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Gradient and Hamiltonian Dynamics

Applied to Learning in Neural Networks�

James W� Howse Chaouki T� Abdallah Gregory L� Heileman

Department of Electrical and Computer Engineering
University of New Mexico
Albuquerque� NM �����

Abstract

The process of machine learning can be considered in two stages� model
selection and parameter estimation� In this paper a technique is presented
for constructing dynamical systems with desired qualitative properties� The
approach is based on the fact that an n	dimensional nonlinear dynamical
system can be decomposed into one gradient and 
n � �� Hamiltonian sys	
tems� Thus� the model selection stage consists of choosing the gradient and
Hamiltonian portions appropriately so that a certain behavior is obtainable�
To estimate the parameters� a stably convergent learning rule is presented�
This algorithm has been proven to converge to the desired system trajectory
for all initial conditions and system inputs� This technique can be used to
design neural network models which are guaranteed to solve the trajectory
learning problem�

� Introduction

A fundamental problem in mathematical systems theory is the identi�cation of dy	
namical systems� System identi�cation is a dynamic analogue of the functional ap	
proximation problem� A set of input	output pairs fu
t��y
t�g is given over some time
interval t � 
Ti� Tf �� The problem is to �nd a model which for the given input sequence
returns an approximation of the given output sequence� Broadly speaking� solving an
identi�cation problem involves two steps� The �rst is choosing a class of identi�ca	
tion models which are capable of emulating the behavior of the actual system� The
second is selecting a method to determine which member of this class of models best
emulates the actual system� In this paper we present a class of nonlinear models and
a learning algorithm for these models which are guaranteed to learn the trajectories
of an example system� Algorithms to learn given trajectories of a continuous time
system have been proposed in 
��� 
��� and 
�� to name only a few� To our knowledge�
no one has ever proven that the error between the learned and desired trajectories
vanishes for any of these algorithms� In our trajectory learning system this error is
guaranteed to vanish� Our models extend the work in 
�� by showing that Cohen�s
systems are one instance of the class of models generated by decomposing the dynam	
ics into a component normal to some surface and a set of components tangent to the
same surface� Conceptually this formalism can be used to design dynamical systems
with a variety of desired qualitative properties� Furthermore� we propose a provably

�This paper was presented at the Advances in Neural Information Processing Systems
conference in November� �����
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convergent learning algorithm which allows the parameters of Cohen�s models to be
learned from examples rather than being programmed in advance� The algorithm is
convergent in the sense that the error between the model trajectories and the de�
sired trajectories is guaranteed to vanish� This learning procedure is related to one
discussed in ��� for use in linear system identi�cation�

� Constructing the Model

First some terminology will be de�ned� For a system of n �rst order ordinary di	er�
ential equations
 the phase space of the system is the n�dimensional space of all state
components� A solution trajectory is a curve in phase space described by the di	er�
ential equations for one speci�c starting point� At every point on a trajectory there
exists a tangent vector� The space of all such tangent vectors for all possible solution
trajectories constitutes the vector �eld for this system of di	erential equations�

The trajectory learning models in this paper are systems of �rst order ordinary dif�
ferential equations� The form of these equations will be obtained by considering the
system dynamics as motion relative to some surface� At each point in the state space
an arbitrary system trajectory will be decomposed into a component normal to this
surface and a set of components tangent to this surface� This approach was suggested
to us by the results in ���
 where it is shown that an arbitrary n�dimensional vector
�eld can be decomposed locally into the sum of one gradient vector �eld and �n� 
�
Hamiltonian vector �elds� The concept of a potential function will be used to de�
�ne these surfaces� A potential function V�x� is any scalar valued function of the
system states x � �x�� x�� � � � � xn�

y which is at least twice continuously di	erentiable
�i�e� V�x� � Cr � r � ��� The operation ���y denotes the transpose of the vector� If
there are n components in the system state
 the function V�x�
 when plotted with
respect all of the state components
 de�nes a surface in an �n�
��dimensional space�
There are two curves passing through every point on this potential surface which are
of interest in this discussion
 they are illustrated in Figure 
�a�� The dashed curve is
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Figure �� �a� The potential function V�x� � x
�

� �x������x
�

� plotted versus its two depen�
dent variables x� and x�� The dashed curve is called a level surface and is given
by V�x� � ��	� The solid curve follows the path of steepest descent through x��
�b� The partitioning of a 
�dimensional vector �eld at the point x� into a ��
dimensional portion which is normal to the surface V�x� � K and a ��dimensional
portion which is tangent to V�x� � K� The vector�rxV�x�jx� is the normal vec�

tor to the surface V�x� � K at the point x�� The plane �x�x��
yrxV�x�jx� � �

contains all of the vectors which are tangent to V�x� � K at x�� Two linearly
independent vectors are needed to form a basis for this tangent space
 the pair
Q

