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Abstract

This report presents a formalism that enables the dynamics of a broad class of neural networks

to be understood� A number of previous works have analyzed the Lyapunov stability of neural

network models� This type of analysis shows that the excursion of the solutions from a stable point

is bounded� The purpose of this work is to present a model of the dynamics that also describes

the phase space behavior as well as the structural stability of the system� This is achieved by

writing the general equations of the neural network dynamics as the sum of gradient�like and

Hamiltonian�like systems� In this paper some important properties of both gradient�like and

Hamiltonian�like systems are developed and then it is demonstrated that a broad class of neural

network models are expressible in this form� y

yAcknowledgments� This research was supported by a grant from Boeing Computer Services under Contract
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Chapter �

Introduction

There are many formalisms that can be used to analyze neural networks in which the connection

matrix is symmetric� In such cases it is typical to construct a Lyapunov or energy function and

then analyze the network behavior by observing that the system state must travel along the sur�

face de�ned by the energy function� This approach can establish conditions which guarantee that

the node activities and connection weights converge to an equilibrium state of the network� We re�

cently proposed ���� a formalism which allows any system whose dynamics can be put in the proper

form� to be analyzed with respect to its Lyapunov stability� phase space behavior� and structural

stability� The dynamical systems which have the proper form were called gradient�like systems

and several theorems were presented which explain their behavior� We further demonstrated that

a large class of neural networks with symmetric connection matrices could be expressed in this

form�

The di	culty with this approach that it does not address networks which have asymmetric con�

nection matrices� There are many ideas concerning ways to exploit the asymmetry of the weight

matrix� It is suggested in �
� that memory retrieval time is decreased by asymmetric connections

because the number of spurious states is decreased� In ���� it is proposed that asymmetry is

important for the learning process because it increases the likelihood that the retrieval states�

as opposed to the spurious states� will be enhanced by Hebbian type learning mechanisms� The

learning of temporal sequences using asymmetric weights is discussed in ���� Also some weight

update rules such as gated learning� which is used in instars� outstars� and ART ���� naturally

produce asymmetric weights� For such networks there is in general no energy function� nor can

the dynamics be expressed as a gradient�like system� To our knowledge no one has proposed



�

a formalism which allows the dynamic behavior of such networks to be studied� In this paper

we present such a formalism and discuss some ways in which it can be used to analyze network

behavior�

Speci�cally we propose to represent the total system dynamics as the sum of a gradient�like

system� a Hamiltonian system� and an external input term� Since most neural network models are

autonomous �i�e� time independent� systems� except for the external inputs� the �rst two terms

will be time independent� The behavior of autonomous gradient�like and Hamiltonian systems

is a well studied mathematical topic� Intuitively� the behavior of the system can be studied by

observing which of the three terms is largest at any given time interval� Some ways to judge the

relative sizes of the terms will be suggested and ways to use these methods to determine parameter

values in the network will be suggested�



�

Chapter �

General Formulation

Consider a neural network with n nodes and m weights� The activation of the ith node is given

by xi� and the value of the weight to the ith node� from the jth node is given by cij � Following

the form in ���� the dynamics of many such networks can be written as

�xi � �ai	xi


�
�bi	xi
�

nX
j��

cijdj	xj


�
� � i � �� � � � � n�

�cij � fij	xi� xj � cij
� i� j � f�� � � � � ng�

	���


In ���� it is shown that any dynamical system which can be de�ned by 	M�X 
� where M is an

N 
dimensional di�erentiable manifold and X is an rth order continuously di�erentiable 	i�e� Cr


vector �eld� can be decomposed into the sum of one gradient system and N � � Hamiltonian sys


tems� Further it was proved that if either the Riemannian metric or the symplectic form can be

speci�cally chosen to match the vector �eld X � then the system dynamics can be decomposed into

one gradient system and one Hamiltonian system� regardless of the dimension ofM� This will be

true for systems in the form of Equation 	���
 for certain choices of the functions fij	xi� xj � cij
�

Therefore the total dynamics of this class of networks can be represented as the sum of a time

independent Gradient
like system� a time independent Hamiltonian
like system� and a time de


pendent system� The purpose of the time dependent system is only to represent the inputs to the

network� So the general form of the system is

�u � �P	u
r
u
V 	u
 �Q	u
r

u
H	u
 �R	u
r

u
S	u� t
� 	���


where the state vector u is given by u � �x�C��C�� � � � �Cn�
T with Ck denoting the kth row

of the weight matrix� Note that only variable weights need to be put into the state vector u�
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constant weights should not be included� In Equation ����� the �rst term �i�e� leftmost on the

right of the equal sign� is the gradient�like term� the second term is the Hamiltonian term� and

the third term is the external input term� The potential terms V �u�� H�u�� and S�u� t� must all

be twice continuously di	erentiable �i�e� C ��� The matrix P �u� must be symmetric �i�e� P 
 P T �

and positive de�nite� and the matrix Q�u� must be anti�symmetric �i�e� Q 
 �QT � and satisfy

the Jacobi identity� for all values of u� The Jacobi identity for the matrix Q�u� is

qli
�qjk

�ul

� qlj
�qki

�ul

� qlk
�qij

�ul


 �� ���
�

where i� j� k� and l take on all possible values� This description of neural dynamics generalizes

the ideas in ��
� by including the weight dynamics in the state vector and also by incorporating

a term for the inputs�

This approach can be used to analyze asymmetrically connected networks since the behavior of

the system in Equation ����� is determined by the largest term in the di	erential equation� This

means that if the gradient term of the dynamics is much larger than the Hamiltonian or input

terms� then the system will behave like a gradient system� it will always converge to one of the

equilibria or go to in�nity� Likewise if the Hamiltonian term is much larger than the gradient or

input terms then the system will have no attractors and only divergent or periodic behavior is

possible� If the gradient and Hamiltonian parts are of comparable size then in general it is very

di�cult to make any statements about the overall behavior of the network� Because the behavior

of gradient and Hamiltonian systems is well understood it is advantageous to formulate the input

term as either a gradient term� a Hamiltonian term or some combination of the two� If all inputs

are strictly nonincreasing then the input term can easily be cast as a gradient system� If all inputs

are periodic then the input term can be written as a Hamiltonian system provided that there are

as many variable weights as there are nodes�

One way to judge the relative size of the gradient�like and Hamiltonian terms is to consider the

total time derivatives of the potential functions V �u� and H�u�� Ignoring the input term for the

moment� these quantities are

�V �u� 
 � �r
u
V �u��

T
P �u� �r

u
V �u�� � �r

u
V �u��

T
Q�u� �r

u
H�u�� �

�H�u� 
 �r
u
H�u��

T
Q�u� �r

u
H�u��� �r

u
H�u��

T
P �u� �r

u
V �u�� �

�����

If the system had only gradient�like dynamics then the term � �r
u
V �u��

T
P �u� �r

u
V �u�� in the

equation for �V �u� would be the only term to occur� Since the matrix P �u� is positive de�nite� this

term is always nonincreasing� If� on the other hand� the system had only Hamiltonian dynamics

then the term �r
u
H�u��

T
Q�u� �r

u
H�u�� in the equation for �H�u� would be the only term�
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Because the matrix Q�u� is anti�symmetric� this term is zero� This suggests that one way to

analyze the behavior of the system is by studying the cross terms in the equations of �V �u� and

�H�u��

First consider the cross term of �H�u�� For a purely Hamiltonian system there will always be

at least one function which is a constant along some subset of the solutions �i�e� trajectories��

For the autonomous case� the Hamiltonian potential H�u� is guaranteed to be one such function�

Call the set of functions which satisfy this criteria f�g� and for the kth member of f�g call the

corresponding set of trajectories f	kg� For each member �k of f�g� integrate the cross term of

�H�u� over a trajectory �k
l for which �k is constant� Look for closed trajectories which satisfy the

condition

I
�k

l

n
� 
r

u
H�u��

T
P �u� 
r

u
V �u��

o
dt � 
� �����

The set of closed trajectories satisfying this condition for a given constant of the motion �k will

supply information about the dimension and location of stable persistent motions� such as limit

cycles� of the system� It will also show how the network parameters e�ect these motions� This

analysis is discussed in greater detail in 
��� It can similarly be claimed that trajectories for which

V �u� is nonincreasing and which satisfy

I
�k
l

n

r

u
V �u��

T
Q�u� 
r

u
H�u��

o
dt � 
 �����

will give comparable information about the equilibrium points of the system�
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Chapter �

Review and Extensions

The purpose of this section is to review the properties of gradient�like systems which were

formulated in ���� and then show that the present formalism can be used to extend those results�

It was shown in ���� that many networks which use Hebbian learning can be written as gradient�

like systems� This formulation will be reviewed and then it will be shown that this result can

be generalized by introducing a Hamiltonian term into the dynamic equations� Lastly it will be

demonstrated that the introduction of the Hamiltonian term allows additional learning rules to

be incorporated into the present model�

��� Review of Gradient�Like Dynamics

A gradient�like system is one in which the time derivative of the states �u is equal to the product

of the gradient of a scalar function V 	u
 and a symmetric positive de�nite matrix P 	u
� These

dynamics are described by the equation

�u � �P 	u
 �r
u
V 	u
� � 	
��


The function V 	u
 is a scalar function referred to as the gradient potential function� It is a

mapping of the form V � U � R� where U � R
N is an open set� which is required to be

twice continuously di�erentiable� The matrix P 	u
 must be symmetric and positive de�nite 	i�e�

yTP 	x
y � � � y �� �
 for all values of u�

Conceptually the function V 	u
 de�nes a surface in the phase space of the system� All of the
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trajectories of the network must move along this surface� The matrix P �u� speci�es the �laws

of motion� that the trajectories must obey in moving along the surface de�ned by V �u�� Since

P �u� is positive de�nite for all values of u� the trajectories always move downhill along V �u� �i�e�

toward smaller values of V �u��� If a trajectory reaches a point where the slope of V �u� is zero in

any direction� then the trajectory remains at that point thereafter�

This intuition was formalized in 	
�� through a series of proofs which characterize the behavior of

gradient
like systems� It was shown that every isolated local minima of V �u� is an asymptotically

stable equilibrium point of the network� This does not guarantee that every trajectory will

converge to an equilibrium point� In order for that to occur the set

Nc �
�
u � RN � V �u� � c

�
�����

must be compact �i�e� closed and bounded� for every c � R� This is guaranteed to be true if

V �u� is bounded below �i�e� V �u� � � � u � R
N �� and radially unbounded �i�e� V �u� � � as

kuk � ���

As the intuitive description of gradient
like dynamics implies� the phase space behavior of such

systems is quite simple� Since the trajectories can only remain constant at the equilibrium points

and must move toward smaller values of V �u� at all other points� the only recurrent trajectories are

the equilibria themselves� A recurrent trajectory is one that returns to within an arbitrarily small

neighborhood of its starting point at some later time� Since almost all trajectories of a gradient


like system must move down hill along the surface de�ned by V �u�� almost all trajectories end

up at a stable equilibrium point or go to in�nity� The exception to this is those few trajectories

which terminate at a saddle point� Likewise all trajectories must begin at an unstable equilibrium

point or at in�nity� Furthermore� in gradient
like systems only three types of equilibria are

possible� stable points� unstable points� and saddle points� In the next section we will review the

formulation of networks which use Hebbian learning as gradient
like systems�

��� Review of Hebbian Learning Networks

One of the main results in 	
�� was that many neural networks which use Hebbian weight update

can be written as gradient
like systems� Consider a neural network with n nodes and m � n�

variable weights� The activation of the ith node is given by xi� and the value of the weight to the

ith node� from the jth node is given by cij � Following 	

�� the general form for this system is the



�

set of di�erential equations

�xi � �ai�xi�

�
�bi�xi�� nX

j��

cij dj�xj�

�
� � i � �� � � � � n� ��	�a�

�cij � ��ij cij 
 �ij di�xi� dj�xj�� i� j � f�� � � � � ng� ��	�b�

In equation ��	�a�� ai�xi� are the elements of an �n � n� diagonal matrix A�x�� bi�xi� are the

elements of the n�dimensional vector b�x�� and di�xi� is the output function of the ith node	 In

equation ��	�b�� the term ��ij cij is a passive decay term where �ij is a constant which determines

the decay rate	 The constant �ij determines the growth rate of the connection weight cij if the

nodes at both ends of the connection are active	 The matrices containing all such constants are

� and � respectively	

In order to instantiate the dynamics described by equation ��	�� into the gradient�like system

of equation ��	��� de
ne the state vector u as

u � �x�� x�� x�� � � � � xn� c��� c��� c��� � � � � cnn�
T � ��	��

Note that u is an �n
m��dimensional vector	 Let the gradient potential function be given by

