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Abstract

This paper presents a comparison study of the computational complexity of the general job

shop protocol and the �ow line protocol in a �exible manufacturing system� It is shown that
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a certain representative problem of �nding resource invariants is NP�complete in the case of

the job shop� while in the �ow line case it admits a closed�form solution� The importance

of correctly selecting part �ow and job routing protocols in �exible manufacturing systems to

reduce complexity is thereby conclusively demonstrated�

� Introduction

In a general �exible manufacturing system �FMS� where resources are shared� a key role in

part routing� job selection� and resource assignment is played by the FMS controller� Given the

same resources of machines� robots� �xtures� tooling� and so on� di	erent structures result under

di	erent routing
assignment strategies by the controller� Unstructured strategies are generally

clasi�ed as the so�called job shop organization� while structured protocols result in various sorts

of �ow lines� with or without assembly� The importance of structure in determining complexity

has not been rigorously addressed in FMS�

The theory of NP�completeness �� potentially provides a comprehensive approach for anal�

ysis of computational complexity in FMS� This possiblility has not been rigorously explored�

There are many distinct analysis and design problems to be solved in FMS� including scheduling

with optimality� computation of the Petri net �PN� p�invariants to determine resource loops�

analysis of deadlocks and circular waits� design and implementation of deadlock avoidance strate�

gies� and design
selection of dispatching and routing algorithms� These problems have varying

degrees of complexity� and complexity varies as well depending on whether one has a �ow line�

assembly line� or job shop protocol structure�

Many traditional scheduling and sequencing problems have been found to be in NP � thus

it has been necessary to develop heuristics or approximate methods for analysis and solution�

It has been shown� for instance that� even for the �ow line with � processors� scheduling while
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minimizing the maximum �ow time is NP�complete for both nonpreemptive and preemptive

schedules ���� For the general job shop protocol the situation is even worse �see for example

page 	
	 of ����� Branch and bound algorithms are generally used in this case� For the �ow line

the lot�sizing problem is polynomial while for the �ow line with assembly it is exponential� On

the other hand determining circuits in a graph as required e�g� to �nd the wait relations in

an FMS is polynomial� The complexity of many problems including the determination of the

PN p�invariants has not yet been determined� There is currently no comprehensive theory that

provides a categorization of the complexity of analysis problems for the �ow line assembly line

and job shop� There is no formal theory describing how to impose structured �ow and command

protocols on an FMS to simplify its complexity�

Petri nets �PN� ��� ��� have been extensively used in the analysis of manufacturing systems

with quite variable results� Though ad hoc applications abound PN have a body of theoretical

results on liveness boundedness reachability and so on that make them very useful in studies

of FMS when seriously applied� Applications of PN are found in �� � � 	��� PN approaches

to the design of FMS sequencing�dispatching controllers are found in ��� �� ����

The PN incidence matrix has been used for analysis applications in FMS� It has been shown

that it can be used to study structural properties of FMS including determination of the siphons

��� and deadlock avoidance ��
�� In these papers the problem of �nding a binary basis for the

nullspace of W is important for such a basis de�nes a special class of siphons known as the

p�invariants or resource loops which must be known for e�ective deadlock avoidance� However

matrix applications in PN have not been fully exploited� In this paper we show that it is possible

by judicious means to reveal a special structure of the PN incidence matrix in a very general

class of reentrant �ow lines that can include assembly operations� To reveal the importance of

structure in the study of complexity for FMS we select the representative problem of determining
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the p�invariants� It is shown that for unstructured job shop protocols this problem is NP�

complete� while for reentrant �ow line protocols it is polynomial� The importance of selecting

suitable controller sequencing protocols to reduce complexity in FMS is thereby shown�

This paper is organized as follows� Section � presents an overview of computational complex�

ity theory and of the reduction approach� Section � presents various manufacturing structures

including the job shop� assembly line� and �ow line� and introduces some PN notions� The

computational complexity of �nding the p�invariants is shown to be NP�hard for the job shop

in Section 	 and polynomial for a general class of reentrant �ow lines in Section 
�

� Complexity Theory Overview

Until recently� it was felt that decidable problems are practically solved and thus not very

interesting� The introduction of computational complexity theory has since changed this mis�

conception� Computational complexity theory is often used to establish the tractability or in�

tractability of computational problems� and is concerned with the determination of the intrinsic

computational di�culty of these problems ���

In order to discuss the complexity of an algorithm� one must begin with a model of compu�

tation� for which the Turing Machine is the most commonly used� The simplicity of the Turing

machine model appears to make it of little practical value� however� the Church�Turing Thesis

holds that the class of problems that are tractable on a Turing machine are also tractable on

any other reasonable model of computation �including the computers we use��

One important concept in this theory is that of a polynomial�time algorithm� i�e� an algorithm

whose running time can be bounded by a polynomial in the size of the description of the problem�

In practice� such an algorithm can be feasibly implemented on a real computer� This is in

contrast to an exponential�time algorithm� which is only feasible if the problem being solved is
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extremely small�

The complexity class P consists of all decision problems that can be decided in polynomial�

time� while the class EXP consists of those that can be decided in exponential�time� The

complexity class NP lies inbetween consisting of all decision problems that can be decided

algorithmically in nondeterministic polynomial�time� An algorithm is nondeterministic if it is

able to choose or guess a sequence of choices that will lead to a solution� without having to

systematically explore all possibilities� This model of computation is not realizable� but it is of

theoretical importance� In practice� problems in NP are those for which a candidate solution

can be veri�ed to be a valid solution in polynomial�time� but the best known algorithms to �nd

such a solution run in exponential time�

Many practical problems belong to NP and it is as of yet unknown whether P � NP � In

other words� these two complexity classes form an important boundary between the tractable

and intractable problems� A problem is said to be NP�hard if it is as hard as any problem in NP �

Thus� if P �� NP � the NP�hard problems can only admit deterministic solutions that take an

unreasonable �i�e�� exponential� amount of time� and they require �unattainable� nondeterminism

in order to achieve reasonable �i�e�� polynomial� running times�

The central idea used to demonstrate NP�hardness evolves around the NP�complete prob�

lems� A problem is said to be NP�complete if every decision problem in NP is polynomial�time

reducible to it� This means that the NP�complete problems are as hard as any decision problem

in NP � Given two decision problems 	� and 	�� 	� is said to be polynomial�time reducible

to 	� �written as 	� �p 	��� if there exists a polynomial time algorithm R which transforms

every input x for 	� into an equivalent input R�x� for 	�� By equivalent we mean that the

answer produced by 	� on input R�x� is always the same as the answer 	� produces on input

x� Thus� any algorithm which solves 	� in polynomial time can be used to solve 	� on input x
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in polynomial time by simply computing R�x�� and then running ���

In order to show that a particular decision problem �� is NP�complete� one starts with a

problem �� which is known to be NP�complete� and shows that �� �p ��� This proves that

�� is NP�hard� To complete the proof that �� is NP�complete� it must be demonstrated that

a candidate solution can be veri�ed in polynomial time�

In this paper� we use the One�In��Sat problem which is known to be NP�complete 	
� in

order to show that solving a certain problem for the general job shop is NP�complete� We then

use the special structure of the reentrant �ow line problem to show that the same problem can

be eciently obtained for the �ow line� This highlights the importance of structure in �exible

manufacturing systems� The One�In��Sat problem is as follows�

One�In��Sat�

Instance� Given a set U of variables� a collection C of clauses over U such that each c � C has

jcj � ��

Question� Is there a truth assignment for U such that each clause in C has exactly one true

literal�

Example � Let U � fa� b� c� dg and C �
�
a�bc� �abd��bc �d

�
� Then a solution is a � b � true and

c � d � false�
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� Structure and Modeling of Flexible Manufacturing Sys�

tems

In this section we discuss �exible manufacturing systems with several sorts of structures� includ�

ing the reentrant �ow line� the assembly line� and the job shop� The importance of structure and

protocol in �exible manufacturing systems is highlighted� Some Petri Net modeling techniques

are introduced�

��� Flexible Manufacturing Systems �FMS�

To meet competition in a global marketplace and provide �exible manufacturing in today�s

high�mix low�volume manufacturing environment� manufacturing systems have gone away from

old�style �xed�hardware sequential assembly lines with dedicated workstations� The trend for

several years has been towards �exible manufacturing systems �FMS�� which have four major

components �	
� a set of machines or work stations� an automated material handling system that

allows �exible job routing� distributed bu�er storage sites� and a computer�based supervisory

controller for monitoring the status of jobs and directing part routing and machine job selections�

