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In 6 algorithm. &R prelented for analytic gain and phase marpn design. Without . p ecial care however, the compelUlator computed 
,.ith. thi. algorithm i. not a rtll.1 rational function. In 3 it i •• hown that with tome care, a nal rational compens.alOr for ph~ margin 
dmgn can be computed from the theory in!>. In this paper both. I"ain and phase marlin problem. are reduced to interp<>lation 
problem. with ,alilin-rell functions, which saves a step in the a1gorithm siven in .ro, where interpolation i. done .... ith bIlRJtJ-re.1 
lum::tiol1l , in the cue of sain m .... sin design. 

1 In troduction 

In most introductory cont rol textbooks, see fo r example 
4 orS, the only discussion one finds on robust design is 
in terms of gain and phase margins, and the only proce
dures for design are ad-hoc procedures . What is called 
"analyt ic design" in these texts is only a one-frequency
point design , which cannot guaranteed closed-loop sta
bility. In practice gain and phase margin designs are also 
very common. A true "analytic design" procedure should 
have two elements: 1) an existence result, so that one 
knows what margins can be achieved for a given plant; 
and 2) a computable algorithm for a compensator when 
one is known to exist. In r; and 6, true analytic procedures 
are presented for gain and phase margin design. In these 
references maximum achievable gain and phase margins 
are computed and interpolation theory is used to com
pute compensators that realize gain and phase margins 
that are within the achievable range. In 11 interpolation 
is done with Schur funct ions (definition follows), and for 
phase margin design special care is required to guarantee 
a compensator with real coefficients. In this paper we 
will interpolate with positive-real functions, which saves 
one step in the algorithms of s. We also show how to 
select interpolating functions in the phase-margin case 
that result in compensators with real coeffi cients, which, 
of course, is required for physical realization of the com
pensator . 

Thi~ paper is organized as follows . Section 2 contains 
an ou tline of the problems and the design procedures. In 
section 3 we present some illustrative numerical examples 

and give our conclusions in section 4. 

2 Outline of The Problems and Main Results 

We define first some special functions that will be re
quired in the sequel. In each case tne functions in ques
tion are assu med to be rational. We denote the set of 
real numbers by R and the set of complex numbers by C. 
Also Re(s) denotes the real part of the complex number 
s, arg(s) denotes the argument of the complex number 
s, and IIW(s)lIoo denotes the 1ioo norm of the function 
W(s) Ii. Finally we say that a transfer function T(s) is 
stable ifit is BIBO stable, i.e. T(s) is proper and analytic 
in Re(.) ~ O. 

1. A function W (s) is a strict Schur (S5) Junction ifit 
is analytic and II W(s)lIoo < 1, for ails: Re(s) 2:: o. 
Note that a SS function may have complex valued 
coefficients. 

2. A function Yes) is a strictly-bounded-real (SBR) 
fundion if it is a real 5S funel ion, that is a 5S 
function with on ly real coefficienLs. 

3. A function Z(s) is a stridly-positive (SP) junctioll 
if it is analytic and -11'/2 < arg(Z(s)) < 7( / 2, or 
equivalently Re(Z(s)) > 0, for all s: Re(s) 2:: O. A 
function Z( s) is a strictly-positive-real function if it 
a. real SP function. 

4. A function F(s) is an analytic-positive (AP) fun c
tion, 1, if it is analytic and -11' < arg(T(s)) < 7( for 
all., Re(,) ~ O. 
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1 Introduction 

In most introductory control textbooks, see for example 
4 orS, the only discussion one finds on robust design is 
in terms of gain and phase margins, and the only proce
dures for design are ad-hoc procedures . What is called 
"analytic design" in these texts is only a one-frequency
point design , which cannot guaranteed dosed-loop sta
bility. In practice gain and phase margin designs are also 
very common. A true "analytic design" procedure should 
have two elements: 1) an existence result, so that one 
knows what margins can be achieved for a given plant; 
and 2) a computable algorithm for a compensator when 
one is known to exist. In 5 and s, true analytic procedures 
are presented for gain and phase margin design. In these 
references maximum achievable gain and phase margins 
are computed and interpolation theory is used to com
pute compensators that realize gain and pbase margins 
that are within the achievable range. In !i interpolation 
is done with Schur functions (definition follows), and fo r 
pbase margin design special care is required to guarantee 
a compensator with real coefficients. In this paper we 
will interpolate with po&itive.rtal functions , which saves 
one step in the algorithms of s. We also show how to 
select interpolating functions in the phase-margin case 
that result in compensators with real coefficients, which , 
of course, is required for physical realization of the com
pensator . 

This paper is organized as follows . Section 2 contains 
an outline of the problems and the design procedures. In 
section 3 we present some illustrative numerical examples 

and give our conclusions in section 4. 

