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Abstract 

This note addresses the stabilization problem of a class of 
SISO systems with a time delay in the input, and explore 
the stabilizing effect of time delay. More precisely? for a 
fixed feedback gain such that the closed loop system is uns- 
table when the delay is set to zero, we shall present neces- 
sary and suficient conditions for the delays such that the 
stability in closed-loop is achieved, and provide an expli- 
cit construction of the controllers. Next, we shall analyze 
conditions for preserving the closed-loop stability if para- 
metric or time-varying delay uncertainties are present in the 
control law. Illustrative examples are also proposed. 

1 Introduction 

The existence of a time-delay at the actuating input in a 
feedback control system is ususally known to cause insta- 
bility or poor performance for the closed-loop schemes [ 12, 
13, 71 (and the references therein). This note addresses the 
opposite problem: characterizing the situations when a de- 
lay has a stabilizing effect. In other words, we consider the 
situation where the delay free feedback system is unstable, 
and it becomes asymptotic stable due to the presence of ap- 
propriate delay in the actuating input. 

Consider the following class of strictly proper SISO open- 
loop systems: 

where ( A ,  6 ,  c T )  is a state-space representation of the open- 
loop system, and deg(Q(s))  > deg(P(s)) ,  with the control- 
ler 

(2) 
The stabilizing delay effect problem mentioned above can 
be defined as follows: 

U(t) = -ky(t - 7 ) .  

Problem 1 (Delay stabilizing effect) Find explicit condi- 
tions on the pair ( k ,  T), such that the controller ( 2 )  stabilizes 

Corresponding author 

( I ) ,  but with the closed-loop system would be unstable i f  
the delay T is set to zero T = 0. 

As we shall see below, the conditions derived will lead to 
an explicit construction of the controller. Furthermore, for 
each stabilizing pair, we may define a stabilizing delay in- 
terval, which can be seen as robustness measure of the cor- 
responding control law if the delay is subject to parametric 
uncertainty. 
The next step is to analyze the robustness with respect to 
uncertain time-varying delay. Roughly speaking, the corres- 
ponding robust stability problem of the closed-loop system 
can be formulated as follows: 

Problem 2 (Time-varying delay uncertainty) For a gi-  
ven stabilizing pair ( k ,  7) such that the closed-loop system is 
unstable $T = 0, jind conditions on the time-varying delay 
uncertainty s(t) satisfying ii(t) 5 Pfor some real o 5 p < 1, 
such that the control law: 

u(t)  = -ky(t - T - & ( t ) ) ,  ( 3 )  

still stabilizes ( 1 ) .  

The interest of solving such problems is twofold: first, the 
resulting design is rather simple and delay is rather easy to 
implement; second, explore the potential of using such a 
controller (using delay as a design parameter) in situations 
where it is not easy to design or implement a controller wi- 
thout delay. Some discussions in this direction have been 
considered in [l, 3 ,  151, but without any attempt to treat 
the problem in the general setting. A Nyquist criterion was 
used in [l] to prove that a pair (gain,delay) may stabilize 
second-order oscillatory systems. A different approach was 
proposed in [3], where upper and lower bounds of the delay 
are given such that the closed-loop system is stable, under 
the assumption that the system is stable with some known 
nominal delay values. Finally, the paper [ 151 addresses the 
general static delayed output feedback problem, and some 
existence results (delay-independent, delay-dependent, in- 
stability persistence) are derived, but without any explicit 
construction of the controllers. More specifically, [ 151 com- 
pares the stability of the closed-loop schemes with or wi- 
thout delays in the corresponding control laws. 
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Although only strictly proper SISO systems are considered 
above, the ideas still work for more general SISO systems, 
such. as a restricted class of (not necessarily strictly) proper 
systems, or systems with internal delays in addition to the 
feedback input delay. 

Both problems proposed here will be handled using 
frequency-domain methods. First, we shall analyze the sen- 
sitivity of the roots in terms of delays, and we shall derive 
necessary and suficient conditions for the delay values in 
the control law such that a pair of unstable complex conju- 
gate roots cross the imaginary axis to the left hand plane. 
An explicit construction of the controller will be given in 
the following form: for any gain satisfying some assump- 
tions, a delay interval guaranteeing stability will be compu- 
ted. The method is inspired by the developments in [4] (only 
second-order systems including discrete or pointwise delay) 
and extended in [5] (more general analytic functions), with 
further generalizations, comments, discussions and related 
references in [13]. Second, we shall use the integral qua- 
dratic constraint (IQCs) based approach for handling the 
time-varying delay uncertainty. Both conditions are easy 
to check. 