V �u� � �
�

�
d�x�TC d�x� 


�
nX

k��

Z xk

�

d �

k��k� bk��k� d�k

�



�

�
�
T
h
� ���� �C �C

i
�� ��	��

In equation ��	�� note that � is a n�dimensional vector whose elements are all �	 Also the

operation � denotes the Schur product� which is de
ned as �A�B�ij � aijbij 	 Since V �u� must be

twice continuously di�erentiable� the same requirement must hold for the output functions di�xi�	

Choose the matrix P �u� to be

P �u� � �

�
a��x��

d �

��x��
� � � � �

an�xn�

d �

n�xn�
� ����� ����� ����� � � � � ��nn

�
� ��	��

The notation ��h��� h��� � � � � hqq� will be used to denote a �q�q� diagonal matrix with the listed

elements along the diagonal	 In order for P �u� to be positive de
nite� the functions ai�xi� must

be positive de
nite �i	e	 ai�xi� � � � xi �� ��� the output functions di�xi� must be monotonically

increasing �i	e	 d �

i �xi� � ��� and all elements of � must be positive	 From equation ��	�� it is



�

apparent that the gradient r
u
V �u� is

r
u
V �u� �

�
BBBBBBBBBBBBBBBBBBBBBBBB�

d �

�
�x��

�
�b��x���

nX
j��

�

�
�c�j � cj�� dj�xj�

�
�

���

d �

n�xn�

�
�bn�xn��

nX
j��

�

�
�cnj � cjn� dj�xj�

�
�

�

�

���

���
c�� �

�

�
d��x�� d��x��

���

�

�

�nn

�nn

cnn �
�

�
dn�xn� dn�xn�

�
CCCCCCCCCCCCCCCCCCCCCCCCA

� �	�
�

Note that r
u
V �u� is an �n�m��dimensional vector�

It can be seen from equation �	�
� that there are two classes of networks whose gradient potential

function is given by equation �	��� which have gradient�like dynamics� The 
rst class are those

systems in which the weight matrix C learned by the Hebbian rule is symmetric� This will occur

if the matrices � and � are symmetric� and the initial conditions for cij and cji are the same�

A reasonable physical interpretation of this situation is that there is a single bidirectional link

between any two nodes� rather than two unidirectional ones� The second class are networks in

which the learned weight matrix C is asymmetric� but only the symmetric part of the weight

matrix is used to calculate the node activations x� It is shown in ��� that this model can treat

both additive and multiplicative node activation dynamics ���� and can be extended to incorporate

anti�Hebbian learning �	�� and higher order networks ��� ��� which use Hebbian learning�

��� Hebbian Learning

In this section we will extend the results of Section 	�� by considering the problem of a network

with Hebbian learning in which the learned weights are asymmetric and the whole weight matrix

�not just the symmetric part� is used to calculated the node activations� In this section we will

formulate such a system as a di�erential equation of the form

�u � �P �u�r
u
V �u� �Q�u�r

u
H�u�� �	���

This is identical to equation ����� if the system is assumed to have inputs which are not time

varying� In this case the inputs can easily be incorporated into the gradient�like component of the



��

dynamics� A general form for a network with Hebbian learning is shown in equation ������ Any

matrix C can be decomposed into a sum of its symmetric and anti�symmetric parts C � CS	CA


where the components of the symmetric part CS are cSij � �

�
�cij 	 cji� and those of the anti�

symmetric part CA are cAij � �

�
�cij � cji�� This is an excellent way to decompose the weight

matrix in equation ����a� because the part of the activation which involves the symmetric part

of the weight matrix can be written as a gradient�like system and the part that involves the

anti�symmetric part can be written as a Hamiltonian system� If equation ����a� is decomposed as

�xi � �ai�xi�

�
�bi�xi��

nX
j��

cSij dj�xj�

�
�	 ai�xi�

�
� nX
j��

cAij dj�xj�

�
� � i � �� � � � � n� �����

then it is natural to select the potential function V �u� as in equation ���
� and H�u� as

H�u� �
nX

k��

Z xk

�

dk��k�

ak��k�
d�k� ������

The associated matrix P �u� remains as in equation �����
 while Q�u� is de�ned as

Q�u� �

�
BB�

E �F T

F G

�
CCA � ������

Since the network contains n nodes and m variable weights
 E is an �n � n� matrix
 F is an

