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LINEAR ALGEBRA & MATRICES

These notes deal with the study of linear Algebra and matrices. Linear Algebra
plays an important role in the subareas of signal processing, control systems, com-
munications, and more broadly in the studies of systems. The notes rely heavilyon
[1, 2, 3, 4].

1 Review of Matrix Algebra

We start this chapter by introducing matrices and their algebra. Notationally,
matrices are denoted by capital lettersA,M,Γ and are rectangular arrays of ele-
ments . Such elements are referred to as scalars and denoted by lowercase letters,
a,b,α ,etc.. Note that the scalars are not necessarily real or complex constants:
they maybe real or complex numbers, polynomials, or general functions.

Example 1 Consider the matrix

A =













1 2 −3 4 5 6
2×10−5 −1 0.9 −7.2×10−4 −0.17 −4.96×10−3

0.012338 11.72 −2.6 8.7×10−4 −31 22
0 0 1 0 0 0
0 0 0 0 0 −30













This is a 5×6 matrix with real entries. On the other hand,

P(s) =

[

s+1 s+3
s2 +3s+2 s2 +5s+4

]

is a 2×2 matrix of polynomials in the variables. Finally,

Γ =

[

1+ j − j 0
−1+3 j 5 2− j

]

is a 2×3 complex matrix.

△

A matrix which hasm rows andn columns, is said to bem×n. A matrix may be
denoted byA = [ai j ] wherei = 1, · · ·mand j = 1, · · ·n.

Example 2 The matrixA in Example 1 has 5 rows and 6 columns. The element
a11 = 1 whilea35 = −31.

△
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A scalar is a 1×1 matrix. If m= n the matrix is said to be square. Ifm= 1 the
matrix is a row matrix (or vector). Ifn = 1 the matrix is anm column matrix (or
vector). If A is square then we define theTraceof A by the sum of its diagonal
elements, i.e.

Trace(A) =
n

∑
i=1

aii (1)

Example 3 ConsiderP(s) of Example 1, thenTrace(P(s)) = s2 +6s+5.

△

Two matricesA and B are equal, writtenA = B, if and only if A has the same
number of rows and columns asB and if ai j = bi j for all i, j. Two matricesA and
B that have the same numbers of rows and columns may be added or subtracted
element by element, i.e.

C = [ci j ] = A±B⇐⇒ ci j = ai j ±bi j ∀i, j (2)

the multiplication of 2 matricesA andB to obtainC = ABmay be performed if and
only if A has the same number of columns asB has rows. In fact,

C = AB⇐⇒ ci j =
n

∑
k=1

aikbk j (3)

the matrixC is m×q if A is m×n andB is n×q. Note thatBA may not even be
defined and in general,BA is not equal toABeven when both products are defined.
The matrix of all zeros is the Null matrix, and the square matrixA with aii = 1 and
ai j = 0 for i 6= j is the identity matrix. The identity matrix is denoted byI . Note
thatAI = IA = A assumingA is n×n as isI .

The following properties of matrix Algebra are easily verified

1. A±B = B±A

2. A+(B+C) = (A+B)+C

3. α(A+B) = αA+αB for all scalarsα .

4. αA = Aα

5. A(BC) = (AB)C

6. A(B+C) = AB+AC
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7. (B+C)A = BA+CA

Let A = [ai j ] be anm× n matrix. The transpose ofA is denoted byAT = [a ji ]
and is then×m matrix obtained by interchanging columns and rows. The matrix
A is symmetricif A = AT , skew-symmetricif A = −AT . Also, it can be seen that
(AB)T = BTAT . In the case whereA contains complex elements, we letĀ be the
conjugateof A whose elements are the conjugates of those ofA. Matrices satisfying
A = ĀT areHermitianand those satisfyingA = −ĀT areskew-Hermitian.

1.1 Determinants, Minors, and Cofactors

In this section we will consider square matrices only. The determinant of a square
matrix A denoted bydet(A) or | A | is a scalar-valued function ofA and is given as
follows for n = 1,2,3.

1. n = 1, then| A |= a11

2. n = 2, then| A |= a11a22−a12a21

3. n= 3, then|A |= a11(a22a33−a23a32)+a12(a23a31−a21a33)+a13(a21a32−
a22a31)

Standard methods apply for calculating determinants. The determinant of a square
matrix is 0, that of an identity matrix is 1, and that of a triangular or diagonal
matrix is the product of all diagonal elements. Each elementai j in ann×n square
matrix A has associated with it a minorMi j obtained as the determinant of the
(n− 1)× (n− 1) matrix resulting form deleting the ith row and the jth column.
From these minors, we can obtain the cofactors given byCi j = (−1)i+ jMi j .

Example 4 Given

A =





2 4 1
3 0 2
2 0 3





Then,M12 = 5,C12 = −5, M32 = 1 = −C32.

△

Some useful properties of determinants are listed below:

1. LetA andB ben×n matrices, then| AB |=| A | . | B |.

2. | A |=| AT |
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3. If A contains a row or a column of zeros, then| A |= 0.

4. If any row (or column) ofA is a linear combination of other rows (or columns),
then| A |= 0.

5. If we interchange any 2 rows (or columns) of a matrixA, the determinant of
the resulting matrix is− | A |.

6. If we multiply a row (or a column) of a matrixA by a scalarα , the determi-
nant of the resulting matrix isα | A |.

7. Any multiple of a row (or a column) may be added to any other row (or
column) of a matrixA without changing the value of the determinant.

1.2 Rank, Trace, and Inverse

The rank of anm×n matrix A denoted byrA = rank(A) is the size of the largest
nonzero determinant that can be formed fromA. Note thatrA ≤ min{m,n}. If A is
square and ifrA = n, thenA is nonsingular. IfrA is the rank ofA andrB is the rank
of B, and ifC = AB, then 0≤ rC ≤ min{rA, rB}. The trace of a square matrixA was
defined earlier asTr(A) = ∑n

i=1aii .

Example 5 Let us look at the rank of:

A =





2 4 1
3 0 2
2 0 3





It is easy to see thatrA = 3. Now consider the matrix

B =





2 0
3 0
1 1





whose rank isrB = 2 and form

A.B =





17 1
8 2
1 1





and therank(C) = 2≤ {rA, rB}.

△
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If A and B are conformable square matrices,Tr(A+ B) = Tr(A) + Tr(B), and
Tr(AB) = Tr(BA). Also,Tr(A) = Tr(AT).

Example 6 Show thatTr(ABC)= Tr(BTATCT). First, writeTr(ABC)= Tr(CAB),
thenTr([CAB]T) = Tr(CAB), thus proven.

