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Chapter 15
Identifier-Based Discovery in Large-Scale
Networks
An Economic Perspective

Joud Khoury and Chaouki T. Abdallah

Abstract The design of any network mechanism that requires collaboration among
selfish agents could only benefit from accounting for the complex social and eco-
nomic interactions and incentives of the agents using the design. This chapter
presents a broad treatment of the main economic issues that arise in the context
of identifier-based discovery on large scale networks, particularly on the Internet.
An “identified” object (such as a node or service), referred to as a player, demands
to be discoverable by the rest of the network on its “identifier”. A discovery scheme
provides such a service to the players and incurs a cost for doing so. Providing such
a service while accounting for the cost and making sure that the incentives of the
players are aligned is the general economic problem that we address in this work.
After introducing the identifier-based discovery problem, we present a taxonomy of
discovery schemes and proposals based on their business model and we pose sev-
eral questions that are becoming increasingly important as we proceed to design
the inter-network of the future. An incentive model for distributed discovery in the
context of the Border Gateway Protocol (BGP) and path-vector protocols in general
is then presented. We model BGP route distribution and computation using a game
in which a BGP speaker advertises its prefix to its direct neighbors promising them
a reward for further distributing the route deeper into the network. The neighbors
do the same thing with their direct neighbors, and so on. The result of the this cas-
caded route distribution is a globally advertised prefix and hence discoverability. We
present initial results on the existence of equilibria in the game and we motivate our
ongoing work.

Joud Khoury · Chaouki T. Abdallah
1 University of New Mexico, Albuquerque NM 87131, USA;
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15.1 Introduction

Traditionally, the design process in the context of the Internet has focused on sources
of value as they relate to performance, robustness, resilience, reliability, etc. with
less emphasis on the socio-economical dynamics that underly the latter. The value
of any new design in the new era does not solely depend on performance and must
take into account the complex social and economic interactions and incentives of the
agents using the design if success is to be reached [25, 37]. Check [37] for an inter-
esting overview of several tools that are important in bridging computer science and
economics to better understand the complex socio-economic interactions in the con-
text of the Internet, and [25] for an interesting overview of several of the problems
and applications arising at the interface between information and networks.

Almost every networking application relies on discovery and naming (alternat-
ively referred to as identification throughout the discussion since we ignore name
semantics) services. An identifier (or alternatively a name) in this context refers to
an address that is independent of the network topology but that could nevertheless
be routable. Identifier-based discovery (simply referred to as discovery hereafter) is
a core network service aimed at discovering a network path to an identified object.
Discovery is usually the first step in communication, before a path to the destination
object is established. Given an identifier of some object on the network, discovering
a path to the object could either utilize mapping/resolution where the identifier is
mapped to some locator (see for example [17, 32, 34], and the Domain Name Sys-
tem (DNS)), or it could utilize routing-on-identifiers (see [4,6,11,27] etc.). In either
case however, an underlying routing scheme that routes on locators typically exists
and is utilized after a path has been discovered for efficient communication. Note
that the terms identifier and locator are both addresses at different layers of abstrac-
tion. We differentiate the two terms only after we fix an upper layer: an identifier at
the upper layer maps into a locator which is an address relative to the upper layer.
The locator itself is a path identifier at a lower layer.

In this discussion we assume that a naming or identification system for a large
scale network, the Internet mainly, is required given the network’s mobile and ubi-
quitous usage models. For example, on the Internet, this translates into either design-
ing a new system or enhancing the current ones (for example DNS). While there is a
rich literature on applying game theory and economics models to Internet games,
we find in the networking literature a number of proposals for Internet discov-
ery schemes (and id routing) requiring significant coordination among selfish users
while ignoring the economic aspects that may possibly render them infeasible or
inefficient (and we shall give several examples of such system or proposals later in
Section 15.3). In a future Internet in which domains or Autonomous Systems (ASes)
are selfish agents trying to maximize their local utilities, the design of any identifier
based discovery scheme could benefit from establishing the right economic models.
The problem on the Internet specifically is exacerbated as there are multiple lay-
ers of identification managed by different systems, mainly DNS at the application
and the Border Gateway Protocol (BGP) [38] at the network layer. Note that in the
case of the latter, the Internet Protocol (IP) address space has been aggressively de-
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aggregated for reasons that we shall discuss shortly.1 In this sense, the IP address
space has been transformed into an identifier space in which the address is almost
independent of the topological location especially in the case of Provider Independ-
ent (PI) addressing. In this work, we take a first step at designing discovery schemes
for a future Internet (check NSF’s FIND [2], and the GENI [1] initiatives for current
efforts to redesign and implement the future Internet). We introduce two interrelated
design goals that we have identified as missing in the current design process, service
differentiation and incentives, and we elaborate on the latter.

Simply stated, a named object (such as a node or service), referred to as a player,
demands to be discoverable by the rest of the network. A discovery scheme provides
such service to the players. We define the discovery level to be a measure of “how
discoverable” a player is by the rest of the network (this is “how easy” it is for the
network to discover the player not the opposite). The performance of discovery, or
the discovery level, could significantly affect the player’s business model especially
in time-sensitive application contexts. If discovering an object takes a significant
time relative to the object’s download time, the requesting user’s experience suffers.
As an example, when no caching is involved, the DNS resolution latency comprises
a significant part of the total latency to download a webpage (10–30%) [8, 22].
This overhead becomes more obvious in Content Distribution Networks (CDNs),
where content objects are extensively replicated throughout the network closer to
the user and the discovery (or resolution) could potentially become the bottleneck.
Traditionally, the design of discovery schemes has assumed that all players have the
same discovery performance requirements, thus resulting in homogeneous demand.
In such a setting, the discovery schemes deliver a discovery service that is oblivious
to the actual, possibly heterogeneous, discovery requirements – and valuations – of
the different players. In reality however, the CNN site will likely value a higher dis-
covery level more than a generic residential site. An interesting question to ask is
therefore the following: should the design of discovery mechanisms account for dis-
covery service differentiation? To further motivate the need for differentiation, we
note that on the current Internet, Akamai provides such an expedited resolution ser-
vice [3]. However, the service which is based on DNS suffers from the same pitfalls
of the latter (expensive first lookup and critical dependence on caching) and tightly
couples the content distribution provider with the resolution service provider. In a
recent work [24], we have presented a first attempt to answer this question by in-
troducing the multi-level discovery framework which is concerned with the design
of discovery schemes that can provide different service levels to different sets of
players.

Obviously, there is a cost associated with being discoverable. This could be the
cost of distributing and maintaining information (state) about the identifiers. Ac-
counting for and sharing the cost of discovery is an interesting problem whose ab-
sence in current path discovery schemes has led to critical economic and scalab-
ility concerns. As an example, the Internet’s BGP [38] control plane function-
ality is oblivious to cost. More clearly, a node (BGP speaker) that advertises a

1 IP is the network layer protocol in the current Internet that allows interconnecting disparate
Internet domains or ASes.
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provider-independent prefix (identifier) does not pay for the cost of being discov-
erable. Such a cost may be large given that the prefix is maintained at every node
in the Default Free Zone (DFZ)2 (the rest of the network pays!). Such incentive
mismatch in the current BGP workings is problematic and is further exacerbated
by provider-independent addressing, multi-homing, and traffic engineering prac-
tices [33]. Notice here that BGP with its control and forwarding planes represents
a discovery scheme on prefixes which are technically flat identifiers in a largely
de-aggregated namespace. Hereafter, we refer to this form of BGP as BGP-DA for
De-Aggregation. Hence, we conjecture that a discovery scheme should be aware of
incentives and cost necessitating that players/nodes pay for the cost of getting the
service.

The rest of the chapter is organized as follows: first we motivate the notion of
strategic interactions on networks by presenting three games in Section 15.2 that
we shall refer to throughout the discussion. Section 15.3 presents a taxonomy of
discovery schemes based on their business models as well as our initial thoughts on
suitable economic models for the different discovery models. An incentive model
for distributed discovery in the context of BGP and path-vector protocols in general
is then presented in Section 15.4 before concluding.