�n�m� matrix
 and G is an �m�m� matrix� The blocks in Q�u� are given by

E �

�
BBBBBBBB�

a��x�� c
A
��
a��x�� a��x�� c

A
��
a��x�� � � � a��x�� c

A
�n an�xn�

a��x�� c
A
��
a��x�� a��x�� c

A
��
a��x�� � � � a��x�� c

A
�n an�xn�

���
���

� � �
���

an�xn� c
A
n� a��x�� an�xn� c

A
n� a��x�� � � � an�xn� c

A
nn an�xn�

�
CCCCCCCCA
� �����a�

F � G � O� �����b�

For this choice of the potential functions
 the gradient r
u
V �u� is shown in equation �����
 and

r
u
H�u� is

r
u
H�u� �

�
d��x��

a��x��

d��x��

a��x��
� � �

dn�xn�

an�xn�
� � � � � �

	T
� ������

��� Gated Learning

There is a weight update rule which is fundamentally di�erent from Hebbian learning in that

it is asymmetric and the decay term is not always active� This type of learning rule is called



��

gated learning in ��� ��� This type of learning is used in instars� outstars� and in the various ART

models� The node activation dynamics for this type of learning are identical to equation ����a	�

while the weight update dynamics in this scheme are


cij � ��ij di�xi	 cij � �ij di�xi	 dj�xj	� ����
	

Notice that under this learning rule a weight can not decay unless the node which the connection

is incident to has a nonzero output� Also notice that the equilibrium value of a weight under this

rule is the output value of the node that the weight is incident from� The constants �ij and �ij

have the same meaning as in equation ����b	� Networks that use the gated learning rule can be

written in the form of equation ����	 by choosing the potential functions V �u	 and H�u	 as in

equations ����	 and �����	 respectively� de�ning P �u	 as in equation ����	� and selecting Q�u	 as

in equations �����	 and �����	 with the F block rede�ned as

F �

�
BBBBBBBBBBBBBBBBBBBBBBB�

�a��x�	 ��� c�� � � � � �

� �a��x�	 ��� c�� � � � �
���

���
� � �

���

� � � � � �an�xn	 �n� cn�
���

���
� � �

���

�a��x�	 ��n c�n � � � � �

� �a��x�	 ��n c�n � � � �
���

���
� � �

���

� � � � � �an�xn	 �nn cnn

�
CCCCCCCCCCCCCCCCCCCCCCCA

� �����	

Note that a network employing the gated learning rule can not be formulated as a gradient�like

system�



��

Chapter �

Examples

In this section several examples of systems which can be put into the form of equation �����

are presented� In each case the necessary potential functions and associated matrices will be

presented� The �rst example is a simple two node� �xed weight network whose activations oscillate

given a constant input� The second example is a system designed using the gradient�Hamiltonian

decomposition as a tool� The third example is a two node network whose weights are updated

using the gated learning rule�

��� Example of an Oscillating Network

In 	
� a two node �xed weight network is de�ned whose node activations oscillate given a

constant input in a speci�ed range� The network is shown in Figure ���� The weights in this

c21

c12
K1

c11

x1 x2

Figure ���� Con�guration of the oscillating example network
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network are constant and the node activation dynamics are given by

�u� � �A� u� � �B� � u�� �K� � c�� d��u���� u� �c�� d��u��� �

�u� � �A� u� � c�� d��u���
��	��

where the output functions d���� and d���� are de
ned as

d��xi� �

�������������������������
������������������������

� if xi � T��

��

�

�xi � T��
�

�T� � T���
if T� � xi �

T� � � T�
�

�

�
��

�

�xi �
T��T�

�
��

�T� � T���
� 
�x�

i
� ���T� � �T��xi��

�


�
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� �
�

�
�T� � �T��

�

�
if
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�
� xi �

�T� � T�

�
�

��

�

�xi � T��
�

�T� � T���
� xi �

�
���T� � T��

� �
� T� � T�

�

�
if
�T� � T�

�
� xi � T��

xi �

�
���T� � T��

� �
�T� � T�

�

�
if xi � T��

d��xi� � xi�

��	
�

The function d��xi� de
ned in Equation ��	
� is a C� approximation to the function max��� x �

T��T�

�
�� as shown in Figure �	
	 The output functions di�xi� must be C� in order to guarantee that
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Figure ���� A C� function which approximates max��� �x� ������

both of the potential functions V �u� and H�u� are also C�	 There are several valid choices for

the potential functions V �u� and H�u� that put equation ��	�� into the form in equation �
	