△

Note thatrank(A+B) 6= rank(A)+ rank(B) and thatTr(AB) 6= Tr(A)×Tr(B).

Example 7 Let

A =





2 4 1
3 0 2
2 0 3



 ; B =





1 0 0
0 0 0
0 0 0





and note thatrA = 3, rB = 1, while rA+B = 3. Also, note thatTr(AB) = 2 while
Tr(A)×Tr(B) = 5×2 = 10.

△

Next, we define the inverse of a square, nonsingular matrixA as the square
matrixB of the same dimensions such that

AB= BA= I

the inverse is denoted byA−1 and may be found by

A−1 =
CT

| A |

whereC is the matrix of cofactorsCi j of A. Note that for the inverse to exist,| A |
must be nonzero, which is equivalent to saying thatA is nonsingular. We also write
CT = Ad joint(A).

The following property holds:

(AB)−1 = B−1A−1

assuming of course thatA andB are compatible and both invertible.
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1.3 Elementary Operations and Matrices

The basic operations calledelementary operationsare as follows

1. Interchange any 2 rows (or columns)

2. Multiply any row (or column) by a scalarα

3. Multiply any row (or column) by a scalarα and add the resulting row (or
column) to any other row (or column)

Note that each of these elementary operations may be represented by a postmul-
tiplication for column operations (or premultiplication for row operations) by ele-
mentary matrices which are nonsingular.

Example 8 Let

A =





2 1 0
0 2 1
1 1 −1





Then, let use the following row operations:

1. Exchange rows 1 and 3

2. Multiply row 1 by -2 and add it to row 3

3. Multiply row 2 by 1/2 and add it to row 3

4. Multiply row 2 by 1/2

5. Multiply row 3 by 2/5

6. Multiply column 1 by -1 and add it to column 2

7. Multiply column 1 by 1 and add it to column 3

8. Multiply column 2 by -1/2 and add it to column 3

The end result is

B =





1 0 0
0 1 0
0 0 1





△
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Example 9 Given the following polynomial matrix

P(s) =





s2 0
0 s2

1 s+1





then the corresponding row operations are performed:

1. interchange rows 3 and 1.

2. multiply row 1 by−s2 and add it to row 3

3. multiply row 2 bys+1 and add it to row 3.

This corresponds to the following multiplications by the matrices given:

1.

P1(s) =





1 s+1
0 s2

s2 0



 =





0 0 1
0 1 0
1 0 0



P(s)

2.

P2(s) =





1 s+1
0 s2

0 −s2(s+1)



 =





1 0 0
0 1 0

−s2 0 0



P1(s)

3.

P3(s) =





1 s+1
0 s2

0 0



 =





1 0 0
0 1 0
0 s+1 0



P(s)

△

In general, for any matrix of rankr we can reduce it via column and row oper-
ations to one of the following normal forms

Ir , [Ir | 0], [Ir | 0]T ,or

[

Ir 0
0 0

]

(4)

Next, we discuss vector spaces, or as they are sometimes called, linear space..
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2 Vectors and Linear (Vector) Spaces

In most of our applications, we need to deal with linear real and complex vector
spaces which are defined subsequently.

Definition 1 A real linear vector space(resp.complex linear vector spaceis a set
V, equipped with 2 binary operations: the addition (+) and the scalar multiplication
(.) such that

1. x+y = y+x, ∀x,y∈V

2. x+(y+z) = (x+y)+z, ∀x,y,z∈V

3. There is an element 0V in V such thatx+0V = 0V +x = x, ∀x∈V

4. For eachx∈V, there exists an element−x∈V such thatx+(−x) = (−x)+
x = 0V

5. For all scalarsr1, r2∈R (resp.c1,c2∈C), and eachx∈V, we haver1.(r2.x)=
(r1r2).x (resp.c1.(c2.x) = (c1c2).x

6. For eachr ∈ R (resp. c ∈ C), and eachx1,x2 ∈ V, r.(x1 + x2) = r.x1 + r.x2

(resp.c.(x1 +x2) = c.x1 +c.x2)

7. For all scalarsr1, r2 ∈ R (resp. c1,c2 ∈ C), and eachx ∈ V, we have(r1 +
r2).x = r1.x+ r2.x (resp.(c1 +c2).x = c1.x+c2.x)

8. For eachx∈V, we have 1.x = x where 1 is the unity inR (resp. inC).

Example 10 The following are linear vector spaces with the associated scalar
fields:Rn with R, C

n with C.

△

Definition 2 A subsetM of a vector spaceV is a subspace if it is a linear vector
space in its own right. One necessary condition forM to be a subspace is that it
contains the zero vector.

Let x1, . . .xn be some vectors in a linear spaceX defined over a fieldF. In these
notes we shall consider either the real fieldR or the complex fieldC. TheSpanof
the vectorsx1, . . .xn over the fieldF is defined as

SpanF{x1, . . .xn} := {x∈ X : x =
n

∑
i=1

aixi , ai ∈ F}.
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The vectorsx1, . . .xn are said to belinearly independentif
n

∑
i=1

aixi = 0⇒ ai = 0, i = 1, . . .n

otherwise they arelinearly dependent. A set of vectorsx1, . . .xm is a basisof a
linear spaceX if the vectors are linearly independent and their Span is equal to
X . In this case the linear spaceX is said to have finitedimension m.

Note that any set of vectors containing the zero vector is linearly dependent.
Also, if {xi} i = 1, · · · ,n is linearly dependent, adding a new vectorxn+1 will not
make the new set linearly independent. Finally, if the set{xi} is linearly dependent,
then, at least one of the vectors in the set may be written as a linear combinationof
the others.

How do we test for linear dependence/independence? Given a set ofn vectors
{xi} each havingm components. Form them×n matrix A which has the vectors
xi as its columns. Note that ifn > m then the set of vectors has to be linearly
independent. Therefore, let us consider the case wheren ≤ m. Form then× n
matrixG = ATA and check if it is nonsingular, i.e. if| G |6= 0, then{xi} is linearly
independent, otherwise{xi} is linearly dependent.

Geometrically, linear independence may be explained inR
n. Consider the

planeR
2 and suppose we have 2 vectorsx1 andx2. If the 2 vectors are linearly

dependent, thenx2 = ax1 or both vectors lie along the same direction. If they were
linearly independent, then they form the 2 sides of a parallelogram. Therefore, in
the case of linear dependency, the parallelogram degenerate to a single line. We
can equip a vector space with many functions. One of which is the inner product
which takes two vectors inV to a scalar either inR or in C, the other one is the
norm of a vector which takes a vector inV to a positive value inR.