2 Main results 

In this section, we consider the first problem. In order to 
prove our main results, some prerequisites from the stan- 
dard output feedback stabilization problem for SISO sys- 
tems (free of delays) are needed. 

2.1 Basic results in the case free of delays 
The difficulty in designing static output feedback stabiliza- 
tion problem (see, for instance, [ 181 and the references the- 
rein) is well known. However, in the SISO system case, the 
problem is reduced to a one-parameter problem, which is 
relatively easy. Indeed, there exist several methods to solve 
it: This include (standard) graphical tests (root-locus, Ny- 
quist), and computation of the real roots of an appropriate 
set of polynomials. In addition to these standard methods, 
we may cite two interesting approaches [2, 101 based on ge- 
neralized eigenvalues computation of some appropriate ma- 
trix pencils defined by the corresponding Hurwitz [2], and 
Hermite [ 101 matrices. The approach below is inspired by 
Chen’s characterization [2] for systems without delay. 
As we shall see in the next paragraphs (see also the problem 
statement in the Introduction), we are interested in finding 
gains k for which the closed-loop system is unstable, but 
with an appropriate number of roots in C+. Later on, we 
will discuss the use of time delay to “move” them from C+ 
to C-. For these reasons, one needs to adapt the results 
cited above in order to handle this situation also. 

Introduce the following Hurwitz matrix associated to the de- 

nominator polynomial Q(s) = q;s“-’ of the transfer func- 
n 

tion: 

ff@> = 

i=O 

41 q 3  4s ... q2n-1 
40 q 2  4 4  ... q2n-2 
0 91 4 3  ... q2n-3 
0 40 92 ... 4211 - 4 

0 0 0 ... 4n  

E Rnxn, (4) 

where the coefficients q1 = 0, for all 1 > n. Next, we in- 
terpret the numerator polynomial P(s )  of the transfer func- 

tion as a nth order polynomial: P(s )  =  pis"-', where 

p ;  = 0, for all i = 0,1, .  . . (n  - m + l ) ,  and p i  = pn-i, for 
all i = (n  - m ) ,  . . . n.  Corresponding to this interpretation, 
we construct H ( P )  as a n x n matrix by the same procedure 
as (4) with the understanding that 

The following result is a slight modification, and generali- 
zation of Theorem 2.1 by Chen [2]: 

n 

i=O 

= 0 for all 1 > m. 

Lemma 3 Let hl < A2 < . . .Ah, with h 5 n be the real ei- 
genvalues of the matrix pencil E@) = det(AH(P) + H ( Q ) ) .  
Then Hyu(s) cannot be stabilized by the controller u( t )  = 
ky(t) for any k = A;, i = 1,2,. . . h. Furthermore, if there 
are r unstable closed-loop roots (0 5 r 5 n) for k = k*,  
k* E (Ai,hi+l), then, there are r unstable closed-loop roots 
for any gain k E (h;,A;+l). In other words, the number of 
unstable closed-loop roots remains constant as k varies wi- 
thin each interval (hi, Ai+l). 

Remark4 For r = 0, we recover to the class of stabili- 
zing controllers defined by some appropriate intervals, if 
any (Theorem 2. I in Chen [2]).  

2.2 Existence results 
Define the polynomial F: 

F ( o )  =I QW) l2 -k2 I P ( j o )  1 2 ,  (5 )  

and denote by s+ the set of positive roots of F ( w ) .  

With these notations, definitions and prerequisites, we have 
the following result: 

Theorem 5 (Existence results) Assume Q(s)  unstable, 
and let k a real number such that the polynomial 
Q(s )  + kP(s)  has a pair of strictly complex conjugate 
unstable roots with remaining roots stable, and such that 
all the roots of F ( o )  are simple. Then the delay stabilizing 
problem has a solution ifand only ifcard(&) 2 2, and the 
following inequality is satisfied: 

2- <z+, (6) 

where’: 

~ - = m i n  min I W E  s,, 1 1 F’(w) <‘o 
(7) 

The complete proof can be found in [ 161 (full version of the 
paper). 