15.2 Networks and Strategic Behavior

Game theory is a fundamental mathematical tool for understanding the strategic
interactions among selfish network agents, particularly on the Internet over which
autonomous agents (e.g. ASes) interact. The theory provides several solution con-
cepts to help study games that arise in different situations and that have specific
requirements and varying underlying assumptions [36]. We overview some basic
ones here and we provide examples to illustrate each. The most central and widely
applicable solution concept is the pure strategy Nash equilibrium (PSNE or NE)
which could be simply thought of as a set of strategies that forms a stable solution
of the game. A set of strategies for the players is termed a strategy profile. Under NE
strategy profile, no player can move profitably (i.e. increase her payoff) by deviating
from her strategy given every other player’s strategy. Despite its wide applicability,
the NE solution has several shortcomings in that it may not exist (and hence might
require mixing), there could be multiple equilibria, and there is no clear way of how
to get to it. In this sense, the mixed strategy solution concept was developed by Nash
to guarantee that an equilibrium will always exist in the game by mixing the player’s
strategies (introducing probability distributions over the pure strategies and hence
rendering the strategy space a convex set). A more stringent solution concept is the
dominant strategy solution. Unlike the pure strategy solution, a dominant strategy
yields a player the highest payoff independent of the strategies of the rest of the
players. Dominant strategies are very attractive solutions when they exist, and when

2 The DFZ refers to the set of BGP routers in the Internet that do not have any default route as part
of their routing table i.e. any such router keeps state about every advertised prefix/destination.
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they don’t exist game designers might try to design for them. For example, when a
player’s strategy is to declare some private information that is necessary to the social
welfare of the game, an attractive solution would be to make the truthful revelation
a dominant strategy hence making sure that the player will never have an incentive
to lie. The mechanism design framework [31] provides exactly this solution allow-
ing the mechanism “designer” to achieve a dominant strategy solution (in addition
to other design goals). A extension to mechanism design, Algorithmic Mechanism
Design (AMD) [35], deals with the computation complexity of the solution and
Distributed AMD [15] further considers the “network complexity” in distributed
settings. Several other solution concepts exist; however, we will only overview one
more which is the subgame perfect Nash equilibrium (SPNE) which extends the
one-shot NE concept to settings in which players take turns playing (e.g. player 1
plays first, then player 2 plays). In such setting, the subgame perfect NE becomes
more “natural” as it captures the order of decision taking. Briefly, a subgame per-
fect NE is a NE in every subgame of the original game where a subgame could
be informally defined as a portion of the game that can be independently analyzed.
Note that by the formal definition of a subgame, every game is a subgame of itself
and hence every SPNE is necessarily a NE. For formal definitions of the solution
concepts and a comprehensive treatment of the topic, we refer the reader to [16].

How does strategy factor into networking problems? To motivate the importance
of strategic behavior, we hereby present three networking applications that employ
different solution concepts and that we shall refer to throughout the discussion. Our
hope is that the games highlight some of the basic economic issues that are of in-
terest to network settings and the tools that are useful in studying these settings. Note
that the games we present here might not be straightforward for the unexperienced
reader who we refer to [16, 36] for introductory material on the subject. The first
application we present is that of “query incentive networks” and is due to Kleinberg
and Raghavan [26]. The second application is that of “trading networks with price
setting agents” due to Blume et al. [9]. The common aspect of the first two games
is that price setting is a strategic behavior of the players which is not the case with
the third application we present, “Incentive-compatible interdomain routing” due to
Feigenbaum et al. [14]. Additionally, while the first two games are solely interested
in studying the equilibria, the third presents a distributed mechanism that achieves
the solution.

15.2.1 Nash Equilibria and Query Incentive Networks Game [26]

Query incentives are motivated in peer-to-peer and in social networks where some
root node issues a query seeking a piece of information or a service on the network.
The seeker does not know which nodes on the network have the answer (neither
does any other node) and hence the only way to find the answer is to propagate the
query deeper into the network until a node with an answer is reached. In order to do
so, every node needs to incentivize its direct children to propagate the query deeper
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Fig. 15.1 Query Incentive Game: node v has an answer to the query.

where hopefully a destination node with an answer will be reached. Propagation is
assumed to occur on a tree and incentives are provided by each parent on the tree to
its children in the form of rewards. A node that gets offered a reward will itself offer
a smaller reward to its children if its does not posses the answer hence pocketing
some reward if an answer to the query is found under the node’s subtree. We shall
refer to this game hereafter as the QUERY-GAME and we note that this game is
based on a similar game initially introduced by Li et al. [30].

Formally, each node (player) u receives a reward r from its parent and offers the
same reward fu(r) < r to its children if it does not have the answer. Otherwise,
if u has the answer to the query it responds to its parent with the answer. Each
node holds the answer with probability 1 − p and on average one in every n nodes
holds the answer (n is referred to as the rarity of the answer). The node’s strategy
is hence fu(r) which is assumed to be integer-valued and the payoff is simply
(r−fu(r))αu(f) where αu(f) is the probability that an answer is found in the subtree
rooted at u given that node u has played fu and every other node’s strategy is given
by f = {fv,∀v} (f is a strategy profile). Figure 15.1 depicts a sample game on a tree.

There are several questions that arise in such a game: how will a node act stra-
tegically to tradeoff its payoff and the probability that an answer is found in its
subtree knowing that a higher promised reward potentially means higher probabil-
ity of finding an answer but less payoff? how much initial investment r∗ is required
(as a function of the tree structure and the rarity of the answer n) in order to find an
answer with high probability? The authors answer these questions in [26] by mod-
eling a general class of branching processes parametrized on the branching factor
b, where the latter is the mean number of active offsprings (or children) per node in
the tree constructed using a random branching process [26] (when b < 1, the tree is
almost surely finite while it is infinite when b > 1 with positive probability). When
looking for the equilibria, one important point to notice in this game is the interde-
pendency of the players’ strategies as given by the tree structure - the strategy of
a player will depend on the strategies of its children and so on. The authors show
that the Nash equilibrium exists (and is unique with some caveats) by constructing
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a set of functions g (a strategy profile) inductively and showing that the resulting
strategy profile is indeed an equilibrium. This result simply says that there exists a
stable solution to the game such that if the nodes play the strategies g then no node
will be able to move profitably given the strategy profile of the rest of the nodes.
However, the model does not provide a recipe to get to the solution. Knowing that a
solution exists, the next step is to study the breakpoint structure of rewards to be able
to say something about the initial investment required (check [26] for results there).
In summary, the goal of this game (and the one in [30]) is to provide incentives for
query propagation in decentralized networks with complete uncertainty about the
destination of the answer knowing that such a process could incur cost that must
be paid for by someone to keep the incentives aligned. In the next game, we shall
discuss a game the uses the SPNE solution.

15.2.2 Subgame Perfect Nash Equilibria and Trading Networks
Game [9]

The next game we present is that of trading networks which despite being more
motivated from a markets angle will provide several insights into networking games
that involve competition. A set of sellers S wish to sell their goods to a set of buy-
ers B indirectly through a set of traders T . While [9] studies both cases where the
goods are distinguishable or not, in this brief overview we shall only focus on in-
distinguishable goods i.e. a single type of good where all copies are identical. Each
seller holds exactly one copy of the good initially and each seller is only interested
in buying one copy of the good as well. Trade between the buyers and the sellers
can only happen through a set of traders T as specified by a graph G. G specifies
how sellers and buyers are connected to the traders where each edge in G connects
a node in B ∪ S to a node in T . Sellers are assumed to have zero value for the good
while each buyer j has a value θj for the good. Figure 15.2 depicts such a setting
where the indices i, j, t are used to refer to the sellers S, the buyers B, and the
traders T , respectively.