Given two linear spacesX andY over the same fieldF, a functionA : X 7→
Y is a linear transformation ifA (ax+ by) = aA (x)+ bA (y), for all a, b ∈ F.
Let A be a linear transformationA : X 7→ X andY a linear subspaceY ⊆ X .
The subspaceY is said to beA − invariant if

A (y) ∈ Y , ∀y∈ Y .

Given a linear transformation, we define theRangeor Imageof A as the subspace
of Y

Range(A ) := {y∈ Y : y = A (x), x∈ X },
and theKernelor Null-Spaceof A as the subspace ofX

N (A ) := Ker(A ) := {x∈ X : A (x) = 0}.
GivenX = C

m andY = C
n, a matrixA∈ C

m×n, denoted byA= [ai j ; 1≤ i ≤
m, 1≤ j ≤ n, is an example of linear transformation.
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Example 11 The set{ei} i = 1, · · · ,n is linearly independent inRn. On the other
hand, the 2 vectors,xT

1 = [1 −2]; xT
2 = [2 −4] are linearly dependent inR2.

△

Example 12 Let X be the vector space of all vectorsx = [x1 · · · xn]
T such that all

components are equal. ThenX is spanned by the vector of all 1’s. Therefore dim
(X) = 1. On the other hand, ifX is the vector space of all polynomials of degree
n−1 or less, a basis is{1, t, t2, · · · , tn−1} which makes dim(X) = n.

△

2.1 Linear Equations

In many control problems, we have to deal with a set of simultaneous linear alge-
braic equations

a11x1 +a12x2 + · · ·+a1nxn = y1

a21x1 +a22x2 + · · ·+a2nxn = y2

... =
...

am1x1 +am2x2 + · · ·+amnxn = ym (5)

or in matrix notation

Ax= y (6)

for anm×n matrix A, ann×1 vectorx and anm vectory. The problem is to find
the solution vectorx, givenA andy. Three cases might take place:

1. No solution exist

2. A unique solution exists

3. An infinite number of solutions exist

Now, looking back at the linear equationAx= y, it is obvious thaty should be
in R(A) for a solutionx to exist, in other words, if we form

W = [A | y] (7)

thenrank(W) = rank(A) is a necessary condition for the existence of at least one
solution. Now, ifz∈ N (A), and ifx is any solution toAx= y, thenx+z is also a
solution. Therefore, for a unique solution to exist, we need thatN (A) = 0. That
will require that the columns ofA form a basis ofR(A), i.e. that there will ben of
them and that they will be linearly independent, and of dimensionn. Then, theA
matrix is invertible andx = A−1y is the unique solution.



3. Eigenvalues and Eigenvectors 12

3 Eigenvalues and Eigenvectors

Let A be ann×mmatrix, and denote the corresponding identity matrix byI . Then,
let xi be a nonzero vector inRn andλi be scalar such that

Axi = λxi (8)

Then,λi is an eigenvalue ofA andxi is the corresponding eigenvector. There will
ben eigenvalues ofA (some of which redundant). In order to find the eigenvalues
of A we rewrite the previous equation

(A−λi I)xi = 0 (9)

Noting thatxi can not be the zero vector, and recalling the conditions on the exis-
tence of solutions of linear equations, we see that we have to require

det(A−λi I) =| (A−λi I) |= 0 (10)

We thus obtain annth degree polynomial, which when set to zero, gives the char-
acteristic equation

| (A−λ I) | = ∆(λ ) = 0

= (−λ )n +cn−1λ n−1 + · · ·+c1λ +c0

= (−1)n(λ −λ1)
m1(λ −λ2)

m2 · · ·(λ −λp)
mp (11)

Therefore,λi is an eigenvalue ofA of algebraic multiplicitymi . One can then
shows,

Tr(A) =
n

∑
i=1

= (−1)n+1cn−1

| A | =
n

∏
i=1

λi = c0 (12)

Also, if λi is an eigenvalue, then so isλ ∗
i .

How do we determine eigenvectors? We distinguish 2 cases:

1. All eigenvalues are distinct: In this case, we first findAd j(A−λ I) with λ as
a parameter. Then, successively substituting each eigenvalueλi and selecting
any nonzero column gives all eigenvectors.

Example 13 Let

A =





0 1 0
0 0 1

−18 −27 −10
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then, solve for

| A−λ I |= −λ 3−10λ 2−27λ −18= 0

which has 3 solutions,λ1 = −1, λ2 = −3, λ3 = −6. Now, let us solve for
the eigenvectors using the suggested method

Ad j(A−λ I) =





λ 2 +10λ +27 λ +10 1
−18 λ 2 +10λ λ
−18λ −27λ −18 λ 2





so that forλ1 = −1 we can see that column 1 is

x1 = [18 −18 18]T

Similarly, x2 = [7 − 21 63]T and x3 = [1 − 6 36]T . There is another
method of obtaining the eigenvectors from the definition by actually solving
Axi = λixi

△

Note that once all eigenvectors are obtained, we can arrange them in ann×n
modal matrixM = [x1 x2 · · ·xn]. Note that the eigenvectors are not unique
since ifxi is an eigenvector, then so is anyαxi for any scalarα .

2. Some eigenvalues are repeated: In this case, a full set of independent eigen-
vectors may or may not exist. Supposeλi is an eigenvalue with an algebraic
multiplicity mi . Then, the dimension of the Null space ofA− λi I which
is also the number of linearly independent eigenvectors associated withλi is
the geometric multiplicityqi of the eigenvalueλi . We can distinguish 3 cases

(a) Fully degenerate caseqi = mi : In this case there will beqi independent
solutions to(A−λi I)xi rather than just one.

Example 14 Given the matrix

A =









10/3 1 −1 −1/3
0 4 0 0

−2/3 1 3 −1/3
−2/3 1 −1 11/3









Then, its characteristic equation is

∆(λ ) = λ 4−14λ 3 +72λ 2−160λ +128= 0
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There are 4 roots,λ1 = 2, λ2 = λ3 = λ4 = 4. We can find the eigenvec-
tor associated withλ1 asx1 = [−1 0 −1 −1]T . Then, we find

(4I −A)x =









2/3 −1 1 1/3
0 0 0 0

2/3 −1 1 1/3
2/3 −1 1 1/3









x

There are an infinite number of solutions, 3 of which arex2 = [1 0 0 −
2]T ; x3 = [0 1 1 0]T ; x4 = [0 1 0 3]T

△
Note that now ifx1, · · · xm are eigenvectors for eigenvalueλi , then so
is anyy = ∑m

i=1 αixi .

(b) Simple degenerate caseqi = 1: Here we can find the first eigenvector in
the usual means, then we havemi −1 generalized eigenvectors. These
are obtained as

Ax1 = λix1

(A−λi)x2 = x1

... =
...