’Here, “Log” denotes the principal value of the logarithm. 
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Remark 6 The condition that there exists only one pair 
of strictly unstable roots is essential. Indeed, it is not 
dificult to see2 that there exists chains of oscillators (with 
an appropriate distribution of the characteristic roots on 
the imaginary axis) which can be stabilized by an output 
feedback using a single delay. 

Remark 7 (Gain's choice) Lemma 3 gives explicitly a 
way to dejne such gains, by computing the generalized 
eigenvalues of the matrix pencil C(h), and selecting only 
the real eigenvalues: hl < hz < . . . hh,  with h 2 n. Note 
however, that one needs to check the number of unstable 
roots for each (hi,hi+l) interval, which implies further 
computations, etc (see also the illustrative example in 
Section 4). 

Remark 8 (Delay-independent instability) Based on the 
proof above, it follows that $7, < 2-, and card(S+) 2 1, 
the first crossing will be towards instability, which is equi- 
valent to say, that the system will never recover closed-loop 
stability for any positive delay Z, since at each crossing 
the number of roots with positive real part will be always 
strictly positive (stability/instability crossing alternates 
each-other, etc). 
Ifcard( s+) = 1, then the crossing direction will be towards 
instability, and the closed-loop system will become more 
and more unstable, when the delay is increased. 
Furthermore, ifcard(S+) = 0, then we recover the delay- 
independent hyperbolicity property (two strictly unstable 
roots for all positive delays), as dejned in [8] (see also [9]). 

Remark 9 (Neutral-case) lf we assume that the transfer 
function Hyu(s) is not strictly proper; that is there exists a 
direct link d between the input and the output: 

Hyu(s)  =cT(sZn-A)- 'b+d= a + d ,  
Q(s)  

(9) 

the result above still works if I d )< 1. Note however that 
the argument in [S] is not sufficient for handling such a 
case. 

Remark 10 (Internal delay case) As speci$ed in the lntro- 
duction, the argument still works for transferfunctions with 
internal delays, if one assumes that F(w)  = 0 has a finite 
number of roots: 

r P(s ,  e-') 
SI,, - A  - xAje-SZi  b = ~ ) -' Q(s,e-s) ' i= 1 

(10) 
Such an analysis can be found in [I41 for a class of second- 
order systems including two delays, and encountered as 
congestion control algorithms. Note however, that the test 
on the existence of a gain k such that the closed-loop sys- 
tem with u( t )  = -ky(t) has only two unstable roots becomes 
more dificult to be worked out. 

3 Robustness issues 

In the sequel, we shall focus on the robustness of the control 
scheme with respect to parametric and time-varying uncer- 
tainty in the delay term. 

'for the brevity of the paper, such a case study is omitted 

3.1 Parametric uncertainty: defining delay intervals 

Theorem 11 (Delay intervals) Assume that the conditions 
in Theorem 5 are ver$ed. Then a stabilizing controller ( 2 )  
is defined by the gain k and any delay z E (3q with: 

z = L , Z  = Z+, (11) 

T+ being dejined by (7)-(8). 
Furthermore, for a given gain k, the number of stabilizing 
delay intervals is alwaysfinite. 

- 

The complete proof can be found in [ 161 (full version of the 

First, note that Theorem 11 is a straightforward conse- 
quence of the proof of Theorem 5, and it defines a class of 
stabilizing controllers: a delay interval (3T) for each gain 
k satisfying the corresponding constraints. It is easy to see 
that this delay interval can be interpreted as a (parametric) 
robustness measure. Indeed, for a given delay TO E (z,Z), 
the controller: 

paper). 

u( t )  = -ky(t -70 - a>, 
stabilizes Hyu(s) for any real parametric uncertainty 6, with 
6 E (70 - zlZ - TO), etc. 

Remark 12 The last statement of Theorem I1 represents 
the so-called instability persistence property discussed 
in [ I S ]  (see also (131 in a more general setting). 

A natural consequence of the result above is the following 
corollary: 

Corollary 13 (all stabilizing delay controllers) Assume 
that the conditions in Theorem 5 are satisfied for some 
positive real gain k, and assume further that card( S+) = 2. 
Then, all stabilizing delay controllers ( 2 )  dejned by the 
gain k are characterized by z E (q,q), - 1 = 0,1,2,. . .I,, 

and 1, is the largest integer to satisfy 
explicitly expressed as 

< G, which can be 

Remark 14 Corollary 13 is a natural extension of the 
stabilization problem for second-order oscillatory systems 
using a delay, and a positive gain (see, for instance, [ I ]  
or the illustrative example treated below). Note also the 
distinct approaches proposed in [3/ (discrete counterpart of 
some derivative controllers) and [I51 (crossing directions 
based argument, but without any deep analysis of the 
mechanism) for deriving the corresponding delay intervals. 