�
�x�rxV�x�jx� and Q

�
�x�rxV�x�jx� that are shown are just one possibility�
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referred to as a level surface� it is a surface along which V�x� � K for some constant
K� Note that in general this level surface is an n�dimensional object� The solid curve
moves downhill along V�x� following the path of steepest descent through the point
x�� The vector which is tangent to this curve at x� is normal to the level surface
at x�� The system dynamics will be designed as motion relative to the level surfaces
of V�x�� The results in �	
 require n di�erent local potential functions to achieve
arbitrary dynamics� However� the results in ��
 suggest that a considerable number
of dynamical systems can be achieved using only a single global potential function�

A system which is capable of traversing any downhill path along a given potential
surface V�x�� can be constructed by decomposing each element of the vector 
eld
into a vector normal to the level surface of V�x� which passes through each point
and a set of vectors tangent to the level surface of V�x� which passes through the
same point� So the potential function V�x� is used to partition the n�dimensional
phase space into two subspaces� The 
rst contains a vector 
eld normal to some
level surface V�x� � K for K � R� while the second subspace holds a vector 
eld
tangent to V�x� � K� The subspace containing all possible normal vectors to the
n�dimensional level surface at a given point� has dimension one� This is equivalent
to the statement that every point on a smooth surface has a unique normal vector�
Similarly� the subspace containing all possible tangent vectors to the level surface at
a given point has dimension �n � ��� An example of this partition in the case of a
��dimensional system is shown in Figure ��b�� Since the space of all tangent vectors
at each point on a level surface is �n � ���dimensional� �n � �� linearly independent
vectors are required to form a basis for this space�

Mathematically� there is a straightforward way to construct dynamical systems which
either move downhill along V�x� or remain at a constant height on V�x�� In this
paper� dynamical systems which always move downhill along some potential surface
are called gradient�like systems� These systems are de
ned by di�erential equations
of the form

�x � �P �x�rxV�x�� ���

where P �x� is a matrix function which is symmetric �i�e� P y � P � and positive
de
nite at every point x� and where rxV�x� � � �V

�x�
�

�V

�x�
� � � � �

�V

�xn

y� These systems

are similar to the gradient �ows discussed in ��
� The trajectories of the system
formed by Equation ��� always move downhill along the potential surface de
ned by
V�x�� This can be shown by taking the time derivative of V�x� which is �V�x� �
��rxV�x�


y P �x� �rxV�x�
 � �� Because P �x� is positive de
nite� �V�x� can only be
zero where rxV�x� � �� elsewhere �V�x� is negative� This means that the trajectories
of Equation ��� always move toward a level surface of V�x� formed by �slicing� V�x�
at a lower height� as pointed out in ��
� It is also easy to design systems which remain
at a constant height on V�x�� Such systems will be denoted Hamiltonian�like systems�
They are speci
ed by the equation

�x � Q�x�rxV�x�� ���

where Q�x� is a matrix function which is skew�symmetric �i�e� Qy � �Q� at every
point x� These systems are similar to the Hamiltonian systems de
ned in ��
� The
elements of the vector 
eld de
ned by Equation ��� are always tangent to some level
surface of V�x�� Hence the trajectories of this system remain at a constant height on
the potential surface given by V�x�� Again this is indicated by the time derivative
of V�x�� which in this case is �V�x� � �rxV�x�


yQ�x� �rxV�x�
 � �� This indicates
that the trajectories of Equation ��� always remain on the level surface on which the
system starts� So a model which can follow an arbitrary downhill path along the
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potential surface V�x� can be designed by combining the dynamics of Equations ���
and ���� The dynamics in the subspace normal to the level surfaces of V�x� can be
de�ned using one equation of the form in Equation ���� Similarly the dynamics in the
subspace tangent to the level surfaces of V�x� can be de�ned using �n� �� equations
of the form in Equation ���� Hence the total dynamics for the model are

�x 	 �P �x�rxV�x� 


nX
i��

Q
i
�x�rxV�x�� ���

For this model the number and location of equilibria is determined by the function
V�x�� while the manner in which the equilibria are approached is determined by the
matrices P �x� and Qi�x��

If the potential function V�x� is bounded below �i�e� V�x� � Bl � x � R
n � where