We shall refer to this game as the TRADE-GAME. The game aims at studying
the process of strategic price setting in markets with intermediaries, and proceeds
as follows: first each trader offers a bid price βti to each seller i to which it is con-
nected, and an ask price αtj to each buyer j to which it is connected. The vector of
bid/ask prices is the strategy profile of the traders. Then buyers and sellers choose
among the offers they got, the traders pay the sellers the bid price and get the ask
price from the buyers. If a trader gets more buyer offers than the seller offers it has,
the trader will have to pay a large penalty. This is so that such a scenario will never
happen at equilibrium. The payoffs of the different players are as follows: a player
that does not participate in a trade gets no payoff. A buyer that participates in a trade
through some trader t gets a payoff of θj − αtj , while a seller i that participates in a
trade with trader t gets a payoff of βti (again here assuming the seller has no value
for keeping the good). Finally, a trader that participates in trade with a set of buyers
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Fig. 15.2 Trading Network Game: sellers S to the left (circles) connect to traders T (squares) who
in turn connect to buyers B to the right (circles). The buyers’ values are indicated inside the circles
(1 in this case). Equilibrium bid and ask prices are shown above the links.

and sellers gets a payoff of
∑

r (αtjr − βtir ) minus a penalty if more buyers than
sellers accept its offer (where the index r runs for each distinct buyer, seller com-
bination that have accepted t’s offer). It is important to notice that price setting in
this game is strategic. Hence, as in the previous game, the first question to ask is
how will the traders act strategically to set the market prices knowing that multiple
traders could be competing for the same business? and what solution concept is most
suitable to studying this game? The solution concept used in this game is the sub-
game perfect NE which is suitable in such a two stage game where traders play first
and then buyers and sellers react. With this in mind, the next step to understanding
the strategic behavior of the players (or equivalently the price setting dynamics) is
to ask whether a solution (equilibrium) exists and to understand the structure of any
such solution. In Figure 15.2, the equilibrium strategies are shown above the links.
Two interesting equilibrium phenomena in this game are the effects of monopoly
and perfect competition. Both traders in this example make a maximum profit (of 1)
from the single monopolized buyer/seller pairs that have access to one trader, while
the traders make zero profit when competing for the business of the middle seller
and buyer. This must be the case at equilibrium. It turns out as shown by the authors
that the equilibrium always exists and that every equilibrium is welfare maximiz-
ing (where the welfare of an outcome is simply the difference between the values
of the buyers and those of the sellers). These results are shown by resorting to the
primal/dual solutions of a welfare maximization linear program. In any solution,
no trader will be able to make any profit unless the latter is essential for the social
welfare of the game (this result captures the case where traders could have different
costs and hence only the cheaper ones will be part of the equilibrium). The game
(with distinguishable goods) could be directly extended to account for trading costs
i.e. where traders incur costs to perform the trade and the same results hold i.e. a
trader will be able to make profit only when the trader is crucial to the social welfare.
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15.2.3 Mechanism Design and Interdomain Routing Game [14]

The third game we present in this section is that of interdomain routing incent-
ives, particularly for BGP. First, we briefly overview how BGP operates after which
we proceed to describe the incentive mechanism. The Internet is mainly composed
of independent Autonomous Systems (ASes), or administrative domains, that must
coordinate to implement a distributed routing algorithm that allows packets to be
routed between the domains to reach their intended destinations. BGP is a policy-
based path vector protocol and is the de-facto protocol for Internet interdomain
routing. The protocol’s specification [38] was initially intended to empower do-
mains with control over route selection (which path or route to pick among mul-
tiple advertised routes to a destination), and route propagation (who to export the
route to among an AS’s direct neighbors). The commercialization of the Internet
quickly transformed ASes into economic entities that act selfishly when implement-
ing their internal policies and particularly the decisions that relate to route selection
and propagation [12]. Intuitively, selfishness and the lack of coordination could po-
tentially lead to instabilities in the outcome of the protocol, as is actually the case
with BGP. Griffin et al. have studied this problem and the authors provided the
most widely accepted formulation, the stable paths problem, with sufficient condi-
tions under which the protocol converges to a stable solution, the no dispute wheel
condition [20]. In addition to the algorithmic side of BGP which deals with con-
vergence and stability, recent work has focused on the economic side particularly
studying the equilibria of a BGP game and trying to align the incentives of the play-
ers (check [14, 29] and references therein).

The interdomain routing incentive game of [14], hereby referred to as
ROUTING-GAME, aims to study the policies (strategies) under which BGP is wel-
fare maximizing (i.e. it maximizes the social welfare), and incentive-compatible (i.e.
no player has an incentive to deviate from telling the truth where the player’s action
is to declare private information), and to design a distributed mechanism to provide
these attractive properties. Formally, in this game we are given a graph G = (N,L)

that represents the AS level topology (nodes N are the ASes and L the set of links
between them). The route computation problem is studied for a single destination
d and may be directly extended to all destinations assuming route computation is
performed independently per destination. Hence, there exists a set of n players in-
dexed by i, and the destination d . Each player has a valuation function vi : P i → R

which assigns a real number to every permitted route to d , P i being the set of all
permitted routes from i to d . Note that a route is permitted if it is not dropped by
i and its neighbors. No two paths are assumed to have the same valuation. Social
welfare of a particular outcome, an allocation of routes Ri , ∀i that forms a tree Td ,
is defined to be WTd = ∑n

i=1 vi(Ri). Clearly, the concept of internal policy is cap-
tured with the strict valuation or preference function vi over the different routes to
d which is private information given that the nodes are autonomous. In this sense,
and as mentioned earlier, the goal of this problem is to design a mechanism that
can maximize the social welfare despite the fact that its components, the vi func-
tions, are unknown or private. The mechanism design framework and particularly
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the Vickery–Clark–Groves (VCG) mechanism provides the solution [36]. To do so,
a central bank is assumed to exist whose sole task is to allocate a payment pi(Td)

to each node i based on the outcome. More clearly, a player may either truthfully
reveal her valuation to the mechanism (by always picking the best valued routes to
d) or not, hoping to manipulate the outcome to her advantage. Based on the players’
actions and hence on the outcome tree Td , a payment pi(Td) will be made by the
central bank to each player. The utility of each player from an outcome will then
be ui(Td) = vi(Ri) + pi(Td). The VCG payment scheme is intentionally designed
to make the truthful action a dominant strategy for all players, hence no player has
an incentive to lie about her valuation. To achieve this, AS i will be compensated
an amount pi proportional to the decrease in the value of all upstream ASes that
have picked their best route to d through i when the latter does not participate.
This is exactly the impact on the social welfare when i is not playing [36]. From
a game standpoint, the solution concept that was targeted is the dominant strategy
solution - playing truthfully is a dominant strategy and achieving such an attractive
solution comes at the expense of assuming a central bank that regulates payments.
The authors show that BGP augmented with a VCG payment scheme is incentive-
compatible and welfare maximizing in several well studied settings (assumptions on
policies or valuation functions).

In the above problem, and generally in problems involving mechanism design,
the common scenario is an allocation mechanism that distributes some resource to
a set of participating players. In order for a mechanism to implement the Social
Choice Function (SCF), for example maximizing the social welfare of all players,
the mechanism needs to know the real private information (such as true valuations
for example) of the players. This is the case because players might be able to stra-
tegically manipulate the output of the mechanism by lying about their private in-
formation or strategies. Hence, dominant strategies is a desired solution concept
that the mechanism would value and would aim towards in such a way so as to
implement the SCF.

15.3 Identifier-Based Discovery

We now proceed to formalize the general discovery problem. We start by modeling
the network as a graph G = (V ,E) with a set of nodes V , |V | = n, where each node
u ∈ V can host at most a single default object. The objects residing on the nodes are
the players that demand to be discoverable by the rest of the network. The default
object is meant to capture the case when the node itself is the object. An object has
a unique identifier. Hereafter, we shall refer to the objects by index i = 1, . . . , n

and it should be clear that anytime we refer to node i or player i, we are actually
referring to the default object hosted on the node.
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Fig. 15.3 Two layer model.

15.3.1 What Is Discovery?

Recall that an identifier represents an object’s identity and remains unchanged when
location (e.g. topology) information changes. A locator identifies the location of an
object and must change when the object’s location information changes.

The notion of discovery throughout this chapter refers to path discovery based
on identifiers. A discovery scheme fd generally operates on top of a routing scheme
fp that routes based on locators. We refer to this model as the two-layer discov-
ery model as depicted in Figure 15.3. Whenever fp exists, all that remains to be
discovered by fd is the identifier-to-locator mapping (e.g. DNS name to IP address
mapping). When fp is not available, then path discovery needs to be performed by
fd as well (e.g. BGP-DA on provider-independent prefixes). The two-layer model
may be applied recursively i.e. a new discovery function f ∗

d may operate on top
of fd where the latter is virtualized as the locator routing function. This chapter is
particularly concerned with the design of mechanisms that implement the discovery
function fd .

Generally, the process of identifier-based path discovery involves a search or dis-
covery query that is forwarded based on a series of calls “forward to next node that
should have more (≥) information about the named destination” starting at a source
node. Discovery schemes in large-scale networks require maintaining distributed
state about the identifier space in the upper plane of the two-layer model. Note here
that by considering path discovery that involves distributed in-network state, we
are clearly restricting the discussion to stateful routing (proactive) schemes which
seem to be more common in large-scale networks. Reactive or on-demand discovery
schemes generally involve flooding which renders them less efficient to implement
at large scales.

From an algorithmic standpoint, a generalized discovery scheme provides the
following operations:

• Discovery operations: encapsulate the interface that the players P use to com-
municate with the mechanism and include two operations:

– join(i, level): allows player i to request a discovery service possibly expressing
a desired service level (and potentially her valuation of some service level).