(A−λi)xmi = xmi−1 (13)

Note that allxi found this way are linearly independent.

Example 15

A =









0 1 0 0
0 0 1 0
0 0 0 1
8 −20 −18 −7









its characteristic polynomial is

∆(λ ) = λ 4 +7λ 3 +18λ 2 +20λ +8 = 0

then,λ1 = −1, λ2 = λ3 = λ4 = −2. The eigenvector ofλ1 is easily
found to bex1 = [−1 1 −1 1]T . On the other hand, one eigenvector 0f
−2 is found to bex2 = [0.125 −0.25 0.5−1]T , thenx2 = (A+ 2I)x3

leading tox3 = [0.1875 −0.25 0.25 0]T also,x3 = (A+ 2I)x4 so that
x4 = [0.1875−0.1875 0.125 0]T
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△
(c) General case 1≤ qi ≤ mi : Here, a general top-down method should be

used. Here we solve the problem by writing

(A−λi I)x1 = 0

(A−λi I)x2 = x1 ⇒ (A−λi I)
2x2 = (A−λi I)x1 = 0

(A−λi I)x3 = x2 ⇒ (A−λi I)
2x3 = (A−λi I)x2 = x1 6= 0

(A−λi I)
3x3 = (A−λi I)x1 = 0 (14)

This approach continues until we reach the indexki of λi . This index is
found as the smallest integer such that

rank(A−λi I)
k = n−mi (15)

the index indicates the length of the longest chain of eigenvectors and
generalized eigenvectors associated withλi .

Example 16

A =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









its characteristic polynomial is

∆(λ ) = λ 4 = 0

so λ1 = 0 with m1 = 4. Next, formA− λ1I = A, and determine that
rank(A− λ1I) = 2. There are then 2 eigenvectors and 2 generalized
eigenvectors. The question is whether we have one eigenvector-generalized
eigenvector chain of length 3, or 2 chains of length 2. To check that,
note thatn−m= 0, and thatrank(A−λ1I)2 = 0, therefore, the index
is k1 = 2. this then guarantees that one chain has length 2, making the
length of the other chain 2. First, consider(A−λ1I)2x = 0 Any vec-
tor satisfies this equation but only 4 vectors are linearly independent.
Let us choosex1 = [1 0 0 0]T . Is this an eigenvector or a general-
ized eigenvector? It is an eigenvector since(A−λ1I)x1 = 0. Similarly,
x2 = [0 1 0 0]T is an eigenvector. On the other hand,x3 = [0 0 1 0]T

is a generalized eigenvector since(A− λi I)x3 = x1 6= 0. Similarly,
x4 = [0 0 0 1]T is a generalized eigenvector associated withx2.



3. Eigenvalues and Eigenvectors 16

△

Example 17 Let

A =





4 −1 2
0 2 0
0 1 2



 .

The eigenvalues of A areλ1 = 4, λ2,3 = 2 and the two correspondent eigen-

vectors are x1 =
(

1 0 0
)T

, x2 =
(

−1 0 1
)T

. Therefore we have three
eigenvalues but only two linearly independent eigenvectors. We call gener-
alized eigenvector of A the vector x3 =

(

1 1 −1
)T

such that

Ax3 = λ2x3 +x2.

The vector x3 is special in the sense that, x2 and x3 together span a two-
dimensional A− invariant subspace. △

In summary eachn×n matrix hasn eigenvalues andn linearly independent
vectors, either eigenvectors or generalized eigenvectors.

To summarize, given the characteristic polynomial

p(λ ) := det(λ I −A) = λ n +a1λ n−1 + . . .+an, (16)

the rootsλ1, . . .λn of p(λ ) = 0 are theeigenvaluesof A. The setΛ = {λ1, . . .λn} is
called thespectrumof A. Thespectral radiusof A is defined as

ρ(A) := max
i=1,...n

|λi |.

where|.| is the modulus of the argument and thusρ(A) is the radius of the smallest
circle in the complex plane, centered at the origin, that includes all the eigenvalues.
As described earlier, the non-null vectorsxi such thatAxi = λixi are the(right-
)eigenvectorsof A. Similarly y 6= 0 is a left-eigenvectorof A if y∗A = λy∗. In
general a matrixA has at least one eigenvector. It is easy to see that ifx is an
eigenvector ofA, Span{x} is anA− invariant subspace.

In general let us suppose that a matrixA has an eigenvalueλ of multiplicity r
but with only one correspondent eigenvector. Then we can definer −1 generalized
eigenvectors in the following way

Ax1 = λx1

Ax2 = λx2 +x1
...

Axr = λxr +xr−1.
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The eigenvector and ther−1 generalized eigenvectors together span ar-dimensional
A− invariant subspace.

3.1 Jordan Forms

Based on the analysis above, we can produce the Jordan form of anyn×n matrix.
In fact, if we haven different eigenvalues, we can find all eigenvectorsxi , such that
Axi = λixi , then letM = [x1 x2 · · · xn], andΛ = diag(λi). This leads toAM = MΛ.
We know thatM−1 exists since all eigenvectors are independent and thereforeΛ =
M−1AM. The Jordan form ofA is thenΛ. If the eigenvectors are orthonormal,
M−1 = MT . In the case thatqi = mi , we proceed the same way to obtainJ = Λ. On
the other hand, ifqi = 1, then using the eigenvectors and generalized eigenvectors
as columns ofM will lead to J = diag[J1 J2 · · · Jp] where eachJi is mi ×mi and
has the following form

Ji =



















λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

...
...

0 0 · · · λi 1
0 0 0 · · · λi



















Finally, the general case will have Jordan blocks each of sizeki as shown in the
examples below.

Example 18 Let

A =





0 1 0
0 0 1

−18 −27 −10





the eigenvalues areλ1 = −1, λ2 = −3, λ3 = −6. The eigenvectors are

x1 = [1 −1 1]T

Similarly, x2 = [1 −3 9]T andx3 = [1 −6 36]T . Then,

M =





1 1 1
−1 −3 −6
1 9 36







3.1 Jordan Forms 18

then

M−1 =





1.8 0.9 0.1
−1 −1.167 −0.167
0.2 0.2667 0.067





thenΛ = M−1AM.