With this change in style� the emphasis has shifted towards the design of sophisticated decision�

making controllers that include functions of job sequencing and dispatching� parts routing� job

release� deadlock avoidance� etc�

Unfortunately� rigorous approaches to FMS in problems such as dispatching and routing�

steady�state analysis� queueing stability� bottleneck studies� and so on have focused on simple

types of systems including single�server� �ow line without assembly� serial forms� etc� Systems

with �nite bu�ers and nonserial systems e�g� systems with assembly� etc�� have few results�

with fewer still for general job shop structures and large�scale interconnected systems� It is
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by now known that many manufacturing problems are in NP so that signi�cant increases in

computing power do not signi�cantly improve computational capabilities� There is no general

approach for taking advantage of the FMS structure to reduce computational complexity�

��� Manufacturing System Structures

The physical portion of an FMS is comprised of its resources� the set of machines or work

stations� the automated material handling system� and the distributed bu�ers� We call these

the manufacturing facility� Given the same resource facilities in the FMS� di�erent sequencing

algorithms by the controller produce di�erent �ow�protocol structures� including the reentrant

�ow line� the assembly line� and the general job shop protocol� Not only should the controller

provide guaranteed performance� but it should impose a suitable structural protocol to achieve

prescribed performance speci�cations� and it should be easily recon�gurable to change the FMS

structure� dispatching rules� routing algorithms� etc� as products or performance requirements

change� Disciplines such as discrete event �DE� systems are emerging to confront such prob�

lems 	
��� A major issue is that the structure imposed by the controller should avoid or reduce

NP�complexity problems�

Formally� a manufacturing facility is a set R  frig of resources �e�g� machines� tools�

�xtures� robots� transport devices� etc��� each of which has a distinct function� Each ri can

denote a pool of more than one machine that performs the same function� The resources operate

on parts� parts of the j�th type are denoted pj � A job sequence for part type pj is a sequence of

Pj jobs Jj  fJ�j � J�j � � � � JPjjg required to produce a �nished product� We distinguish between

jobs in the part sequence even if� for instance J�j and J�j are both drilling operations� The

sequence of jobs may be determined from a task decomposition� bill of materials� assembly tree�

or precedence matrix �c�f� Steward�s sequencing matrix 	����� If each job is performed on a
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single part and delivers a single part there is said to be no assembly�

Once the sequence of jobs for a part type has been assigned� resources must be assigned to

perform the jobs� This is performed by a manufacturing engineer based on the facilities available�

If a single resource is needed for each job� for instance� this corresponds to a pairing �Jkj � ri� of

the k�th job for part pj with a resource ri� The ordering of the jobs for a given part type can be

either �xed or variable� For instance� in an application it may be allowable to either drill then

machine a part� or to machine and then drill the part� Likewise� the resources assigned to each

job can be either �xed or variable� For instance� either of two machines of di�erent types �e�g�

from di�erent resource pools� might be capable of performing a given drilling job�

In the general job shop the sequence of jobs is not �xed� or the assignment of resources to

the jobs is not �xed� The e�ect is that part routing decisions must be made during processing�

In the �ow line the sequence of jobs for each part type is �xed and the assignment of resources

to the jobs is �xed� The result is that each part type visits the resources in the same sequence�

though di�erent part types may have di�erent sequences� The 	ow line is also known as the


job shop with �xed part routing�� The sequence in which part type pj visits the resources in

a 	ow line will be called the j�th part path� A 	ow line is said to reentrant if any part type

revisits the same resource more than once in its job sequence ��� ��� This occurs if the same

resource is assigned to di�erent jobs in the part�s sequence� A sample reentrant 	ow line is given

in Fig� � In this �gure� R and R� could be transport robots� for instance� that move the parts

between certain jobs� B� B� could be bu�ers� and M�M��M��M� could be machines� Thus�

the resources may include machines� robots� bu�ers� transport devices� �xtures� tools� and so

on�
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part 1

part 2

Machine 1

Machine 2 Machine 3

Machine 4

Robot 1

Robot 2

Buffer 1 Buffer 2

product 1

product 1
M4

M1

R2

R1

B1 M2 B2 M3

Figure �� Reentrant �ow line with � machines and � parts�

��� Petri Net Representation of FMS

Some knowledge of Petri nets is assumed� A Petri net �PN� is a bipartite �e�g�� having two sorts

of nodes� digraph described by �P � T � I� O�� where P is a set of places� T is a set of transitions� I

is a set of �input� arcs from places to transitions� and O is a set of �output� arcs from transitions

to places� In our application� the PN places represent manufacturing resources and jobs� and

the transitions represent decisions or rules for resource assignment�release and starting jobs�

Operation duration times and resource setup times are captured in timed places� as opposed to

the timed transition approach� For instance� a standard representation for a reentrant �ow line

is given in Fig� �� The PN representation for the same system is shown in Fig� 	� where the

places are drawn as circles and the transitions as bars� The �ow line structure is evident in

the parallel part type paths� interconnected by shared resource places �e�g�� B��M	� that service

jobs for several part types� Note that along one part path� some resources �e�g�� R�� R	� are

used more than once� so that this �ow line is reentrant� Each part path in the 
gure has a set

of pallets denoted by PA�� PA	� one pallet is needed to hold each part entering the cell� Places
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M1A

M1P

B1A M2A B2A M3A

R1U1 B1P1 M2P1 R1U2 B2P M3P R1U2 PO1PI1

y1

R1A

PA1

(PAllet 1)

(PAllet 2)

PI2

u 2

x 1 x 2 x 9x 3 x 4 x 5 x 6 x 7 x 8

x 10
x 11 x 12 x 13 x 14

x 15

M4P

M4A

R2U1 B1P2 M2P2 R2U2 PO2

y2

R2A

PA2

part 1:

part  2:

u1

Figure �� PN representation of the reentrant �ow line�

ending in P � all on the job paths� correspond to jobs in progress� Places ending in A correspond

to the availability of resources�

����� Incidence Matrix and Marking Transition Equation

It is common in PN theory ���� to represent the sets of arcs I and O in the PN description

�P � T � I� O	 as matrices� Thus� element Iij of matrix I is equal to � if place j is an input to

transition i� Element Oij of matrix O is equal to � if place j is an output of transition i�

Otherwise the elements of I� O are set to 
� Matrix I is called the input incidence matrix� and

O the output incidence matrix� Both matrices are considered as maps from P to T � Then� the

PN incidence matrix is de�ned as

W � O � I� ��	

A column vector p indexed by the set of places P is called the PN pvector �place vector	�

The PN marking vector is the marking vector m�p	 de�ned as follows�
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De�nition � �Marking and Support� Given a PN� the PN marking is the number of tokens

in each place in the net� Given a place p � P� the marking of p� m�p�� is the number of

tokens in p� Given a vector of places p � �p� p� � � � pq�
T � the marking m�p� is the vector

m�p� � �m�p�� m�p�� � � �m�pq��
T of markings of the individual places� The support of a vector

is the set of its elements having nonzero values�

It is common to simplify the notation so that m�t� denotes the marking vector m�p� at time

t� Then� in terms of the PN incidence matrix� one can write the PN marking transition equation

m�t�� � m�t�� 	W T � � m�t�� 	 �O � I�T �� �
�

where m�t� is the PN marking vector at time t� t� � t�� and � is a vector denoting which

transitions have �red between times t� and t�� element �i � ni if the i� th transition has �red

ni times in the interval�

����� Resource Loops and p�Invariants

Central to the study of resource allocation in FMS are the following notions�

De�nition � �p�Invariant and Resource Loop� A pinvariant is a place vector p having

elements of zeros and ones that is in the nullspace of W � that is

Wp � �� ���

The set of places corresponding to the support of p is known as a resource loop� also loosely

called a p�invariant�

The complete set of pinvariants of a PN gives a great deal of information� In ���� it is shown

that they provide the basis for deadlock avoidance algorithms� The importance of pinvariants

may be understood by noting that� beginning with �
�� for any pinvariant p one has

pTm�t�� � pTm�t�� 	 pTW T � � pTm�t��� ���
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Noting that premultiplication by p
T simply sums up the tokens in the positions of m��� corre�

sponding to the support of p� this is seen to be a statement that the total number of tokens in

positions of m��� corresponding to the support of p is conserved� That is the p�invariants de�ne

those loops in the PN within which the numbers of tokens are conserved� These conservative

loops de�ned by the p�invariants are the resource loops�

� Computational Complexity of Finding the p�Invariants

in the Job Shop

The resource loops of an FMS contain information of great value in deadlock avoidance� shared

resource con�ict resolution using dispatching techniques� and so on� Unfortunately� to �nd the

p�invariants it is necessary solve �	�� determining a basis for the nullspace of W that has only

ones and zeros� In this section� we show that �nding such a binary basis is an NP�complete

problem for the general job shop structure� Then� in Section 
 it is shown that for the reentrant