– discover(i, j): allows player i to discover player j .
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• Service operations: are implemented on the service nodes and dictate a set of
rules for maintaining state about the namespace and for handling the above quer-
ies.

In general, the discovery scheme utilizes a point-to-point location-based for-
ward(locators) operation which could be a simple next-hop forwarding or forward-
ing to arbitrary locators.

The main reason that we separate the two routing functions fd and fp is be-
cause there are instances where the two functions are managed by different entities
that can minimally collaborate to jointly optimize the two functions. For example,
with the current Internet where BGP implements some form of fp (routing on IP
addresses), discovery schemes are being introduced in a separate plane that is not
necessarily provisioned by ISPs (players) but rather by other economic entities (as
in DNS, and recently [17]). On the other hand, in name-independent compact rout-
ing design [6], it is assumed that the two functions are being jointly optimized to
achieve a single global goal of efficient communication/discovery. This requirement
has motivated us to study discovery mechanisms separately and to deviate from the
pure algorithmic treatment of the topic towards solution concepts that are based in
economics.

15.3.2 Discovery versus Search: Why Receiver-Based Discovery?

In order to frame our work, we introduce the notions of advertisers and seekers. In
identifier-based discovery, advertisers are the entities that wish to be discoverable by
the rest of the network using their identifiers. They utilize the join(i, level) interface
to express their wish to the mechanism. Seekers, who could be advertisers as well,
wish to locate the advertisers and they utilize the discover(i, j) operation to do so.
In our model players are advertisers who may simultaneously be seekers (think of a
node in a Distributed Hash Table (DHT) for example as in [40]).

It is important to distinguish two different classes of problems that relate to dis-
covery and that have been considered in the literature. The first, distributed inform-
ation retrieval, is that of locating information without prior knowledge of the pro-
viders or the location of the information (information could be located anywhere
in the network). This problem is generally referred to as unstructured search (as in
Gnutella, Freenet P2P networks, social networks, etc.). One key idea here is that in
order for the requester to find the requested information, she must search for it and
be willing to invest in the search. The provider either can not or is not willing to do
so. Some prominent work in this vein that addresses cost and incentive structures
includes the work by Kleinberg [26].

The second class of problems, which we are more interested in and which we
refer to as identifier based discovery, aim at discovering a path to a uniquely iden-
tified entity assuming the seeker is given the identifier(s) of the destination before-
hand. This problem is common in service centric networks where there generally
exists many competing providers for the same service. Within this class of prob-
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lems, we distinguish two subclasses based on the cost model employed. The first
subclass deals with routing problems and focuses on the transit or forwarding cost
which is to be bore by the seeker. Several proposals fall under this subclass and
many utilize economic tools based in mechanism design [13,35,41]. We distinguish
another flavor of the problem by noticing that in service-centric network environ-
ments, the seeker gets no utility from the discovery part but rather gets the utility
from consuming the service itself. In this sense, the utility of discovery is mainly
to the provider or the advertiser: the provider wishes to sell the service and can ef-
ficiently do so only when the service is “discoverable”. This is the main point that
distinguishes our work from the literature on routing and forwarding incentives. The
players may be thought of as providers that receive a utility from being discoverable
by the rest of the network, the utility of being famous, the latter being inevitably
related to the player’s business. Hence, in the receiver-based business model, the
player does not care about whether other players are discoverable or not, whereas
with general P2P resource sharing applications the player’s utility is to share the
resources of other players and hence to be able to discover the rest of the network
(originator-based).

15.3.3 A Taxonomy of Discovery Schemes

Figure 15.4 shows some classic models used by current discovery schemes (and pro-
posals) following the two-layer model. Big circles (light and dark) represent nodes
used by fp at the lower layer (nodes V ). At the upper layer, big dark circles repres-
ent a subset of those nodes that maintains state about the virtual namespace (service
nodes VD where VD ⊆ V ); small dark circles are the objects that wish to be dis-
covered or the players (players P ). Figure 15.4 tries to illuminate the relationship
between the players P (who receive the discovery service), and the nodes VD (who
provide the service and incur the cost). This relationship is important in an economic
setting, such as when studying pricing schemes and when devising a strategic model
(and solution concept) for the problem at hand. For example, service nodes in model
I (described shortly) may be generally considered to be obedient (i.e. to follow the
protocol) as they belong to the same administrative entity (or to multiple competing
entities each providing the same service). In models II and III however one needs to
consider strategic service nodes in addition to the strategic agents where the two sets
could be the same. Some of the representative schemes in the literature that follow
these service models are listed in Table 15.1.

In model (I) [VD �= P ], there is a dedicated set of nodes VD (possibly infrastruc-
ture) that keep the state information about the virtual namespace while the players
P reside on different nodes. DNS is one example of a centralized scheme that fol-
lows this model. In DNS, VD is the set of root/gTLD (for global Top Level Domain)
servers and the players are domain servers that keep zone files. Another scheme that
uses this model and that is distributed is the recent DONA proposal [27] where VD

is the set of resolution handlers, and the players are generally objects on edge nodes.
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Fig. 15.4 Representation of some common models for discovery.

Table 15.1 Identifier-based discovery schemes.

Model Representative Schemes

Model I DNS, DONA [27], eFIT [32], LIS ( [17], etc.)
Model II DHTs (Chord [40], etc.)
Model III NICR ( [4, 6], etc.), BGP-DA, ROFL [11]

Another set of proposals that fits under this model is embodied by the Locator-ID-
Split (LIS) work which aims at providing discoverability to edge sites (e.g. [17]) or
nodes (e.g. [34]) in the Internet.

In model (II) [VD = P ], the state is kept on the same set of nodes that the
players reside on. In such a model, the players themselves have a common interest
in implementing the discovery scheme fd . The typical example here is Distributed
Hash Tables (DHT).

In model (III) [VD = V = P ], the state is maintained on all the nodes V and
the players are all the nodes. This model is common to proposals that perform nat-
ive routing on flat identifiers. One class of schemes that fits under this model is
represented by the Name Independent Compact Routing (NICR) [6]. In NICR, the
upper and lower layer functions are jointly designed and closely related (more de-
tails on NICR later). Another class of schemes that belong to this model does not
utilize an underlying fp i.e. fd is basically a simultaneous discovery and forward-
ing scheme. BGP-DA is the representative scheme here where the players are the
prefixes advertised by ASes V and where it is necessary for all nodes V to keep the
state in order for prefix path discovery (i.e. routing in this case) to succeed. Another
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recent scheme is the DHT-based ROFL [11], in which the routers are the nodes (if
we ignore objects here) that are themselves the players identified by flat identifiers
(hashes). Note that models (II) and (III) are the same for our purposes and we shall
not make the distinction between the two hereafter.

It is worth noting that each of the schemes in Table 15.1 is designed to satisfy a set
of requirements and is based on a set of assumptions about the two-layer functions.
Some of the common requirements observed in the literature include efficiency,
scalability, trust, user-control, robustness, economic requirements, etc. Some of as-
sumptions address the underlying graph structure (e.g. scale-free, or small-world)
assumptions, or more specific structural assumptions of underlying metric embed-
dings.

15.3.4 Incentives and Pricing

Having introduced the discovery problem and overviewed different discovery mod-
els used in the literature, we now proceed to motivate the need for incentives in
discovery. Recall that in order for a node to be discoverable, a cost must be incurred
by the set of service nodes VD generally for maintaining state about the node’s iden-
tifier. The term state in this context refers to the information stored on the service
nodes to allow the players to be discoverable. The per-node state may be thought
of as simply the node’s routing table which is generally comprised of mappings
from identifier to location information. The question that arises then is who pays
for maintaining the state, and what incentive models are suitable for the different
discovery models. In this section, we present some solution concepts that are ap-
plicable to each of the discovery models, and set the stage for the BGP incentive
model which will be discussed in the next section.

15.3.4.1 Model I: VD �= P

Recall that in this setting, the players P are requesting a discovery service from
a set of infrastructure service nodes VD . When VD �= P , mechanism design and
particularly Distributed Algorithmic Mechanism Design (DAMD) [15] in addition
to general cost-sharing models [36] seem to be intuitive frameworks for modeling
incentives and pricing. Different situations may arise based on whether the service
nodes are obedient or not (obedient service nodes will not try to manipulate the
protocol), belong to multiple competing economic entities or not, and on whether
the mechanism is subsidized or not. Note that when the mechanism is subsidized,
the designer of the mechanism does not have to worry about budget-balance where
the latter means that the total payments made by the players must offset the total
cost of providing the service.