Bl is a constant�� eventually increasing �i�e� limkxk�� V�x� � �� � and has only
a �nite number of isolated local maxima and minima �i�e� in some neighborhood
of every point where rxV�x� 	 � there are no other points where the gradient
vanishes�� then the system in Equation ��� satis�es the conditions of Theorem �

in ���� Therefore the system will converge to one of the points where rxV�x� 	 ��
called the critical points of V�x�� for all initial conditions� Note that this system
is capable of all downhill trajectories along the potential surface only if the �n � ��
vectors Qi�x�rxV�x� � i 	 �� � � � �n are linearly independent at every point x� It
is shown in ��� that the potential function

V�x� 	 C

Z x�

X�

L���� d� 


nX
i��

�
�

�
�xi � Li�x���

�



�

�

Z x�

Xi

L���� �L
�
i����

�
d�

�
���

satis�es these three criteria� In this equation Li�x�� � i 	 �� � � � �n are interpolation
polynomials� C is a real positive constant� Xi � i 	 �� � � � �n are real constants chosen
so that the integrals are positive valued� and L�

i
�x�� �

dLi

dx�
�

� The Learning Rule

In Equation ��� the number and location of equilibria can be controlled using the
potential function V�x�� while the manner in which the equilibria are approached can
be controlled with the matrices P �x� and Qi�x�� If it is assumed that the locations
of the equilibria are known� then a potential function which has local minima and
maxima at these points can be constructed using Equation ���� The problem of
trajectory learning is thereby reduced to the problem of parameterizing the matrices
P �x� and Qi�x� and �nding the parameter values which cause this model to best
emulate the actual system� If the elements P �x� and Qi�x� are correctly chosen�
then a learning rule can be designed which makes the model dynamics converge to
that of the actual system� Assume that the dynamics given by Equation ��� are a
parameterized model of the actual dynamics� Using this model and samples of the
actual system states� an estimator for states of the actual system can be designed� The
behavior of the model is altered by changing its parameters� so a parameter estimator
must also be constructed� The following theorem provides a form for both the state
and parameter estimators which guarantees convergence to a set of parameters for
which the error between the estimated and target trajectories vanishes�

Theorem ���� Given the model system

�x 	

kX
i��

Ai f i�x� 
B g�u� ���

where Ai � R
n�n and B � Rn�m are unknown� and f

i
��� and g��� are known smooth

functions such that the system has bounded solutions for bounded inputs u�t�� Choose
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a state estimator of the form

��x �Rs ��x� x� �

kX
i��

�Ai f i�x� � �B g�u� ���

where Rs is an �n�n� matrix of real constants whose eigenvalues must all be in the

left half plane� and �Ai and �B are the estimates of the actual parameters� Choose

parameter estimators of the form
��Ai � �Rp ��x� x�

�
f i�x�

�y
� i � �� � � � � k

��B � �Rp ��x� x�
�
g�u�

�y �	�

where Rp is an �n � n� matrix of real constants which is symmetric and positive

de�nite� and ��x � x�
�
�
�y

denotes an outer product� For these choices of state and

parameter estimators limt����x�t��x�t�� � � for all initial conditions� Furthermore�

this remains true if any of the elements of �Ai or �B are set to 
� or if any of these

matrices are restricted to being symmetric or skew�symmetric�

The proof of this theorem appears in ��
� Note that convergence of the parameter
estimates to the actual parameter values is not guaranteed by this theorem� The
model dynamics in Equation ��� can be cast in the form of Equation ��� by choosing
each element of P �x� and Qi�x� to have the form

Prs �

nX
j��

l��X
k��

�rsjk �k�xj� and Qrs �

nX
j��

l��X
k��

�rsjk �k�xj�� ���

where f���xj�� ���xj�� � � � � �l���xj�g and f���xj�� ���xj�� � � � � �l���xj�g are a set of l
orthogonal polynomials which depend on the state xj � There is a set of such poly�
nomials for every state xj � j � �� �� � � � �n� The constants �rsjk and �rsjk determine
the contribution of the kth polynomial which depends on the jth state to the value
of Prs and Qrs respectively� In this case the dynamics in Equation ��� become

�x �

nX
j��

l��X
k��

�
�jk

�
�k�xj�rxV�x�

�
�

nX
i��

�ijk

�
�ik�xj�rxV�x�

��
�� g�u�t�� ���

where �jk is the �n�n� matrix of all values �rsjk which have the same value of j and
k� Likewise �ijk is the �n � n� matrix of all values �rsjk � having the same value of
j and k� which are associated with the ith matrix Qi�x�� This system has m inputs�
which may explicitly depend on time� that are represented by the m�element vector
function u�t�� The m�element vector function g��� is a smooth� possibly nonlinear�
transformation of the input function� The matrix � is an �n�m� parameter matrix
which determines how much of input s � f�� � � � �mg e�ects state r � f�� � � � �ng�
Appropriate state and parameter estimators can be designed based on Equations ���
and �	� respectively�

� Simulation Results

Now an example is presented in which the parameters of the model in Equation ���
are trained� using the learning rule in Equations ��� and �	�� on one input signal and
then are tested on a di�erent input signal� The actual system has three equilibrium
points� two stable points located at ��� �� and ��� ��� and a saddle point located at

�� �
p
�
� � � �

p
�
� �� In this example the dynamics of both the actual system and the

model are given by�
�x�

�x�

�
�

�P� � P� x�� � P� x�� �

� P� � P� x�� � P� x��

��BB�
�V

�x�

�V

�x�

�
CCA�

�
� �fP� � P� x� � P	 x�g
P� � P� x� � P	 x� �

��BB�
�V

�x�

�V

�x�

�
CCA�

�P�

�

�
u�t	 ��
�

�



where V�x� is de�ned in Equation ��� and u�t� is a time varying input� For the actual
system the parameter values were P� � P� � ��� P� � P� � �	� P� � P� � �
�
P� � 
� P� � �� P	 � �� and P�
 � 
� In the model the 

 elements Pi are
treated as the unknown parameters which must be learned� Note that the �rst matrix
function is positive de�nite if the parameters P��P� are all negative valued� The
second matrix function is skew�symmetric for all values of P��P	� The two input
signals used for training and testing were u� � 






�
sin �

�




 t� sin �

�




 t

�
and

u� � �


 sin 



 t� The phase space responses of the actual system to the inputs u�

and u� are shown by the solid curves in Figures ��b� and ��a� respectively� Notice that
both of these inputs produce a periodic attractor in the phase space of Equation �

��
In order to evaluate the e�ectiveness of the learning algorithm the Euclidean distance
between the actual and learned state and parameter values was computed and plotted
versus time� The results are shown in Figure 	� Figure 	�a� shows these statistics when
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Figure �� �a� The state and parameter errors for training using input signal u�� The solid
curve is the Euclidean distance between the state estimates and the actual states
as a function of time� The dashed curve shows the distance between the estimated
and actual parameter values versus time�
�b� The state and parameter errors for training using input signal u��

training with input u�� while Figure 	�b� shows the same statistics for input u�� The
solid curves are the Euclidean distance between the learned and actual system states�
and the dashed curves are the distance between the learned and actual parameter
values� These statistics have two noteworthy features� First� the error between the
learned and desired states quickly converges to very small values� regardless of how
well the actual parameters are learned� This result was guaranteed by Theorem ��
�
Second� the �nal error between the learned and desired parameters is much lower when
the system is trained with input u�� Intuitively this is because input u� excites more
frequency modes of the system than input u�� Recall that in a nonlinear system the
frequency modes excited by a given input do not depend solely on the input because
the system can generate frequencies not present in the input� The quality of the
learned parameters can be qualitatively judged by comparing the phase plots using
the learned and actual parameters for each input� as shown in Figure �� In Figure ��a�
the system was trained using input u� and tested with input u�� while in Figure ��b�
the situation was reversed� The solid curves are the system response using the actual
parameter values� and the dashed curves are the response for the learned parameters�
The Euclidean distance between the target and test trajectories in Figure ��a� is in
the range �
� 
���� with a mean distance of 
�	
 and a standard deviation of 
�
�� The
distance between the the target and test trajectories in Figure ��b� is in the range
�
� ����� with a mean distance of 
��� and a standard deviation of 
���� Qualitatively�
both sets of learned parameters give an accurate response for non�training inputs�
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Figure �� �a� A phase plot of the system response when trained with input u� and tested
with input u�� The solid line is the response to the test input using the actual
parameters� The dotted line is the system response using the learned parameters�
�b� A phase plot of the system response when trained with input u� and tested
with input u��

Note that even when the error between the learned and actual parameters is large�

the periodic attractor resulting from the learned parameters appears to have the same

�shape� as that for the actual parameters�

� Conclusion

We have presented a conceptual framework for designing dynamical systems with

speci�c qualitative properties by decomposing the dynamics into a component normal

to some surface and a set of components tangent to the same surface� We have

presented a speci�c instance of this class of systems which converges to one of a �nite

number of equilibrium points� By parameterizing these systems� the manner in which

these equilibrium points are approached can be �tted to an arbitrary data set� We

present a learning algorithm to estimate these parameters which is guaranteed to

converge to a set of parameter values for which the error between the learned and

desired trajectories vanishes�
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