�ow line� with or without assembly� an analytic solution can be given for the problem�

Theorem � The problem if �nding a binary basis for W in the general job shop is NP�

Complete�

Proof� In order to solve the general job shop problem� we need to �nd a basis of the nullspace of

the incidence matrix W � Since W contains coe�cients wij � f������ g and since a meanigful

basis of its nullspace will have vectors p whose entries pi also belong to f���g� the problem is

equivalent to �nding pi such that
Pn

i�� wijpi � � �j � �� � � �n� Note however� that the zero

vector pi � ��i should be excluded� We shall then de�ne the following problem

Matrix Basis
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Instance� An n� �n matrix A �� � with entries in f��� �� �g�

Question� Does there exist a vector x �� � with entries in f�� �g such that Ax � ��

and prove that Matrix Basis is NP�complete by transformation from One�In��Sat�

We begin with a proof for A of size n �m and then later show how to augment the matrix

to make it of size n� �n�

Let n � jU j � jCj and m � �jU j � �� where U and C are the sets of variables and clauses

in the instance of One�In��Sat� The columns of A �and thus the components of the vector

x� will correspond to complemented and uncomplemented assignments of the jU j literals and an

auxiliary variable z� i�e�

x �

�
x� �x� x� �x� � � � xn �xn z

�
�

�

A valid solution vector will correspond to each component of x being equal to 	 or 
 depending

on whether the corresponding literal is true or false� All nontrivial solutions will have z � ��

The �rst jU j rows of A are used to insure that the solution vector is a valid truth assignment

to the literals� i�e� so that value assigned to xi will be the logical complement of the value assigned

to �xi� Speci�cally� the �rst jU j rows are con�gured as�

ai�j �

��������
�������

� j � f�i� �� �ig

�� j � �jU j� �

� otherwise

The remaining jCj rows are used to satisfy the requirement that exactly one literal in each

clause is true� Speci�cally� denote a literal by �xi �i�e� �xi � fxi� �xig�� and denote the ith clause
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by ci � �xpi �xqi �xri � Then set

ajUj�i�j �

������������
�����������

� j � �s� �� �xs � xs� s � fpi� qi� rig

� j � �s� �xs � �xs� s � fpi� qi� rig

�� j � �jU j� �

� otherwise

Example � Let U � fx�� x�� x�� x�g and let C � fx��x�x�� x�x��x�� �x�x�x�g� Then the matrix

A is given by

x� �x� x� �x� x� �x� x� �x� z

A �

�
�����������������������

� � � � � � � � ��

� � � � � � � � ��

� � � � � � � � ��

� � � � � � � � ��

� � � � � � � � ��

� � � � � � � � ��

� � � � � � � � ��

�
																						


Every solution besides the trivial solution must have z � � since if z � � then the �rst jU j

rows of A will guarantee that every other entry will also be equal to zero� The same rows will

guarantee that for nontrivial solutions exactly one of xi and �xi will be equal to one� The last

jCj rows of A will only be satis�ed by nontrivial solutions such that exactly one literal of each

clause is true�
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We can easily make A of size n� �n by adding one additional row and �jCj� � additional

columns� i�e� construct the augmented matrix

A� �

�
���
A B

C D

�
���

where B and C are matrices of zeros of sizes �jU j�jCj����jCj��� and ����jU j��� respectively�

and D is a matrix of ones of size � � ��jCj � ��� The last row insures that the last �jCj � �

components of the solution vector must be equal to zero� but these variables in no way interfere

with the construction above� The augmented matrix is of size n� �n where n � jU j� jCj� ��

The transformation is easily done in time linear in the size of the matrix� which is quadratic

in jU j and jCj� Therefore� we have shown that Matrix Basis is NP�Hard� On the other hand�

one can easily verify the existence of pi as a member of the nullspace of W which then proves

that the problem is NP�Complete�

� Computational Complexity of Finding the p�Invariants

in the Flow Line

Like many other problems� �nding the p	invariants in a general job shop protocol is NP	

complete� as seen in the previous section
 In this section� a special job �ow protocol is im	

posed that allows one to give an analytical solution to this problem� so that the complexity is

polynomial
 This protocol corresponds to a large class of reentrant �ow lines with or without

assembly
 The importance of structure in an FMS is thereby shown in regards to computational

complexity� so that care should be taken in selecting job sequencing and routing strategies in