Assume the service nodes to be obedient and no competition dynamics present,
and consider the following DAMD model: each player has a valuation of being dis-
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coverable, which she presents to the mechanism. The mechanism logically controls
(and operates on) the service nodes collecting all the players’ valuations, the de-
mand, and allocating payments back to the players to achieve a mix of goals. These
goals could potentially include incentive-compatibility (or strategy-proofness), wel-
fare maximization (or efficiency), and/or budget-balance. When the mechanism is
subsidized, the goal of the mechanism is to maximize the social welfare (instead
of budget-balance) under the constraint that a cost is associated with providing the
service. In this sense, truthful valuations of the service need to be declared by the
players, and hence the goal of incentive-compatibility (especially when the mech-
anism is able to provide different levels of the service). We have presented such
a DAMD model that accounts for service differentiation in a recent work [24]. A
one-shot VCG variant [36] is a natural solution here that could achieve efficiency
and incentive-compatibility again assuming that the mechanism could be subsidized
in other ways. The VCG pricing scheme is a cost-sharing scheme i.e. it shares the
total cost of providing the service among the participating players. The mechanism
will always maximize the social welfare of all the players and will pick prices (cost
shares) such that a player i pays an amount equal to the difference in the total welfare
of the other players with and without player i’s participation - the damage caused
by player i’s participation.3 Note that the budget-balance requirement becomes es-
sential when the subsidization assumption does not hold since the total cost must be
collected so that service nodes are paid for participating. For example, if a node j

is not compensated for the cost of keeping state about the rest of the network, the
node will have no incentive to participate. It has been proven by Laffont and Green
and later by Satterwaite impossibility theorems [36] that cost-sharing mechanisms
can be either strategy-proof and efficient, or strategy-proof and budget-balanced but
not both.

When competition among the service providers is present, then the one-shot
mechanism design framework seems less practical. This case is more representative
of model (I) than the no-competition case. The main idea here is that multiple com-
peting Discovery Service Providers (DSPs) offer the service to the players. Each
DSP is assumed to be owned and operated by an autonomous economic entity and
DSPs compete for service or market share. Dynamic pricing is more suitable in
such a model and a realistic strategic model for this setting based on repeated games
was introduced by Afergan [5]. The model discusses price strategies at Internet in-
terchange locations, such as multiple ISPs providing service to a customer (e.g. a
CDN). The same model may potentially apply to the discovery mechanism pricing
where multiple competing DSPs compete for market share.

15.3.4.2 Models II, III: VD = P

When the set of service nodes VD = P , players incur a cost due to participation of
other players and the issue of incentive and pricing becomes even more challenging.

3 This VCG pricing scheme is referred to as the Clark Pivot rule [36].
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In this distributed setting, the traditional game theoretic and economic tools seem
to be more applicable, since the centralized designer and the obedient service nodes
assumptions inherent to the mechanism design framework no longer hold. Consider
BGP for example where every node that wishes to be discoverable introduces state
about its identifier on every other node in the DFZ. NICR [4, 6] schemes on the
other hand are less costly as they try to optimize the tradeoff between state and
stretch (stretch is defined in the context of routing as the ratio between the cost of
the path taken by the routing scheme, to the minimum cost path where cost could
be defined differently based on the setting (e.g. hops or delay); the maximum of the
ratio for all source destination pairs is generally referred to as the stretch [6]). In
this sense, a node that wishes to be discoverable must introduce state on a subset of
other nodes in the network. In both examples above, one can directly recognize the
incentive mismatch issue and the challenges inherent to the design of incentive and
pricing models that are suitable for this setting. In the next section, we present one
such model for BGP.

15.4 An Incentive Model for Route Distribution and Discovery in
Path Vector Protocols

The main motivator for devising a model to account for the cost of distribution in
BGP is the recent attention in the research community to the incentive mismatch
when it comes to the cost of discovery in BGP. Herrin has analyzed in [21] the non-
trivial cost of maintaining a BGP route and has highlighted the inherent incentive
mismatch in the current BGP system where the rest of the network pays for a node’s
route advertisement.

BGP is intrinsically about distributing route information to destinations (which
are IP prefixes) to establish paths in the network (route distribution and route com-
putation). Path discovery is the outcome of route distribution and route computation.
A large body of work has focused on putting the right incentives in place knowing
that ASes are economic agents that act selfishly in order to maximize their utilit-
ies. In dealing with the incentive problem, previous work has ignored the control
plane incentives (route distribution) and focused on the forwarding plane incent-
ives (e.g. transit costs) when trying to compute routes. One possible explanation for
this situation is based on the following assumption: a node will have an incentive
to distribute routes to destinations since the node will get paid for transiting traffic
to these destinations and hence route distribution becomes an artifact of the transit
process and is ignored. The majority of previous work that tries to introduce the re-
quired incentive models do so by introducing per-packet transit costs. Nodes declare
these costs to a mechanism and receive payments from the latter. The mechanism
design framework is generally employed here and the mechanism is generally as-
sumed to be subsidized (hence budget-balance is not a design goal). In this work,
we conjecture that forwarding is an artifact of route distribution (and definitely com-
putation) where the latter happens first in the process and hence our main focus is
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on incentivizing nodes to distribute route information. Clearly, we separate the BGP
distribution game from the forwarding game and we focus solely on the former.
Whether the two games can be combined and studied simultaneously is an open
question at this point.

In this section, we synthesize many of the ideas and results from [13, 19, 26, 30]
into a coherent model for studying BGP route distribution incentives. The model we
employ is influenced by the query propagation model studied by Kleinberg [26] in
the context of social networks.

15.4.1 A Simple Distribution Model

A destination d advertises its prefix and wishes to invest some initial amount of
money rd in order to be globally discoverable (or so that the information about d be
globally distributed). Since d can distribute its information to its direct neighbors
only, d needs to provide incentives to get the information to propagate deeper into
the network. d wants to incentivize its neighbors to be distributors of its route who
then incentivize their neighbors to be distributors and so on. A transit node i will
be rewarded based on the role it plays in the outcome routing tree to d , Td (whether
the outcome is a tree should become clear later in the discussion). The utility of the
transit node i from distributing d’s route, as we shall describe shortly, increases with
the number of nodes that route to d through i – hence the incentive to distribute.

The model seems to correctly capture many of the details behind how policy-
based BGP (and in general path-vector protocols) works and the inherent incentives
required. Additionally, the model is consistent with the simple path vector formu-
lation introduced by Griffin in [19]. More clearly, it is widely accepted that each
AS participating in BGP has as part of its decision space, the following decisions to
make:

• import policy: a decision on which routes to d to consider,
• route selection: a decision on what route to d to pick among the multiple possible

routes,
• export policy: a decision on who to forward the advertisement to among its direct

neighbors.

All three policies are captured in the game model we describe next.
There are two main properties of interest in when it comes to the BGP

game model: convergence, and incentives. The BGP inter-domain routing protocol
handles complex interactions between autonomous, competing economic entities
that can express local preferences over the different routes. Given the asynchron-
ous interactions among the ASs and the partial information, convergence of BGP to
a stable solution becomes an essential property to aim for when studying policies.
Griffin et al. [19] defined the stable paths problem which is widely accepted as
the general problem that BGP is solving. The authors formulated a general suffi-
cient condition under which the protocol converges to an equilibrium state, mainly
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the “no dispute wheels” condition. A game theoretic model was recently developed
by Levin et al. [29] that enhances the stable paths formalization and studies the
incentive-compatibility question. In addition to convergence, incentive issues are
crucial to the success and stability of BGP mainly since nodes are assumed to be
selfish entities that will act strategically to optimize their utility. In this sense, any
distribution and route computation mechanism or policy can only benefit from align-
ing the incentives of the players to achieve the mechanism’s goals [13, 14, 29, 36].

15.4.2 Related Work

The Simple Path Vector Protocol (SPVP) formalism [19] develops sufficient con-
ditions for the outcome of a path vector protocol to be stable. The two main com-
ponents of the formalism are permitted paths and local strict preference relations
over alternate paths to some destination. A respective game-theoretic model was
developed by Levin [29] that captures these conditions in addition to incentives in a
game theoretic setting. Other traditional BGP inventive models have not accounted
for distribution or discovery costs and incentives and have assumed that every BGP
speaker has value in knowing about all destinations and is hence willing to toler-
ate the cost of such assumption. Our work is fundamentally different than previous
models particularly in regard to the incentive structure. The aim in our model is for
a destination d to become discoverable by the rest of the network.