△

Example 19 Given the matrix

A =









10/3 1 −1 −1/3
0 4 0 0

−2/3 1 3 −1/3
−2/3 1 −1 11/3









Then, its characteristic equation is

∆(λ ) = λ 4−14λ 3 +72λ 2−160λ +128= 0

There are 4 roots,λ1 = 2, λ2 = λ3 = λ4 = 4. We can find the eigenvector associated
with λ1 asx1 = [−1 0−1 −1]T . Then, we findx2 = [1 0 0−2]T ; x3[0 1 1 0]T ; x2 =
[0 1 0 3]T Therefore,

M =









−1 1 0 0
0 0 1 1
−1 0 1 0
−1 −2 0 3









then

M−1 =









−1/3 1/2 −1/2 −1/6
1/6 1/2 −1/2 −1/6
−1/3 1/2 1/2 −1/6
1/3 1/2 −1/2 1/6









then

J =









2 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4
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△

Example 20 Now consider

A =









0 1 0 0
0 0 1 0
0 0 0 1
8 −20 −18 −7









its characteristic polynomial is

∆(λ ) = λ 4 +7λ 3 +18λ 2 +20λ +8 = 0

then,λ1 = −1, λ2 = λ3 = λ4 = −2. Find eigenvectors as before and form

M =









−1 1/8 0.1875 0.1875
1 −1/4 −1/4 −0.1875
−1 1/2 1/4 1/8
1 −1 0 0









Then,

J =









−1 0 0 0
0 −2 1 0
0 0 −2 1
0 0 0 −2









△

Example 21

A =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









its characteristic polynomial is

∆(λ ) = λ 4 = 0

soλ1 = 0 with m1 = 4. Then,

M =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
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therefore making

J =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









△

4 Inner Products & Norms

4.1 Inner Products

An inner product is an operation between two vectors of a vector space which will
allow us to define geometric concepts such as orthogonality and Fourier series, etc.
The following defines an inner product.

Definition 3 An inner product defined over a vector spaceV is a function< ., . >
defined fromV to F whereF is eitherR or C such that∀x,y,z, ∈V

1. < x,y >=< y,x >∗ where the< ., . >∗ denotes the complex conjugate.

2. < x,y+z>=< x,y > + < x,z>

3. < x,αy >= α < x,y >, ∀α ∈ F

4. < x,x >≥ 0 where the 0 occurs only forx = 0V

Example 22 The usual dot product inRn is an inner product, i.e.< x,y>= xTy=

∑n
i=1xiyi .

△

4.2 Norms

A normis a generalization of the ideas of distance and length. As stability theory is
usually concerned with the size of some vectors and matrices, we give herea brief
description of some norms that will be used in these notes. We will consider first
the norms of vectors defined on a vector spaceX with the associated scalar field of
real numbersR.

Let X be a linear space on a fieldF. A function‖·‖ : X 7→R is called anorm
if it satisfies the following proporties
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1. ‖x‖ ≥ 0, ∀x∈ X

2. ‖x‖ = 0⇐⇒ x = 0

3. ‖ax‖ = |a|‖x‖, ∀a∈ F, ∀x∈ X

4. ‖x+y‖ ≤ ‖x‖+‖y‖, ∀x,y∈ X

Let nowX = C
n. For a vectorx=

(

x1 . . . xn
)T

in C
n thep-norm is defined

as

‖x‖p :=

(

n

∑
i=1

|xi |p
) 1

p

, p≥ 1. (17)

Whenp = 1,2,∞, we have the three important norms

‖x‖1 :=
n

∑
i=1

|xi |

‖x‖2 :=

√

n

∑
i=1

|xi |2

‖x‖∞ := max
i

|xi |.

In a Euclidean spaceRn, the 2-norm is the usual Euclidean norm.

Example 23 Consider the vector

x =





1
−2
2





Then,‖ x ‖1= 5, ‖ x ‖2= 3 and‖ x ‖∞= 2.

△

Let us now consider the norms for a matrixA ∈ C
m×n. First let us define the

induced p-norms

‖A‖p := sup
x6=0

‖Ax‖p

‖x‖p
, p≥ 1.
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These norms are induced by thep-norms on vectors. Forp = 1,2,∞, there exists
some explicit formulae for the inducedp−norms

‖A‖1 := max
1≤ j≤n

m

∑
i=1

|ai j | (maximum absolute column sum)

‖A‖2 :=
√

λmax(A∗A) (spectral norm)

‖A‖∞ := max
1≤i≤m

n

∑
j=1

|ai j | (maximum absolute row sum).

Unless otherwise specified, we shall adopt the convention of denoting the2-
norm without any subscript. Therefore by‖x‖ and‖A‖ we shall mean respectively
‖x‖2 and‖A‖2.

Another often used matrix norm is the so-calledFrobeniusnorm

‖A‖F :=
√

tr(A∗A) =

√

m

∑
i=1

n

∑
j=1

|ai j |2. (18)

It is possible to show that the Frobenius norm cannot be induced by any vector
norm.

The following Lemma presents some useful results regarding matrix norms.

Lemma 1 Let A∈ C
m×n. Then

1. ‖AB‖ ≤ ‖A‖‖B‖, for any induced norm (submultiplicative property)

2. Given two unitary matrices U and V of suitable dimensions

‖UAV‖ = ‖A‖ ‖UAV‖F = ‖A‖F

3. ρ(A) ≤ ‖A‖, for any induced norm and the Frobenius norm

Given a square nonsingular matrixA, the quantity

κ(A) := ‖A‖p‖A−1‖p (19)

is called thecondition numberof A with respect to the induced matrix norm‖ · ‖p.
From Lemma 1, we have

κ(A) = ‖A‖p‖A−1‖p ≥ ‖AA−1‖p = ‖I‖p = 1.

If κ(A) is large, we say thatA is ill conditioned; if κ(A) is small (i.e. close to 1),
we say thatA is well conditioned. It is possible to prove that, given a matrixA, the
reciprocal ofκ(A) gives a measure of how farA is from a singular matrix.

We now present an important property of norms of vectors inR
n which will be

useful in the sequel.
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Lemma 1 Let ‖ x ‖a and‖ x ‖b be any two norms of a vectorx∈ R
n. Then there

exists finite positive constantsk1 andk2 such that

k1 ‖ x ‖a ≤‖ x ‖b ≤ k2 ‖ x ‖a ∀x∈ Rn

The two norms in the lemma are said to be equivalent and this particular prop-
erty will hold for any two norms onRn.