Remark 15 The results above are still valid for the transfer 
function of the form: 
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with the difference that we may have two distinct situations. 
First, for a given k, the input delay 71 belongs to the 
corresponding stabilizing delay interval (1, T), and then 
any control law: u(t)  = -ky(t - ZZ), with ~2 E [O,;i:- 71) is 
a stabilizing control law. 
Second, (z,T), one needs to capture one stabilizing 
delay interval including 71 .  Note that in this second case, if 
71 is very large, such a delay interval may not exist. 

3.2 Time-varying uncertainty 
The next step is to assume that the delay in the input may be 
subject to time-varying uncertainty, and then to analyze the 
stability robustness of the corresponding scheme. 
In conclusion, based on the results above, consider a sta- 
bilizing pair (k , z )  for the transfer H y u ( s )  satisfying the 
constraints in Theorem 5, and let (5,T) be the correspon- 
ding stabilizing delay interval. 

Assume now the existence of a time-varying delay uncer- 
tainty in the control law, that is: 

(14) u( t )  = -ky(t - z - 6 ( t ) ) ,  

where 6(.) is a continuous time-varying bounded function, 
with bounded derivative: 

0 5 6 ( t )  5 8, i i ( t )  5 p < 1. (15) 

In the sequel, we are interested in deriving bounds on E and 
b, such that the closed-loop system is uniformly asymptoti- 
cally stable. 

If (A ,b , cT)  is a state-space representation of the transfer 
Hyu(s).  then the closed-loop system can be rewritten in 
time-domain as follows: 

(16) k( t )  = Ax(t) - kbc'x(t - z - 6 ( t ) ) ,  

with x E R", A E R"'", and b,c  E R". Based on the remarks 
above, it follows that the system without uncertainty: 

k ( t )  = An(t) - kbcTx(t - z), (17) 

is asymptotically stable for all z E (z,Z), where the bounds 
are given by Theorem 5. 

The next step is the use of a classical model transformation 
(see, for instance, [13]) of the original system (16) by inte- 
grating over the delay interval [t - z - 6 ( t ) ,  r - z]. Thus, (16) 
rewrites as follows: 

i ( t )  = A x @ )  + bkcTx(t - 7) 

= ~ ~ ( 2 )  + bkcTx(t - 7) - b k c T ~  

- ( b k c ~  )2 A 6 ( r ) x ( t  - 7 - e - q t  - 7 - e) )de .  

X(t - q d e  J?) 
(1s) 

The above system can be written as one with time-invariant 
delay subject to uncertain feedback [7]: 

i ( t )  = h ( t )  + bkcTx(t - z) + 

where: bl = bkc', b2 = bkc', and: 

The equation (19) represents the forward part of the system, 
and (20)-(21) can be seen as dynamic uncertain feedback. 
Let us estimate the gain of U with respect to x in the feedback 
(20)-(21). Using the Jensen inequality combined with the 
Holder inequality, we get: 

.x(e - 7 - 5 - s(e - 7 - 5 ) ) 4  de .  

Simple computations prove that: 

s,i u1 ( w e  5 & 2 t ~ ~ ~ ~ 2 ~ * ( e ) ' * ( e ) ~ e ,  (24) 
where we used Fubini theorem [17] (under zero initial 

conditions). 
Define v(q) = q - 6(q). Since 6(.) is bounded by p, it fol- 
lows that the inverse function q = q(v) is uniquely defined, 
and: 

Also due to the range of 6, we can easily verify that 

v < q ( v ) < v + E  (26) 

A change of integration variable from 6 to v = v(0 - z - 5) 
yields 

where the last condition was derived using Fubini theorem 
(we assume zero initial conditions). 
The system can be written in the following form: 

y i ( t )  = Ecix(t), i =  1,2, 
(28) 

(29) u . - A .  . 
under the feedback: 

1 - rY1, 1 L i L  2 
where ci, i = 1,2 are given by: 

the gain of the "uncertainty" Ai is bounded by 1. 