2 Outline o f The Problems and Main R esults 

We define first some special functions that will be re
quired in the sequel. In each case tile functions in ques
tion are assumed to be rational. We denote the set of 
reaJ numbers by IR and the set of complex numbers by C. 
Also Re(s) denotes the real part of the complex number 
s, arg(,,) denotes the argument of the complex number 
s, and IIW(s)lIoo denotes the 1f.00 norm of the function 
Wes) II. Finally we say that a transfer function T(s) is 
stable ifit is BlBO stable, i.e. T(s) is proper and analytic 
in Re(s) ~ O. 

1. A function W(s) is a slrid Schur (SS) fundion if it 
is analytic and IIW(s)lIoo < I , for all 8: Re(s) 2: O. 
Note that a SS function may have comp lex valued 
coefficients. 

2. A function V(s) is a strictly-hounded-real (SBR) 
function if it is a real S5 function, that is a 55 
function with only real coefficients. 

3. A function Z(8) is a strictly-positive (SP) function 
if it is analytic and -rr/2 < arg(Z(s» < ~/2, or 
equivalently R.e(Z(s» > 0, for aU s: R.e(,,) 2: O. A 
funct ion Z( s) is a strictly-positive-rea l function if it 
a real SP function. 

4. A function F(s) is an analytic-positive (AP) fun c
tion, I, if it is a.nalytic and -rr < arg(T(s» < 11' for 
all" Re(.) ~ O. 



Our discussion is limited to linear time-invariant 
single- input·single-output systems with given rat ional 
nominal plant t ransfer function P(s). 
The gain margin design problem we will consider can be 
stated as the problem of finding a proper real rational 
compensator C(s) such that 

1 + kC(.)P(.) # 010. al l., k , Re(. ) ~ 0, k, ~ k ~ k 
(1 ) 

where kl is fixed and we wish to maximize k. The phase 
margin problem can be stated as the problem of finding 
a C(s), as above, such that 

1 + d'C(.)P(.) # 0,10 •• 11 .,9, Re(.) ~ 0, -0 ~ 9 ~ 0 
, (2) 

Using the theory in 5, condition (1) can be shown to be 
equivalent to the condition that the closed-loop transfer 
function T,(s) = 1!J:~W~jJ;(~) be BIBO stable and avoid 
the region 

E = { sE C I, = - I: :11:
1 
, kl ::; k ::; k} 

and condition (2 ean be shown to be equivalcnt to thc 
condition that the closed-loop transfer fu nction Tp (s) = 
l ;b~(WW()~j be BIBO stable and avoid the region 

F = {. Eel. = ~ ±i2(1 'in,<:;(O)) , 0 ~ 9 ~ o} 
Again using the theory in 5 it can be shown that the 
functions T,Cs) and Tp(s) avoid the regions E and F, re
spectively, if the functions F,(s) and Fp(s) , where 

(3) 

.nd 

1 a - i (T,(8) - D 
F'(') = 2+ ( 1) ' 

a+i Tp (s)-2 
(4) 

where a = 2(1 sincC:;(B» = ~ (tan (~) ) - I, both avoid 

the line segment shown in Figure 1, i.e. the line seg
ment consisting of the whole negative real axis. Note 
that if F,(s) or Fp(s ) are AP functions, the line segment 
in Figure 1 is indeed avoided, since -'/I' < arg(F) < 'K 

guarantees that F can never assume negative real val
ues. However an AP function can always be written as 
the square of an SP function, i.e. 

F,(.) = Z;( .), F,(.) = Z;(,), (5) 

where Z,(s) and Zp(s) are SP functions. Now for inter
nal stability T,(s) and Tp(s) must satisfy certain inter
polation conditions , in particular at the unstable poles 

Im(F(.» 

Re(F(. » 

Figure 1: Region to be avoided by Fg(.!') and 
Fp(,) for all , : Re(.) ~ O. 

and zeros of the nominal plant pes), denoted at and hi 
respectively (all assumed to have multiplicity one for sim
plicity), we must have 

T,(ai) = T,(ai) = 1, i = 1, ... , n 

. nd 
T,(b;) = T,(b;) = 0, i = 1, ... , m 

where n is the number of unstable poles and m is the 
number of unstable zeros, including infinity. These in
terpolation conditions then translate, via the mappings 
(3), (4), .nd (5) into 

f;£- M' Z,(a;) = _, Z,( b;) = _ 
k - kl k - kl 

(6) 

.nd 

Z(a;)=!+a- i =e- jl/ 2 Z(b)= !+a+ i =ei
'
/2 

, 2 a+J ' p. 2 a-i 
(7) 

Gain and phase margin design is thus red uced to inter
polation with an SP function. The maximum values of k 
and 8 are fixed by the requirement that Z,(s) and Zp(s) 
be strictly positive functions. In 9 algorithms are given 
for interpolation with positive-rea/functions which relate 
directly to interpolation with SP functions. In r;, sections 
11.13 and 11.14, the maximum values of k and 8 are com
puted from the minimal value of the Hoo norms of r,(s) 
and T,(s). Once Z,(s) and Zp(s) are computed , T,Cs) 
and Tp(s) may be computed from equations (5), (3), and 
(4). The respective compensators are then given by 

(8) 



For phase m argin design Tp(s) may not be a realfunction 
since for real unstable poles and zeros the interpolation 
values, see (7), are not real. However as shown in 3 is is 
possible to compute a complex Zp(s) which results in a 
real Tp(s). 