�	

One possible choice for the potential functions is

V �u� �
�



A�u

�

�
�

Z
u�

�

�B� � ��� �K� � c�� d������ d��� ��	�a�

H�u� � c�� d��u�� �

�
A� u� �

Z
u�

�

c�� d����� d��

�
� ��	�b�



��

For this choice of the potential functions� the associated matrix P �u� is just the ��� �� identity

matrix� and the matrix Q�u� is
�

� �u�

u� �

�
�

For the simulations which follow� the constants in Equation ����� were chosen to be

A� � �� A� � 	�	�
� B� � ��

c�� � �	� c�� � ����� c�� � 	�	�
�

K� � ��

�����

These are identical to the values used in �
�� The time evolution of the activations u� and u� for

this oscillating network are shown in Figure ���� The behavior of this system will be explained
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Figure ���� Time evolution of u� �solid line� and u� �dashed line� for the network shown in
Figure ���

by examining the behavior of the gradient and Hamiltonian vector �elds separately� and then

considering the nature of the sum of these two vector �elds� The Hamiltonian vector �eld described

by Equation ����b� is shown in Figure ���� Notice that all trajectories converge to the line u� � 	�
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Figure ���� Hamiltonian vector �eld de�ned by Equation ����b�

which is a non�isolated equilibrium� Also note that trajectories started at initial conditions where

u� � 	�� will converge much more quickly than those where u� � 	��� The gradient vector



��

�eld described by Equation ����a� is shown in Figure ���� Notice that all trajectories eventually
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Figure ���� Gradient vector �eld de�ned by Equation ����a�

converge to the point u� 	 �� u� 	 
� however the convergence is much faster to the line u� 	 �

than it is along this line� Inspection of Figures ��� and ��� makes it seem reasonable to expect

that somewhere between u� 	 
 and u� 	 � a region occurs where the gradient and Hamiltonian

vectors cancel out� Furthermore it seems reasonable to expect this cancelation to occur somewhere

in the region where u� � 
 since the two vector �elds seem more equal in magnitude in this region�

The actual behavior of this system is shown in Figure ���� which is a combination of the total
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Figure ���� Vector �eld and phase plot of the system de�ned by Equation �����

vector �eld and several phase space trajectories of the system de�ned by Equation ������ Notice

that the oscillation occurs in a region where the gradient and Hamiltonian vector �elds cancel in

such a way as to allow a closed orbit�

It seems reasonable to state that a system which relies on this mechanism to oscillate would

be extremely sensitive to the network parameters� Numerous simulations verify that this network

oscillates only for a small range of parameter values� This example shows that the decomposition

of dynamical systems into gradient and Hamiltonian components can be a useful tool in analyzing



��

the behavior of such systems�

��� Designing an Oscillating Network

The previous example suggests that the decomposition of a dynamical system into gradient and

Hamiltonian portions can be used as a design tool� In this section� a system which oscillates will

be designed by using the gradient portion of the system to de�ne the basin of attraction and the

Hamiltonian portion to de�ne the orbit within that basin� The system will be globally stable in

that all trajectories will converge to the same limit cycle� Also the qualitative behavior of the

system will be una�ected by small parameter changes� Choose the gradient potential function

V �u� to be

V �u� 	

�q
u�
�

 u�

�

 �

�� �q
u�
�

 u�

�
� �

��

�

	
�
u�
�

 u�
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��
� �
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�

 u�

�

�

 ��

���
�

This potential� which is shown in Figure ���� has a circular non�isolated minimum of radius ��
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Figure ���� The gradient potential versus the state space of the potential de�ned in Equation �����

centered at the origin� The surface rises at a quadratic rate away from this minimum� and the

origin is a local maximum� The Hamiltonian potential H�u� is chosen to be

H�u� 	 �
�
u�
�

 ��u�

�

�
� �����

The vector �eld de�ned by this equation� shown in Figure ���� follows the level surfaces of an



��

-3 -2 -1 0 1 2 3

u1

-3

-2

-1

0

1

2

3

u
2

Figure ���� The Hamiltonian vector �eld de�ned by Equation �����

ellipse centered at the origin� The equations for the overall system dynamics are

�u� � ��u�
�
u�
�
� u�

�

�
� �u� � �	u��

�u� � ��u�
�
u�
�
� u�

�

�
� �u� � 
u��

�����

These dynamic equations can be rewritten to look more 
neural�� In this form they are
�
� �u�

�u�

�
A � ��

�
�u�

u�

�
A
� ����

�
�u� 	

	 u�

�
A
�
�� �

� �

�
A
�
�u�

�

u�
�

�
A
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�
� 	 �	

�� 	

�
A
�
�u�

u�

�
A �����

This similar to the multiplicative equations de�ned by Grossberg� Note that each node has two

channels with separate weights and output functions� The major di�erence is that Grossberg

de�nes the one channel as having an excitatory e�ect on the system while the other has an

inhibitory e�ect� In this example that is not the case� Other than that Equation ����� is simply

Grossberg�s multiplicative equations with certain parameters chosen as zero� In any case the

phase plot for this system appears in Figure ���� The shape of the attractor can be changed by

-3 -2 -1 0 1 2 3

x1

-3

-2

-1

0

1

2

3

x
2

Figure ���� A phase plot of the system de�ned by Equation �����

selecting a di�erent Hamiltonian potential� For instance the Hamiltonian

H�u� � �
�
u�
�
� ��u�

�

�
� �����



��

leads to the system phase plot seen in Figure �����

-4 -2 0 2 4

x1

-3

-2

-1

0

1

2

3

x
2

Figure ����� A phase plot of the system using the Hamiltonian potential de�ned in Equation �����

��� An Example Using Gated Learning

To illustrate some properties of systems that use a gated learning rule the network in Figure ����

will be used� The network consists of two nodes� two weights� and an external input� If the node

c21

c12
K1 x1 x2

Figure ����� Con�guration of the gated learning example network

activation dynamics of this network are additive� the weight update rule is gated� and the input

is a constant� then the dynamic equations for the system in Figure ���� are

�x��t	 
 ��V �� �A� x��t	�K� � ��� �c���t	 
 c���t		 tanh�S� x��t		 	


 �H �� � ��� �c���t	� c���t		 tanh�S� x��t		 	

�x��t	 
 ��V �� �A� x��t	� ��� �c���t	 
 c���t		 tanh�S� x��t		 	


 �H �� � ��� �c���t	� c���t		 tanh�S� x��t		 	

�c���t	 
 G�� tanh�S� x��t		 tanh�S� x��t		�L�� tanh�S� x��t		 c���t	

�c���t	 
 G�� tanh�S� x��t		 tanh�S� x��t		�L�� tanh�S� x��t		 c���t	

�����	

The dynamic equations are written in this unusual way to indicate which part of the dynamics is

gradient�like and which is Hamiltonian� The �rst term in each equation is the gradient�like part



��

while the second term is the Hamiltonian part� Since the input is time independent� it can be

incorporated into the gradient�like part of the system� In this case� the example system can be

cast into the form of Equation ����� by de	ning the gradient potential V �u� as

V �u� 
 �
�

�
� tanh �S� x�� c�� tanh �S� x�� � tanh �S� x�� c�� tanh �S� x�� 


�

Z x�

�

S� ��� �K�� sech
� �S� ��� d�� �

Z x�

�

S� �� sech� �S� ��� d���
������

and the its associated matrix P �u� is given by

P �u� 
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BBBBBBBB�
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S� sech� �S� x��
� � �

�
��

S� sech� �S� x��
� �

� � �G�� �

� � � �G��

�
CCCCCCCCA
� ������

while the Hamiltonian H�u� is

H�u� 


Z x�

�

tanh �S� ���

��
d�� �

Z x�

�

tanh �S� ���

��
d��� ������

and its associated matrix Q�u� is given by

Q�u� 


�
BBBBBBB�

� ��
�

�
� c�� � c�� � �� �� L�� c�� �

��
�

�
� c�� � c�� � �� � � �� L�� c��

��� L�� c�� � � �

� ��� L�� c�� � �

�
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where the state vector u is

u 
 �x�� x�� c��� c��

T
� ������

It is deceptively di�cult to analyze the behavior of this apparently simple system�



��

Chapter �

Conclusion

In this work we have proposed that the dynamics of many neural networks can be written as

the sum of a gradient�like component� a Hamiltonian component� and some input component�

We then proposed a method that allows this decomposition to be used to gain some insight into

the behavior such systems and also gauge the e�ect of the network parameters on that behavior�

We showed that this decomposition extends our work in ���	 by allowing the node activations

to be computed using both symmetric and anti�symmetric parts of the weight matrix� and also

by allowing additional learning rules to be formulated� We then put forward some examples of

networks which were amenable to this formulation�
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