitonov- 
type results to study the feasibility of equalisers for the 
channel models mentioned above. When Block Least 
Squares Estimation is used, the length of the channel bc- 
comes a crucial factor since the complexity of the Viterbi 
decoder depends on it [8]. For channels with a number of 

significant taps, the Viterbi decoder becomes impractical. 
Then, it in necessary to reduce the number of states seen 
by the Viterbi algorithm. To overcome this problem, an 
equaliser may be cascaded so that the combined response 
channel-equaliser yields a desired impulse response which 
is shorter than that of the channel [9]. A major drawback 
in this strategy resides in the fact that the noise power at 
the input of the detector might be unlimited if one tries 
to equalise spectral nulls of the channel. Then, with the 
method proposed in the present paper, it is possible to de- 
termine whether any of the possible channels (those within 
the confidence intervals) will have spectral n u b  (or near 
nulls). jFrom the ddinition of the desired region Vrl the 
checking for spectral nulla can be generalized to a test for 
the .eror of H ( z )  being nufficiently close to the unit cir- 
cle. For instance, the desired response a t  the input of the 
Viterbi decoder must be carefully chosen if the channel is 
to have near spectral nulls, but this computational cost 
can be avoided if the proposed analysis determines that 
the speqtrum does not vanish for any frequency. 
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When a symbol by symbol detection is to be used along 
with a Zero-Forcing equaliser, the proposed method can 
help to decide the proper length of the filter. As it is 
well known, if the equaliser has its poles close to the unit 
circle it will have a slowly decreasing impulse response. 
The reasonable length of the equalizer depends on how 
fast the different modes vanish for large TL. Therefore, it 
L interesting fiom the systems designer point of view to 
determine if the poles of the equalizer are outside the 'D, 
region. 

5 NUMERICAL RESULTS 
To illustrate the root clustering method proposed in the pa- 
per we will consider the following example, adapted from 
true channel measurements presented in [lo]. The channel 
ruponre W ~ I I  truncated at dd = 8 samples and a strong 
scatterer affecting samples 1 to 3 was included. The confi- 
dence intervals for the modulus are considered as the me- 
dian d u e  f the measured standard deviation. All the co- 
efficient tapn are normalised so that co = l. The transmit 
and receive filters are each a square root of a raised cosine 
filter with roll-off factor of 0.5. The channel parameters 
a r e , f o r n = O , . . . , M - 1  

(an} = (1, 0.5 - jO.l8,0.46 - j0.56,0.13 + j0.17,0,0,0,0} 
(U;} = {0,0.2,0.1,0.07,0.0978,0.1228,0.059,0.059} 
{U;} = (0, O,O, 0,0.050,0.058,0.022,0.022} 

In order to follow the proposed method, we first pick a spe- 
cific member of the family of channels and verify the zero 
locationr. The seron of H(z) for that particular channel 
are calculated by a root-finding algorithm and tested to be 
in D, or instead, the graphical way suggested in this paper 
can be used. Once condition i) is verified, we recognize 
that for thm example Ri,(z) = 0. Actually, this happens 
for most of the practical cases. Therefore, we need to check 
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Figure 1: Condition i i)  of theorem for different values 
of r 
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Figure 2: Condition iii) of theorem for different values 
of r 

the second two parts of conditions i i )  and iii). In Figure 
1, the ratio I(Q(rej")Dl(rej') + D,(rej"))/R,,(reJw)I is 
plotted for dfierent values of r .  It can be seen that 
i i )  holds for these values. Figure 2, shows the ratio 
I(Q( ej"/r)Dl (eiw/?) + Dp(ej"/r))/R,t(ej" / r )  I .  As it is 
easily seen iii) does not hold for r = 0.9 and smaller. As 
a consequence, H ( z )  does not have spectral nulls for any 
possible channel, but for r = 0.9 there is some channel with 
ieros outside the region V,. 

6 CONCLUSION 
In this paper we have presented a powerful analysis method 
that relies on robust stability ideas to resolve the location 
of the poles of a Zero-Forcing Equaliser structure. The 
tests so obtained are extremely simple and based upon a 
gridding in the fiequency domain. As a matter of fact, 
the results presented here have been modified to  solve the 
problem for the MMSE FSE Equalisers [ll], even though 
for that case it is necessary to  discrethe the coefficient set 
along with the frequency variable. 

. , . . , ., I . .* - . 1) 

In work in progress, we are studying the availability of 
similar tests to  Merent equaliser structures, including the 
DFE. Actually, a more general frame of reference is being 
studied to  include problems of noise cancelling and decon- 
volution. Different uncertainty regions, such as ellipses, are 
also being taken into account to  reflect the case o€ corre- 
lated gaussian quadrature channel taps. 
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