Feigenbaum et al. study incentive issues in BGP by considering least cost path
(LCP) policies [13] and more general poilicies [14]. The ROUTING-GAME presen-
ted in Section 15.2 describes [14]. Our model is fundamentally different from [13]
(and other works based in mechanism design) in that the prices are strategic, and it
does not assume the existence of a bank (or a central authority) that allocates pay-
ments to the players but is rather completely distributed as in real markets. The main
element of [14] is payments made by the bank to nodes. The model assumes that the
route to d is of value to a source node where the latter will strategically pick among
the multiple routes to d . A bank is required to make sure payments are correctly al-
located to nodes based on their contribution to the outcome. The bank assumption is
troublesome in a distributed setting such as the Internet, and an important question
posed in [14] is whether the bank can be eliminated and replaced by direct payments
by the nodes.

Li et al. [30] study an incentive model for query relaying in peer-to-peer (p2p)
networks based on rewards, on which Kleinberg et al. [26] build to model a more
general class of trees. We have introduced the latter model in Section 15.2 with the
QUERY-GAME. Both of these models do not account for competition. Similar to
the problem setting of [30], an advertiser does not know in advance the full topology
neither the resulting outcome of route distribution. Designing payment schemes for
such settings generally requires revelation of “non-private value” information such
as topology information [39] which might not be available to the players neither
to the mechanism designer. The dynamic pricing scheme introduced in [30] avoids
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such revelation by pricing only based on local information. While we borrow the
basic idea from [30] and [26], we address a totally different problem which is that
of route distribution versus information seeking.

In addition, our work relates to price determination in network markets with in-
termediaries (refer to the work by Blume et al. [9] and the references therein). We
have introduced the TRADE-GAME of [9] as well in Section 15.2. A main differ-
entiator of this class of work from other work on market pricing is its consideration
of intermediaries and the emergence of prices as a result of strategic behavior rather
than competitive analysis or truthful mechanisms. Our work specifically involves
cascading of traders (or distributors) on complex network structures mainly the In-
ternet.

15.4.3 The General Game

We focus in this work on path-vector protocols and we reuse notation from [14,30].
We are given a graph G = (V ,E) where V consists of a set of n nodes (alternatively
termed players, or agents) each identified by a unique index i = {1, . . . , n}, and a
destination d , and E is the set of edges or links. Without loss of generality, we will
study the BGP discovery/route distribution problem for some fixed destination AS
with prefix d (as in [14, 19] and [26, 30]). The model is extendable to all possible
destinations (BGP speakers) by noticing that route distribution and computation is
performed independently per prefix. The destination d is referred to as the advert-
iser and the set of players in the network are termed seekers in the discovery model.
Two classes of seekers will be distinguished in our model, distributors and retailers.
As the name suggests, distributors actively participate in distributing d’s route in-
formation to other seeker nodes while retailers simply consume the route (leaf nodes
in the outcome distribution tree). For each seeker node j , Let P(j) be the set of all
routes to d that are known to j through advertisements, P(j) ⊆ P (j), the latter
being the set of all simple routes from j . The empty route φ ∈ P (j). Denote by
Rj ∈ P(j) a simple route from j to the destination d with Rj = φ when no route
exists at j , and let (k, j)Rj be the route formed by concatenating link (k, j) with
Rj , where (k, j) ∈ E. Denote by B(i) the set of direct neighbors of node i and let
next (Ri) be the next hop node on the route Ri from i to d . Define node j to be an
upstream node relative to node i, j = next (Ri). The opposite holds for downstream
node. Finally, let Di denote the degree of node i, Di ∈ N.

The general discovery game is simple: destination d will first export its prefix
(identifier) information to its neighbors promising them a reward rd (rd = 10 in
Figure 15.5) which directly depends on d’s utility of being discoverable. A distrib-
utor node j (a player) in turn strategizes by selecting a route among the possibly
multiple advertised routes to d , and deciding on a reward rjl < rij to send to each
candidate neighbor l ∈ B(j) that it has not received a competing offer from (i.e.
s.t. rlj < rjl where rlj = 0 means that j did not receive an offer from neighbor
l) pocketing the difference rij − rjl . The process repeats up to some depth that is
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Fig. 15.5 Sample network (not at equilibrium): Solid lines indicate an outcome tree Td under the
advertised rewards.

directly dependent on the initial investment rd as well as on the strategies of the
nodes. A reward rij that a node i promises to some direct neighbor j ∈ B(i) is
a contract stating that i will pay j an amount that is a function of rij and of the
set of downstream nodes k that decide to route to d through j (i.e. j ∈ Rk and
Rj = (j, i)Ri). Note that such a reward model requires that the downstream nodes
k notify j of their best route so that the latter can claim its reward from its upstream
parent. We intentionally keep this reward model abstract at this point and we shall
revisit it later in the discussion when we define more specific utility functions. For
example, in Figure 15.5, node d promises {1, 2} a reward rd = 10. Node 1 exports
route (1, d) to its neighbor promising a reward r13 = 8. Similarly node 2 exports
the route (2, d) to its neighbor set {3, 4} with r23 = r24 = 7 and so on. Clearly in
this model, we assume that a player can strategize per neighbor, presenting different
rewards to different neighbors. We take such assumption based on the autonomous
nature of the nodes and the current practice in BGP where policies may differ sig-
nificantly across neighbors (as with the widely accepted Gao–Rexford policies [18]
for example).

15.4.3.1 Assumptions

To keep our model tractable, we take several simplifying assumptions. In particular,
we assume that:

1. the graph is at steady state for the duration of the game i.e. we do not consider
topology dynamics;

2. the destination d (the advertiser) does not differentiate among the different ASes
in the network;

3. the advertised rewards are integers i.e. rij ∈ Z
+ and that rij < rnext(Ri ), where

the notation rnext(Ri) refers to the reward that the upstream node from i offers to i.
A similar assumption was taken in [26] and is important to avoid the degenerate
case of never running out of rewards, referred to as “Zeno’s Paradox”;
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4. a node that does not participate will have a utility of zero; additionally, when
the best strategy of a node results in a utility of zero, we assume that the node
will prefer to participate than to default as this could lead to future business
opportunities for the node;

5. finally, we only study the game for a class of policies which we refer to as the
Highest Reward Policy (HRP) and we accordingly define a utility function for
the players. As the name suggests, HRP policies incentivize players to choose
the path that promises the highest reward. Such class of policies may be defined
general enough to account for complex cost structures as part of the decision
space. Despite the fact that the distribution model we devise is general, we as-
sume for the scope of this work that transit costs are extraneous to the model
and we refer to resulting preference function as homogeneous preferences. This
is a restrictive assumption at this point given that BGP allows for arbitrary and
complex policies among the players. Such policies are generally modeled with
a valuation or preference function that assigns strict preference to the different
routes to d . Transit cost is one form of such functions [14], and more complex
ones (for example next-hop preferences or metric based preferences) have been
studied and modeled [14, 19]. In BGP, such preferences are reflected in contrac-
tual agreements between the ASes.

15.4.3.2 Strategy Space, Cost, and Utility

Strategy Space

We now proceed to define the strategy space. Given a set of advertised routes P(i)

where each route Ri ∈ P(i) is associated with a promised reward rnext(Ri) ∈ Z
+,

the strategy si ∈ Si of an autonomous node i comprises two decisions:

• After receiving update messages from neighboring nodes, pick a single best route
Ri ∈ P(i);

• Pick a reward vector ri = [rij ] promising a reward rij to each candidate neighbor
j (and export route and respective reward to all candidate neighbors).