In conclusion, we have the following result: 
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Theorem 16 The original closed-loop system (16) is uni- 
formly asymptotically stable for all pairs ( k , T )  satisfying 
Theorem 5, and for any time-varying delay uncertainty 6 ( t )  
satisfying (15), ifthere exists scalars ai, i = 1,2 such that: 

(31) 
1 

l l w N A - l  1 1 -  < E, 

where: A = diag(alZn,a21), and: 

H ( s )  = [ zik ] ( s l - A  - bkcTe-")-l [ bl 62 1 .  (32) 

Remark 17 (Lyapunov approach) A different way to 
handle the time-varying delay uncertainty was proposed 
in [ l l ]  using a time-domain approach based on an appro- 
priate Liapunov-Krasovskii f nctional construction. 

Remark 18 (E bounds) The condition (31) above can be 
also used to estimate a bound > 0 of the uncertain 
time-varying delay 6(t) ,  such that the closed-loop stability 
is guaranteed. This bound on E can be seen as a measure of 
the degree of robustness of the corresponding delay system, 
etc. 

4 Illustrative example 

Consider the following second-order system: 

(33) 

with a E [0,2&) a real parameter. Simple computations 
prove that the polynomial Q(s) = s2 - ar + 2 is unstable, 
and for all k E R, the polynomial Q(s)  + kP(s)  has at least 
one unstable root. Furthermore, if a = 0, then H y u ( s )  in (33) 
corresponds to an oscillator (characteristic equation has two 
roots on the imaginary axis). The upper bound a = 2& 
corresponds to a double positive root of Q ( s ) ,  and for all a E 
(0,2&), Q(s)  has two complex conjugate strictly unstable 
roots. 
Choose the controller u( t )  = ky(t - 7). The corresponding 
characteristic equation of the closed-loop system is: 

s2 - ar + 2 - ke-s7 = 0. (34) 

The polynomial F ( o )  is: 

F ( w )  =( Q ( j o )  l 2  - I P ( j 0 )  1 2 =  (2 - 6 1 ~ ) ~  + a2o2 - k2 

= a4 - (4 - a2)02 + (4  - k2). (35) 

It is clear that if a E [2,2&), then card( s+) 5 1 for all real 
k, and, in conclusion, there does not exist any (gain,delay) 
pair which stabilizes Hyu (s). Some straightforward com- 
putations prove that the condition card(S+) = 2 requires: 

Based on Corol- 

lary 13, the condition above is also sufficient. 

Proposition 19 For any pair (a,  k )  of positive numbers sa- 
tisfying the constraints: 

there exists a delay interval (z,?) including T, such that the 
controller u(t)  = ky(t - Z) stabilizes Hyu(s) .  The bounds 
3 = 7- and T = T+ are given by: 

where: 

and: 

= { 0,ifx212 1, otherwise. (39) 

Remark 20 It is easy to see that for all a E [0,2), O? < 2, 
but o$ < 2 only for a E [&,2). Thus, for all a E [0, fi), 

given by (39) in the 
definition of z*. 

2 2, which explain the term 

Remark 21 (Stabilizing oscillations) If a = 0, then k E 
(0,2), and we recover the results proposed in [l, 15, 31: 

7c 
2- = O,T+ = - JGZ' 

Furthermore, the number of delay intervals is given by: 

1 

Roughly speaking, the smaller the gain is, the smaller the 
number of stabilizing delay intervals is, property coherent 
with the graphical representation in [ I ] ,  etc. 

Remark 22 Simple computation proves that choosing a = 
1, and k = &, which belongs to the interval ($ , 2) defi- 
ned by Proposition 19, we get: 

0- = 1,0+ = di. 
Then, the first delay interval guaranteeing closed-loop 
asymptotic stability is: 

Furthermore, using Corollary 13, it follows that there does 
not exist other delay intervals guaranteeing the closed-loop 
asymptotic stability. 
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5 Concluding remarks 

This note was devoted to the stabilization problem of a 
class of SISO systems subject to output delayed feedback. 
More precisely we considered the problem where the de- 
laylin the control law may induce a stabilizing effect, that 
is the closed-loop stability is guaranteed due to the delay 
existence. Necessary and sufficient conditions have been 
derived using a frequency-domain approach. Furthermore, 
we.considered also the related robustness problem with res- 
pect to the delay terms (parametric and time-varying uncer- 
tainty). A simple illustrative example was also proposed. 
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