Example 24 Note the following

1. It can be shown that forx∈ R
n

||x||1 ≤
√

n||x||2
||x||∞ ≤ ||x||1 ≤ n||x||∞

||x||2 ≤
√

n||x||∞

2. Consider again the vector of ex 23. Then we can check that

||x||1 ≤
√

3||x||2
||x||∞ ≤ ||x||1 ≤ 3||x||∞

||x||2 ≤
√

3||x||∞

△

Note that a norm may be defined independently from an inner product. Also, we
can define the generalized angle between 2 vectors inR

n using

x.y =< x,y >=‖ x ‖ . ‖ y ‖ cosθ (20)

whereθ is the angle betweenx andy. Using the inner product, we can define the
orthogonality of 2 vectors by

x.y =< x,y >= 0 (21)

which of course means thatθ = (2i +1)π/2.
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5 Applications of Linear Algebra

5.1 The Cayley-Hamilton Theorem

Note thatAi = A· · ·A i times. Then, we have the Cayley-Hamilton theorem

Theorem 1 Let A be ann×n matrix with a characteristic equation

| (A−λ I) = ∆(λ )

= (−λ )n +cn−1λ n−1 + · · ·+c1λ +c0

= 0 (22)

Then,

∆(A) = (−1)nAn +cn−1An−1 + · · ·+c1A+c0I

= 0 (23)

Example 25 Use the Cayley-Hamilton theorem to find the inverse of a matrixA

0 = (−1)nAn +cn−1An−1 + · · ·+c1A+c0I

then,

0 = (−1)nAn−1 +cn−1An−2 + · · ·+c1I +c0A−1

A−1 =
−1
c0

[(−1)nAn−1 +cn−1An−2 + · · ·+c1A]

△

5.2 Solving State Equations

Suppose we want to find a solution to the state-space equation

ẋ = Ax(t)+bu(t); x(0) = x0

and assume initially that we are interested in findingx(t) for u(t) = 0;∀t ≥ 0.
Effectively, we then have

ẋ = Ax(t)
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Let us then take the Laplace transform,

sX(s)−x0 = AX(s)

which gives

X(s) = [sI−A]−1x0

which then leads to

x(t) = L
−1[sI−A]−1x0

we define the matrix exponential

exp(At) = L
−1[sI−A]−1

so that

x(t) = exp(At)x0

there are many reasons why that is justified. In fact, it can be shown that the matrix
exponential has the following properties

1. d
dtexp(At) = Aexp(At) = exp(At)A

2. expA(t1 + t2) = exp(At1)exp(At2)

3. exp(A0) = I

4. exp(At) is nonsingular and[exp(At)]−1 = exp(−At)

5. exp(At) = limk→∞ ∑k
i=0

Ait i

i

The matrixexp(At) is known as the state transition matrix.
Now assume thatu(t) is no longer zero. Then, the solution due to bothx(0)

andu(t) is given by

x(t) = exp(At)x0 +
∫ t

0
eA(t−τ)bu(τ)dτ

Example 26 Consider the system

ẋ =

[

2 −1
4 −2

]

x

x(0) =

[

1
−1

]



5.2 Solving State Equations 26

To find x(t) let us findexp(At) using 2 methods. First, by evaluating the infinite
series

exp(At) = I +At+A2 t2

2
+ · · ·

=

[

1 0
0 1

]

+

[

2 −1
4 −2

]

t +0

=

[

1+2t −t
4t 1−2t

]

(24)

so that

x(t) =

[

1+2t −t
4t 1−2t

][

1
−1

]

=

[

1+3t
6t −1

]

next, consider the Laplace transform approach, where we find(sI−A)−1

(sI−A)−1 =

[ s+2
s2

−1
s2

4
s2

s−2
s2

]

(25)

so that

exp(At) =

[

1+2t −t
4t 1−2t

]

(26)

Now consider a third method whereby, we transformA to its Jordan normal form.
TheA matrix has a double eigenvalue at zero with an eigenvectorx1 = [1 2]T and
a generalized eigenvector atx2 = [0 −1]. Therefore, theM matrix is given by

[

1 0
2 −11

]

(27)

UsingT = M we obtain,

J = Ā = T−1AT =

[

0 1
0 0

]

(28)

so that

˙̄x =

[

0 1
0 0

]

x̄; x̄(0) = [1 3]T
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we can then solve 2 differential equations

˙̄x1 = x2

˙̄x2 = 0

so that ¯x2(t) = 3 andx̄1 = 3t +1. Therefore,

x(t) = T−1x̄

=

[

1 0
2 −1

][

3t +1
3

]

=

[

3t +1
6t −1

]

(29)

△

Note that in general

exp(At) = Mexp(Jt)M−1

since

Mexp(Jt)M−1 = Mexp(M−1AM)M−1

= M[I +M−1AMt+
1
2
(M−1AMt)2 + · · · ]M−1

= I +At+
1
2

A2t2 + · · ·
= exp(At)

It is extremely simple to calculateexp(Jt) = exp(Λt) for the case of diagonalizable
matrixA as shown in the following example.

Example 27 Consider the system

ẋ =

[

1 2
2 3

]

x

x(0) =

[

1
−1

]

then there are 2 distinct eigenvalues, and we can findexp(Jt),

λ1 = −0.2361; λ2 = 4.2361

M =

[

0.8507 0.5257
−0.5257 0.8507

]
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so that

M−1 =

[

0.8507 −0.5257
0.5257 0.8507

]

Note thatM−1 = MT . Then,

exp(At) =

[

0.7237e−0.2361t +0.2764e4.2361t 0.4472(e4.2361t −e−0.2361t)
0.4472(e4.2361t −e−0.2361t) 0.2764e−0.2361t +0.7237e4.2361t

]

△

Recall that A matrixA ∈ C
n×n is said to beHermitian if A = A∗, unitary if

A−1 = A∗. A Hermitian matrix has the property that all its eigenvalues are real. Let
A=

(

a1 a2 · · · an
)

. It is easy to verify thatA is unitary if and only ifa∗i a j = δi j ,
whereδi j = 1 if i = j andδi j = 0 if i 6= j, i.e. if and only if the columns ofA form
an orthonormal basis forCn.

Let us now consider a nonsingularA partitioned as

A =

(

A11 A12

A21 A22

)

(30)

with A11 andA22 square matrices. Suppose thatA11 is nonsingular. Then the matrix

Λ := A22−A21A
−1
11 A12

is called theSchur complementof A11 in A. Similarly, if A22 is nonsingular, the
matrix

Λ̂ := A11−A12A
−1
22 A21

is theSchur complementof A22 in A. A useful expression for the inverse ofA in
terms of partitioned blocks is

A−1 =

(

Λ̂−1 −A−1
11 A12Λ−1

−Λ−1A21A
−1
11 Λ−1

)

(31)

supposing that all the relevant inverses exist. The following well-established iden-
tities are also very useful

(A−BD−1C)−1 = A−1 +A−1B(D−CA−1B)−1CA−1 (32)

(I +AB)−1A = A(I +BA)−1 (33)

I −AB(I +AB)−1 = (I +AB)−1 (34)
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supposing the existence of all the needed inverses.
If A11 is nonsingular then by multiplyingA on the right by

(

I −A−1
11 A12

0 I

)

it is easy to verify that
det(A) = det(A11)det(Λ). (35)

Similarly, if A22 is nonsingular, then by multiplyingA on the right by

(

I 0
−A−1

22 A21 I

)

we find that
det(A) = det(A22)det(Λ̂). (36)

ConsiderA ∈ C
m×n andB ∈ C

n×m. Using identities (35) and (36), it is easy to
prove that that

det(Im±AB) = det(In±BA).