A strategy profile s = (s1, . . . , sn) defines an outcome of the game, and a util-
ity function ui(s) associates every outcome with a real value in R. We shall show
shortly that for a certain class of utility functions, every outcome uniquely determ-
ines a set of paths to destination d given by Od = (R1, . . . , Rn) and that Od is
always a tree Td . We use the notation s−i to refer to the strategy profile of all players
excluding i. For a given utility function, the Nash equilibrium is defined as follows:

Definition 1 A Nash Equilibrium is a strategy profile s∗ = (s∗
1 , . . . , s∗

n) such that
no player can move profitably by changing her strategy, i.e. for each player i,
ui(s

∗
i , s∗−i ) ≥ ui(si, s

∗−i ), ∀si ∈ Si .
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Cost

There are two classes of cost within the distribution model. The first class defines the
cost of participation while the second defines the “per-sale” costs. More clearly, cost
of participation is local to the node and includes for example the cost associated with
the effort that a node spends in maintaining and distributing the route information
to its neighbors. The participation cost may additionally include the amortized per-
route operational cost of the hardware (the DFZ router). Herrin [21] estimates this
cost to be $0.04 per route/router/year for a total cost of at least $6,200 per year for
each advertised route assuming there are around 150,000 DFZ routers that need to be
updated. Per-sale costs, on the other hand, are incurred by the node for each sale that
it makes and is generally proportional to the number of its downstream nodes in the
outcome Od . As mentioned earlier in the assumptions, we ignore this class of cost
in the current model leaving it as part of our future work. Hence, while in general
the cost function may be more complicated, we simply assume that the distribution
cost ci is composed of two components: cdist

i representing the distribution cost and
is only incurred by the distributors, and cstate

i represents the cost of maintaining the
state and is incurred by all participating players.

Utility

Earlier in the discussion, we briefly alluded to a rewarding model in which node i

rewards a neighbor node j based on some function of rij and of the set of down-
stream nodes of j (the latter corresponding to the number of sales node j made).
Defining a concrete rewarding function (and hence utility function) for the players
is a questions that the game modeler is left with. Specifically, we seek to identify
the classes of utility functions and the underlying network structure for which equi-
libria exist. As a first step, we experiment with a simple class of functions which
rewards a node linearly based on the number of sales that the node makes. This first
model incentivizes distribution and potentially requires a large initial investment
from d . More clearly, define the set Ni(s) = {j ∈ N\{i}|i ∈ Rj } to be the set of
nodes that pick their best route to d going through i (nodes downstream of i) and let
δi(s) = |Ni(s)|. Additionally, let I (x) denote the indicator function which evaluates
to 1 when x > 0 and to 0 otherwise. Thus, I (δi(s)) indicates whether i is a distrib-
utor or not. We are now ready to define the utility of a node i from an outcome or
strategy profile s as follows:

ui(s) = (rnext(Ri ) − cstate
i ) − cdist

i I (δi (s)) +
∑

{j :i=next(Rj )}
(rnext(Ri) − rij )(δj (s) + 1).

(15.1)
The first term in the utility function (rnext(Ri ) − cstate

i ) is incurred by every par-
ticipating node and is the one unit of reward from the upstream parent on the
chosen best path minus the local state cost. The second and third terms are only
incurred by distributors. The second term cdist

i I (δi (s)) denotes the distribution cost
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while the last term given by the summation is the total profit made by i where
(rnext(Ri) − rij )(δj (s) + 1) is i’s profit from the sale to j (which depends on the size
of j ’s subtree given by δj ). We assume here that node i gets no utility from an oscil-
lating route and gets positive utility when Ri is stable. A rational selfish node will
always try to maximize its utility by picking si = (Ri, [rij ]). Equation (15.1) indic-
ates that a node increases its utility linearly in the number of downstream seekers it
can recruit, given by the summation. However, to increase the third term given by
the summation, node i should carefully pick its rewards rij given that there might
be other nodes competing with i for the route. There is an inherent tradeoff between
(rnext(Ri) − rij ) and (δj (s)) s.t. i = next (Rj ) when trying to maximize the utility
in Equation (15.1) in the face of competition as shall become clear shortly. A lower
promised reward allows the node to compete but will cut the profit margin. Finally,
we assume implicitly that the destination node d gets a fixed incremental utility of
rd for each distinct player that maintains a route to d – the incremental value of
being discoverable by any seeker.

15.5 HRP: Convergence, and Equilibria

Before discussing BGP convergence and equilibria under our assumptions and the
utility function defined in Equation (15.1), we first prove the following lemma which
results in the Highest Reward Path (HRP) policy:

Lemma 1. In order to maximize its utility, node i must always pick the route Ri with
the highest promised reward i.e. rnext(Ri) ≥ rnext(Rl),∀Rl ∈ P(i).

The proof of Lemma 1 is given in Appendix A. The lemma implies that a player
could perform her two actions sequentially, by first choosing the highest reward
route Ri , then deciding on the reward vector rij to export to its neighbors. When the
rewards are equal however, we assume that a node breaks ties uniformly.

15.5.1 Convergence

A standard model for studying the convergence of BGP protocol dynamics was in-
troduced by Griffin et al. [19] (and later studied by Levin et al. [29]), and assumes
BGP is an infinite round game in which a scheduler entity decides on which play-
ers participate at each round (the schedule). Any schedule must be fair allowing
each player to play indefinitely and to participate in an infinite number of rounds.
Convergence here refers to the convergence of BGP protocol dynamics to a unique
outcome tree Td under some strategy profile s. The “no dispute wheels” condition,
introduced by Griffin et al. [19], is the most general condition known to guaran-
tee convergence of possibly “conflicting” BGP policies to a unique stable solution
(tree). From Lemma 1, it may easily be shown that “no dispute wheels” exist under



15 Identifier-Based Discovery in Large-Scale Networks 25

HRP policy i.e. when the nodes choose highest reward path breaking ties uniformly.
No dispute wheel can exist under HRP policy simply because any dispute wheel
violates the assumption of strictly decreasing rewards on the reward structure in-
duced by the wheel. Hence, the BGP outcome converges to a unique tree Td [19]
under any strategy profile s. The tree is stable given s which itself is only stable at
equilibrium. Note that this is true for every strategy profile (i.e. independent of how
the nodes pick their rewards) as long as the strictly decreasing rewards assumption
holds, rij < rnext(Ri), ∀i, j .

Lemma 2 ([20]). The equilibrium outcome Od under s∗ is a stable routing tree Td .

Having said that, the next set of questions is targeted at finding the equilibrium
profile s∗. Particularly, does such an equilibrium exist and under what conditions?
Is it unique? And how hard is it to find? In this work, we study the existence of
equilibria on special network topologies leaving the other questions for future work.

15.5.2 Equilibria

In the game defined thus far, notice first that every outcome (including the equi-
librium) depends on the initial reward/utility rd of the advertiser as well as on the
tie-breaking preferences of the nodes, where both of these are defining properties of
the game. Studying the equilibria of the general game for different classes of utility
functions and for different underlying graph structures is not an easy problem due
to the complexity of the strategic dependencies and the competition dynamics. We
are not aware of general equilibria existence results that apply to this game. Hence,
we start by studying the game on the simplest possible class of graphs with and
without competition. Particularly, we present existence results for the simplest two
graphs: 1) the line which involves no competition, and 2) the ring which involves
competition. We additionally assume in this discussion that the costs are constant
with cdist

i = cstate
i = 1.

Before trying to understand the equilibria of the game on these simple graphs,
there is an inherent order of play to capture in the model in order to apply the
right solution concept. Recall that the advertiser d starts by advertising itself and
promising a reward rd . The game starts at stage 1 where the direct neighbors of d ,
i.e. the nodes at distance 1 from d , observe rd and play simultaneously by picking
their rewards while the rest of the nodes “do-nothing”. At stage 2, nodes at distance
2 from d observe the stage 1 strategies and then play simultaneously by picking
their rewards. At stage 3, nodes at distance 3 from d observe the stage 1 and stage 2
strategies and then play simultaneously and so on. Stages in this multi-stage game
with observed actions [16] have no temporal semantics. Rather, they identify the
network positions which have strategic significance. The closer a node is to the
advertiser, the more power such a node has due to the strictly decreasing rewards
assumption. The multi-stage game model seems intuitive based on the assumptions
of strictly decreasing rewards and the ability of the node to strategize independently
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Fig. 15.6 Line netowk: a node’s index is the stage at which the node plays; d plays at stage 0.

on each of the downstream links. We resort to the multi-stage model on these simple
graphs simply because any equilibrium in the multi-stage game is a stable outcome
in BGP no matter how the scheduler schedules the nodes as long as the schedule is
fair and infinite.

Formally, each node or player i plays only once at stage k > 0 where the latter is
the distance from i to d in number of hops; at every other stage the node plays the
“do nothing” action. The set of player actions at stage k is the stage-k action profile,
denoted by ak = (ak

1, . . . , ak
n). Further, denote by hk+1 = (a1, . . . , ak), the history

at the end of stage k which is simply the sequence of actions at all previous stages.
We let h1 = (rd ). Finally, hk+1 ⊂ Hk+1 the latter being the set of all possible
stage-k histories. When the game has a finite number of stages, say K + 1, then a
terminal history hK+1 is equivalent to an outcome of the game (which is a tree Td )
and the set of all outcomes is HK+1.