1. Gain Margin D esign: From the SPR fu nction 
Z,(s) which meets the interpolation conditions in 
(6), one can compute T,(s) from 

, k, 
T,(.) = Z.(.) - r:T, (9) 

Then the compensator G,(s) may be computed 
from (8). 

2. Phase Margin D esign: From the SP function 
Zp(s) which meets the interpolation conditions in 
(7), one can compute Tp(s) from 

1 a 1- Z~(s) 
Tp(') = 2" + j 1 + Z;(.) (10) 

Then compensator Gp(s) may be computed from 
(8) . However to insure a compensator with real 
coefficients, one should compute Tp(s), as noted in 
3, from 

1 - sin (t) V(s) 
Tp(') = V(.) ( 11 ) 

sin (!) (I - V2(S» 

where V(s) is an SBa function which satisfies the 
following interpolation conditions 

V(a;) = IPI = .in (n i= 1, ... , n , 

V(b;) =0 i = I , . . . , m . 

where V( s) is related to Zp(s) from 

3 Examples 

3.1 Example 1 

Consider the gain margin design problem of example 1 
in reference 7. The plant is the following 

(. - 1) 
P(.) = (. + 1)(, - 2) , 

here the maximum permissible value of 1: is 4. As in 7 we 
take k = 3.5 and kl = 1. The interpolation conditions in 
this case are, from (6), 

Z.( I) = Z,(oo) = 0.63240, Z.(2) = 1.63240 

Following the above steps, the computed compensator is 

(. + 1)'(, + 60) 
C(.) = 1488T(.,--;==S2,-~~i=-,-.,=.", 123)( 16.4833.' + 723 .379s+ 1271.1) 

Note that the com pensator obtained here is of third or
der, compared to a sixth order compensator reported in 
7. This plant cannot be stabilized with a stable compen
sator since the plant does not satisfy p.i.p. (See reference 
10). In this case the compensator has a single unstable 
pole at s = 123. Since the plant has one unstable pole, at 
8 = 2 the Nyquist plot for the compensated system must 
have two counter-clockwise encirclements. The Nyquist 
plot of the loop-gain transfer function is shown in figure 
2 and there , the necessary encirclements may be noted. 
As in 7, this compensator is very fragile with respect to 
decreasing gain margin . With a different choice of k .. 
this problem can be avoided. However the poor phase 
margin that results from th is gain-margin design (See the 
stretched-out shape of the Nyquist plot) is not avoidable, 
it illustrates the problem one has when optimizing with 
respect to a single performance index. 

--
" 

I 

I 
., 

•• 
~,7,--~.,~,--~--.~~-,~-,c--,.,~~ --

Fi«ure 2: Loop «ain Nyquiat di&«ram (Gain Margin Qptimi7,4tion ) 

3. £ Example ! 

This example is taken from 5. The open-loop plant is 

P. _ (. - 1) 
() - (.+ 1)(. 

i,From the theory in 5 we find that the maximum possi
ble phase margin is 12.7587°. We select the guaranteed 
phase margin to be 8 = 10° = h. This plant has a sim
ple zero at infinity, hence a first-order roll-off term of the 
form 

TS + 1 



is required , with T chosen small enough so that the ?ioo-
norm W(s) remains less than L In this case W (s) is 
exactly 

_ _ . ·.,M· (~) (. -1) (r _ ~) 
W(.) - 1440;" "n 36 (. + 1)(4. + 155) , - 155 

resulting in the controller 

C(.) ; 360 4.' + 148.06158. + 165.93841 . 
4s2 11218 49445 

For this plant the p.i.p. condition is not satisfied, so 
that an unstable controller is expected. In particular, 
the controller designed above has one unstable pole, so 
that for closed-loop stability the Nyquist diagram should 
encircle the - 1 point twice (one unstable pole in the 
plant and one unstable pole in the controller). The 
Nyquist plot shown in Figure 3 has the correct number 
of encirclements . The Bode plota of the loop gain are 
shown in Figure 4 and the computed increasing-gain and 
phase margins are GM ::; 0.3972 dB, 9 ::; 10.23° ~ 9. 
Note that in order to meet a near-optimal phase mar
gin , the Nyquist diagram is distorted in such a way that 
a very small gain margin results. This implies a very 
fragile/non-robust controller with respect to gain pertur
bations, and again illustrates the robustness and fragility 
problems that typically result when a single optimization 
criterion is used for design. 

4 Conclusions 

The results in this paper should be useful in organizing 
procedures for analytic gain and phase margin design. 
This should be of interest to practicing engineers. Of spe
c.ial interest is an understanding of the achievable mar
gins for given plants. The results presented here indicate 
directly how real compensators can be synthesized that 
satisfy feasible phase mMgins. IIopefully, the theory of 
analytic gain and phase margin design presented in s , and 
expanded upon here , will appear in future introductory 
textbooks. 
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