5.3 Matrix Decompositions

In this section we shall explore some matrix decompositions that use Unitary ma-
trices.

Theorem 1 (Schur Decomposition)Let A∈C
n×n. Then there exist a Unitary ma-

trix U ∈ C
n×n so that A= UTU∗, where T is a triangular matrix whose diagonal

entries are the eigenvalues of A.

Proof 1 We shall prove the theorem by constructing the matrices U and T. Given
a matrix A, we can always find an eigenvector u1, associated with an eigenvalue
λ1, so that Au1 = λ1u1. Moreover we can assume that‖u1‖ = 1. Let U1 =
(

u1 z2 · · · zn
)

be a Unitary matrix. Since the columns of U1 are a basis for
C

n, we have

A
(

u1 z2 · · · zn
)

=
(

u1 z2 · · · zn
)

(

λ1 ∗
0 A1

)

.

Therefore

A = U1

(

λ1 ∗
0 A1

)

U∗
1 . (37)
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Now let us consider A1 ∈ C
(n−1)×(n−1). From (37) it is easy to see that the(n−1)

eigenvalues of A1 are also eigenvalues of A. Givenλ2 an eigenvalue of A1 with nor-
malized eigenvector u2, we can construct a Unitary matrix U2 =

(

u2 z′2 · · · z′n−1

)

∈
C

(n−1)×(n−1) so that

A1U2 = U2

(

λ2 ∗
0 A2

)

.

Denoting by V2 the Unitary matrix

V2 =

(

1 0
0 U2

)

,

we have

V∗
2 U∗

1 AU1V2 =

(

1 0
0 U∗

2

)(

λ1 ∗
0 A1

)(

1 0
0 U2

)

=





λ1 ∗ ∗
0 λ2 ∗
0 0 A2



 .

The result can be proven iterating this procedure n times.

Using Theorem 1 it is possible to prove that a Hermitian matrixA∈ C
n×n has

a set ofn linearly independent eigenvectors. Indeed, sinceA is Hermitian, from
Theorem 1 we have

A = UTU∗ = UT∗U∗ ⇒ T = T∗.

SinceT is triangular, it must be diagonal. Therefore the columns of the matrixU
are the eigenvectors ofA.

In Theorem 1, we used the same basis both for the domain and the range of the
matrix. In the following decomposition, we shall show what can be accomplished
when we choose possibly different bases for domain and the range.

Theorem 2 (Singular Value Decomposition)Let A∈ C
m×n. Then A can always

be written as A=UΣV∗, where U∈C
m×m and V∈C

n×n are Unitary matrices and
Σ = [σi j ] ∈ R

m×n is a diagonal matrix withσi j = 0 for i 6= j and σii = σi ≥ 0.

Proof 2 We shall prove the theorem by induction. First of all, let us suppose,
without any loss of generality that A6= 0 and m> n. Let now m= p+1 and n= 1.
In this case we can write

A =

(

A
σ

u2 · · · un

)

σ











1
0
...
0











,
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with σ = ‖A‖. Therefore A=UΣV∗, with U =
(

A
σ u2 · · · un

)

, Σ = σ
(

1 0 · · · 0
)T

and V= 1.
We suppose now that the theorem holds for m= p+ k and n= k and prove

it for m = p+ k+ 1 and n= k+ 1. Let A∈ C
(p+k+1)×(k+1). All the eigenvalues

of A∗A are real (since A∗A is Hermitian), nonnegative and at least one is greater
than zero since A6= 0. Denote byλ the maximum eigenvalue of A∗A and by v the
correspondent normalized eigenvector

A∗Av= λv.

Let nowσ = +
√

λ and u= Av
σ , so that‖u‖ = 1. Let moreover U1 =

(

u U0
)

∈
C

(p+k+1)×(p+k+1) and V1 =
(

v V0
)

∈ C
(k+1)×(k+1) be Unitary matrices. We have

A1 = U∗
1 AV1 =

(

u∗

U∗
0

)

A
(

v V0
)

=

(

σ u∗AV0

0 U∗
0 AV0

)

.

Since u∗A = v∗A∗
σ A = σv∗, it follows that u∗AV0 = 0. Now an easy inductive argu-

ment completes the proof, noting that U∗
0 AV0 ∈ C

(p+k)×k.

The scalarsσi are called thesingular valuesof A. They are usually ordered
nonincreasinglyσ1 ≥ σ2 . . . ≥ σr ≥ 0, with r = min{m,n}. The largest singular
valueσ1 and the smallest singular valueσr are denoted by

σ(A) := σ1 σ(A) := σr .

The columnsvi of V are called theright singular vectorsof A, and the columnsui

of U the left singular vectors. They are related by

Avi = σiui , i = 1, . . . r.

The following Lemma shows some of the information we can get from the
singular value decomposition of a matrixA.

Lemma 2 Let A∈C
m×n and consider its singular value decomposition A=UΣV∗.

Then

1. The rank k of A equals the number of singular values different from zero

2. Range(A) = Span{u1, . . .uk}

3. Ker(A) = Span{vk+1, . . .vn}

4. σ1 = ‖A‖
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5. ‖A‖2
F = ∑r

i=1 σ2
i

6. Given a square nonsingular matrix A

σ(A) =
1

σ(A−1)

5.4 Bilinear Forms and Sign-definite Matrices

The expression< y,Ax>= yTAx is a bilinear form. Wheny= x we have a quadratic
form xTAx. Every matrixA can be written as the sum of a symmetric and skew
symmetric matrices if it is real, and of a Hermitian and skew-Hermitian if it is
complex. In fact, define the symmetric and anti-symmetric parts ofA as:

As =
A+AT

2
;Aa =

A−AT

2

and the Hermitian and anti-Hermitian parts as:

AH =
A+(A∗)T

2
;AAH =

A− (A∗)T

2

Then note that< x,Ax>=< x,Asx > if A is real, and< x,Ax>=< x,AHx > if A
is complex.

5.4.1 Definite Matrices

Let us consider a Hermitian matrixA. A is said to bepositive (semi)definiteif
x∗Ax> (≥) 0,∀x∈ C

n. We shall indicate a positive (semi)definite matrix byA >
(≥) 0. A Hermitian matrixA is said tonegative (semi)definiteif (−A) is positive
(semi)definite. The following Lemma gives a characterization of definite matrices.