The strategy of node i who plays at stage k > 0 is then si : Hk → R
mi where

mi is the number of node i’s direct neighbors at stage k + 1. It is important to notice
in this multi-stage setting that the node’s strategy is explicitly defined to account for
the order of play given by the graph structure (i.e. a pure strategy of a player is a
function of the history). Starting with rd (which is h1), it is clear how the game pro-
duces actions at every later stage given by the node strategies resulting in a terminal
action profile or outcome. Hence an outcome in HK+1 may be associated with every
strategy profile s. We now proceed to study the equilibria on the line and the ring
network topologies.

15.5.2.1 No Competition: The Line

In the same spirit as [26] we inductively construct the NE for the line network of
Figure 15.6 given the utility function of Equation (15.1). Before proceeding with
the construction, notice that for the line network, mi = 1 for all nodes except the
leaf node since each of those nodes has a single downstream child. In addition,
δi(s) = δj (s)+1,∀i, j where j is i’s child (δi = 0 when i is a leaf). We shall refer to
both the node and the stage using the same index since our intention should be clear
from the context. For example, the child of node i is i+1 and its parent is i−1 where
node i is the node at stage i. Additionally, without loosing any information, we
simply represent the history hk+1 = (rk) for k > 0 where rk is the reward promised
by node k (node k’s action), and hence the strategy of node k is sk(h

k) = sk(rk−1).
We construct the equilibrium strategy s∗ as follows: first, for all players i, let

s∗
i (x) = 0 when x ≤ cstate

i (where cstate
i is assumed to be 1). Then assume that s∗

i (x)

is defined for all x < r and for all i. Obviously, with this information, every node i
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Fig. 15.7 Ring network with even number of nodes: (a) 2-stage game, (b) 3-stage game.

can compute δi(x, s∗−i ) for all x < r . This is simply due to the fact that δi depends
on the downstream nodes from i who must play an action or reward strictly less than
r . Finally, for all i we let s∗

i (r) = arg maxx(ri−1 − x)δi(x, s∗−i ) where x < r .

Claim 1 The strategy profile s∗ is a Nash equilibrium.

Proof. The proof of is straightforward: given the utility function defined in Equa-
tion (15.1), no node can move profitably. Notice that in general when rnext(Ri) ≤
cstate, propagation of the reward will stop simply because at equilibrium no node
will accept to make negative utility and will prefer to not participate instead (the
case with the leaf node). �

Clearly, the NE is not unique since different strategies could result in the same
utility. This occurs on the line particularly when a node could get the same utility
from being a distributor or not due to the incurred distribution cost. If we assume
that a node will always prefer to distribute when the utility is the same, then it can
be shown that the NE is unique.

Notice that in the line network, the NE exists for all values of rd and in any
equilibrium node 1 will always be able to make the maximum profit given rd due to
its strategic network position as the first and only distributor.

15.5.2.2 Competition: The Ring

Contrary to the line network, we will present a negative result in this section for the
ring network. In a ring, each node has a degree of 2 and mi = 1 again for all nodes
except the leaf node. We will consider rings with an even number of nodes due to
the direct competition dynamics. In the multi-stage game, after observing rd , nodes
1 and 2 play simultaneously at stage 1 promising rewards r1 and r2 respectively to
their downstream children, and so on. Figure 15.7 shows the 2-stage and the 3-stage
versions of the game.
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For the 2-stage game in Figure 15.7a, it is easy to show that an equilibrium
always exists in which s1(rd ) = s2(rd ) = (rd − 1) when rd > 1 and 0 other-
wise. This means that node 3 enjoys the benefits of perfect competition due to the
Bertrand-style competition [16] between nodes 1 and 2 which drives their profit to
the minimum possible profit (and hence drives 3’s reward to the maximum possible
reward). The equilibrium in this game is independent of 3’s preference for breaking
ties which is not the case with the 3-stage game as we shall show next.

We now present the following negative result when the utility function is given
by Equation (15.1):

Claim 2 For the multi-stage game induced by the ring network, a Nash equilibrium
does not always exist, i.e. there exists a value of rd for which no equilibrium exists.

Proof. The proof makes use of a counterexample. Particularly, the 3-stage game of
Figure 15.7b does not have an equilibrium for rd > 5. This is mainly due to oscil-
lation of the best response dynamics and may be shown by examining the strategic
form game, in matrix form, between players 1 and 2. We leave this as an exercise
for the interested reader. Briefly, and assuming that node 5 breaks ties by picking
route (5, 3)R3, rd > 5 signifies the breaking point of equilibrium or the reward at
which node 2, when maximizing its utility (rd −r2)δ2, will always oscillate between
competing for 5 (large r2) or not (small r2). �

Note that under the linear utility given in Equation (15.1), the NE is not guaranteed
to exist on the simple ring network. This result is an artifact of the utility function.
Finding the classes of utility functions for which equilibria always exist, for the ring
network initially and for more general topologies as well, is part of our ongoing
work.

15.6 Conclusions and Ongoing Work

In this chapter we have presented a general treatment of the incentive issues that
might arise in the context of identifier-based discovery. The BGP incentive model
presented has several advantages, mainly providing a dynamic, distributed pricing
scheme for route distribution that is partially immune to manipulation and does not
require a centralized bank. However, several forms of manipulation may occur in
the rewards model. For example, node i may declare a reward ri > rnext(Ri ) when
competing on a route to possibly increase its utility, or nodes may lie about the
real values of δ when declaring these values to their upstream nodes. Such forms of
manipulation may be avoided by route verification and secure cryptographic mech-
anisms (check secure BGP for example [10]). We have not considered such issues in
this chapter. The cascaded rewarding model is similar in spirit to network marketing
in economics. One of the main pitfalls of network marketing (alternatively referred
to as Multi-Level Marketing or MLM) is that it may put more incentives on recruit-
ing distributors rather than on making a sale. In our model, recruiting a downstream



15 Identifier-Based Discovery in Large-Scale Networks 29

distributor is equivalent to making a sale since a downstream node to i must route to
d through i. In addition, the assumption ri < rnext(Ri) eliminates the pyramid effect
common to network marketing schemes.

We are currently working on establishing equilibria results for general classes
of utility functions and for general graph structures. The natural next step after that
would be to study distributed algorithms that converge to the equilibria, particularly
focusing on scalable extensions to BGP [23]. Additionally, we plan to quantify the
cost of being discoverable, or in other words the initial investment rd required by d

to guarantee global reachability – as a function of the network structure. Interest-
ingly here, for the Internet AS level topology, it was shown by Krioukov et al. [28]
that the average distance between any two nodes is small (around 3.5 hops). This
property lends itself to the small world phenomenon in complex networks [7].

Appendix A: Proof of Lemma 1

Proof. The proof is straightforward. The case for |B(i)| = 1 is trivial. The case for
|B(i)| = 2 is trivial as well since i will not be able to make a sale to the higher
reward neighbor by picking the lower reward offer. Assume that node i has more
than 2 neighbors and that any two neighbors, say k, l advertise routes Rk,Rl ∈ P(i)

s.t. k = next (Rk), l = next (Rl) and rki < rli , and assume that i’s utility for
choosing route Rk over Rl either increases or remains the same i.e. u

Rk

i ≥ u
Rl

i . We
will show by contradiction that neither of these two scenarios could happen.

Scenario 1: u
Rk

i > u
Rl

i

From Equation (15.1), it must be the case that either (case 1) node i was able to
make at least one more sale to some neighbor j who would otherwise not buy, or
(case 2) some neighbor j who picks (j, i)Ri can strictly increase her δj (s) when
i chooses the lower reward path Rk . For case 1, and assuming that rij is the same
when i chooses either route, it is simple to show that we arrive at a contradiction in
the case when j ∈ {k, l} (mainly due to the strictly decreasing reward assumption
i.e. ri < rnext(.)); and in the case when j /∈ {k, l}, it must be the case that j ’s

utility increases with i’s route choice i.e. u
(j,i)Rk

j > u
(j,i)Rl

j . This contradicts with
Equation (15.1) since w.r.t. j , both routes have the same next hop node i. The same
analogy holds for case 2.

Scenario 2: u
Rk

i = u
Rl

i

Using the same analogy of scenario 1, there must exist at least one neighbor j of i

that would buy i’s offer only when the latter picks Rk , or otherwise node i will be
able to strictly increase its utility by picking Rl pocketing more profit. �
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