Lemma 3 Let A be a Hermitian matrix. Then

1. A is positive (negative) definite if and only if all its eigenvalues are positive
(negative).

2. A is positive (negative) semidefinite if and only if all its eigenvalues are non-
negative (nonpositive).

Given a realn×n matrixQ, then

1. Q is positive-definite, if and only ifxTQx> 0 for all x 6= 0.

2. Q is positive semidefinite ifxTQx≥ 0 for all x.
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3. Q is indefinite ifxTQx> for somex andxTQx< 0 for otherx.

Q is negative definite (or semidefinite) if−Q is positive definite (or semidefinite).
If Q is symmetric then all its eigenvalues are real.

Example 28 Show that ifA is symmetric, thenA is positive-definite if and only if
all of its eigenvalues (which we know are real) are positive. This then allows us
to test for the sign-definiteness of a matrixA by looking at the eigenvalues of its
symmetric part.

△

5.5 Matrix Inversion Lemmas

There are various important relations involving inverses of matrices, one of which
is theMatrix Inversion Lemma

(A1−A2A−1
4 A3)

−1 = A−1
1 +A−1

1 A2(A4−A3A−1
1 A2)

−1A3A−1
1 (38)

Example 29 Prove the Matrix Inversion lemma
Solution: Let the LHS beA−1 and the RHS beB. The proof proceeds by showing
that

AB= BA= I

so,

AB = (A1−A2A−1
4 A3)(A

−1
1 +A−1A2(A4−A3A−1

1 A2)
−1A3A−1

1 )

= I −A2A−1
4 A3A−1

1 +A2(A4−A3A−1
1 A2)

−1A3A−1
1

−A2A−1
4 A3A−1

1 A2(A4−A3A−1
1 A2)

−1A3A−1
1

= I −A2A−1
4 [I −A4(A4−A3A−1

1 A2)
−1 +A3A−1

1 A2(A4−A3A−1
1 A2)

−1]A3A−1
1

= I −A2A−1
4 [I − (A4−A3A−1

1 A2)(A4−A3A−1
1 A2)

−1]A3A−1
1

= I

On the other hand,

BA = (A−1
1 +A−1A2(A4−A3A−1

1 A2)
−1A3A−1

1 )(A1−A2A−1
4 A3)

= I −A−1
1 A2A−1

4 A3 +A−1
1 A2(A4−A3A−1

1 A2)
−1A3

−A−1
1 A2(A4−A3A−1

1 A2)
−1A3A−1

1 A2A−1
4 A3

= I −A−1
1 A2[I − (A4−A3A−1

1 A2)
−1A4 +(A4−A3A−1

1 A2)
−1A3A−1

1 A2)]A
−1
4 A3

= I −A−1
1 A2[I − (A4−A3A−1

1 A2)
−1(A4−A3A−1

1 A2)]A
−1
4 A3

= I
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△

Now let us consider partition (30) for a Hermitian matrixA

A =

(

A11 A12

A∗
12 A22

)

(39)

with A11 andA22 square matrices. The following Theorem gives a characterization
of a positive matrix in terms of its partition (39).

Theorem 3 Let A be a Hermitian matrix partitioned as in(39). Then

1. A is positive definite if and only if A11 and A22−A∗
12A

−1
11 A12 are positive

definite

2. A is positive definite if and only if A22 and A11−A12A
−1
22 A∗

12 are positive
definite

Proof 3 1. The proof follows from the facts that

(

A11 A12

A∗
12 A22

)

=

(

I A−1
11 A12

0 I

)∗(

A11 0
0 A22−A∗

12A
−1
11 A12

)(

I A−1
11 A12

0 I

)

and that
(

I A−1
11 A12

0 I

)

is a full rank matrix.

2. As in(1), writing A as

(

A11 A12

A∗
12 A22

)

=

(

I A12A
−1
22

0 I

)(

A11−A12A
−1
22 A∗

12 0
0 A22

)(

I A12A
−1
22

0 I

)∗
.

6 MATLAB Commands

There are plenty of MATLAB commands dealing with matrices. In this section we
shall give a brief overview of those related with the topics covered in this chapter.
We recall that the (conjugate) transpose of a matrixA is evaluated simply typingA’
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and that a polynomial is represented by the row vector of its coefficients ordered in
descendingpowers.

≫ Q=orth(A) returns a matrixQ whose columns are an orthonormal basis for
the range of a (rectangular) matrixA.

≫ Q=null(A) returns a matrixQ whose columns are an orthonormal basis for
the null space of a (rectangular) matrixA.

≫ det(A) returns the determinant of a square matrixA.

≫ inv(A) returns the inverse (if it exists) of a square matrixA. A warning is
given if the matrix is ill conditioned.

≫ pinv(A) returns the pseudo-inverse of a matrixA.

≫ trace(A) returns the trace of a square matrixA.

≫ rank(A) returns the rank of a matrixA.

≫ cond(A) evaluates the condition number (19) of a square matrixA, using the
matrix spectral norm. In this case (19) becomes

κ(A) =
σ(A)

σ(A)
.

The commandcondest(A) can be used to get an estimate of the 1-norm condi-
tion number.

≫ [V,D]=eig(A) returns a diagonal matrixD whose entries are the eigenvalues
of A and a matrixV whose columns are the normalized eigenvectors ofA, such that
A*V=V*D. In generalV is singular. The commandeigs(A) returns only some
of the eigenvalues, by default the six largest in magnitude.

≫ poly(A) returns a row vector with(n+ 1) elements, whose entries are the
coefficients of the characteristic polynomial (16) ofA.

≫ norm(A) returns the 2-norm for both vectors and matrices. Anyway there are
some differences in the two cases

• If A is a vector, thep-norm defined in (17) can be evaluated typingnorm(A,p),
wherep can be either a real number or the stringinf, to evaluate the∞
norm.

• If A is a matrix, the argumentp in the commandnorm(A,p) can be only
1,2,inf,’fro’, where the returned norms are respectively the 1,2,∞ or
Frobenius matrix norms defined in section 4.2.
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≫ [U,T]=schur(A) returns an upperquasi-triangular matrixT and a Unitary
matrixU such thatA = U*T*U’. The matrixT presents the real eigenvalues ofA
on the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal. The
command[U,T] = rsf2csf(U,T) can be used to get an upper-triangularT
from an upper quasi-triangularT.

≫ [U,S,V]=svd(A) returns a diagonal, in general rectangular, matrixS, whose
entries are the singular values ofA, and two Unitary matricesU andV, stacking up
in columns the left and right singular vectors ofA, such thatA=U*S*V’. The
commandsvds(A) returns only some of the singular values, by default the five
largest.
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