FMS
 The �ow line structure allows one to model and analyze large	scale interconnected FMS

in a polynomial number of operations using block matrices
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��� Structure of the Reentrant Flow Line

In the reentrant �ow line with or without assembly� e�g� Fig� �� denote the set of jobs for

part type j as Jj and the set of all the jobs as J �
S

j Jj � It is noted that the part input

places PI and part output places PO are not included as jobs� Places that occur o� the part

paths represent the availability of resources� denote by R the set of all such places� The set of

resources may be partioned as R � Rns � Rs� with Rns the nonshared resources and Rs the

shared resources� The set of PN places is given by P � J �R� the set of resources plus the set

of jobs� Note that all transitions occur along the part paths�

Partition the PN marking vector p as

p �

�
���

v

r

�
��� � 	
�

where v is the vector of places corresponding to the jobs J and r is the vector of places corre�

sponding to the resources R� Then� the PN incidence matrix has the structure

W � Wv Wr � � ST
� F � ST

v �Fv ST
r �Fr� 	��

where ST
v � S

T
r are the output incidence matrices of the jobs and resources respectively � and

F T
v � F

T
r are the input incidence matrices of the jobs and resources respectively� This formalizes

some discussions in �� concerning places of type A�B�C� Matrix Fv is called the Steward

sequencing matrix ��� or the Bill of Materials �BOM� �� in manufacturing� it has element

	i� j� � � if job j is an immediate prerequisite for job i� Matrix Fr is the resource requirements

matrix used in ���� it has element 	i� j� � � if resource j is required for job i�

It is important to order the job places correctly to obtain a lower triangular matrix Fv 
� ����

for then the sequencing of the jobs is causal� A causal ordering is also important in taking

advantage of structure to reduce complexity� The special structure of matrices Fv � Fr� Sv� Sr for

a general class of reentrant �ow lines is revealed in terms of the following constructions�

��



����� De�nition of a General Class of Reentrant Flow Lines

De�nition � �Complete and Partial Part Paths� Given a reentrant �ow line with assem�

bly� de�ne a complete part path as one that terminates in an output product �e�g� a PO place

in the PN�� and a partial part path as one that merges with another part path in an assembly

operation�

Note that each complete part path terminates in an extra transition that is required to produce

the product output equations and to release the pallets� if any are used in that corresponding

part path� To obtain a causal ordering of the jobs� number the job places sequentially from left

to right along each single part path� Suppose part path j� is a complete path� with a partial part

path j� merging into path j� at the assembly point� represented by a transition on that path�

In this situation� one may number the jobs of partial path j� from left to right� stopping at the

last job prior to the assembly transition� Then� return to the beginning of path j�� picking up

the place ordering by numbering the the job places of path j� from left to right� The transitions

should be numbered corresponding to the job places they feed into� This procedure corresponds

to numbering the jobs from bottom to top as is standard in a manufacturing assembly tree �����

The subsequent analysis deals with the class of reentrant �ow lines now de�ned� This class

is more general than the one in �	� as it allows assembly operations as well as the use of more

than one resource per job 
e�g� tool� �xture� and machine� as in ����

De�nition � �Dot Notation for Input and Output Sets of a Node� Given a transition

t � T � de�ne by �t the set of places that are inputs to t� and by t� the set of places that are

outputs of t� Given a place p � P� de�ne by �p the set of transitions that are inputs to p� and

by p� the set of transitions that are outputs of p� Given a set of nodes S � fvig �either places

or transitions�� de�ne �S � f�vig and S� � fvi�g�

��



De�nition � �Pallet Places� Let the set of transitions along the j�th part path be xj�� xj�� � � � � xjLj
�

Then� if part path j is complete� it may have a pallet place pj�� If so� it should be selected such

that pj� � �xj�� pj� �� �xj�� � �� �� and pj� � xjLj
�� pj� �� xj��� � �� Lj� That is� if present� pallets

are used for all jobs on a complete part path�

De�nition � �Set of Jobs of a Given Resource� Given a reentrant �ow line with jobs J

and resources R� de�ne the jobs associated with resource r � R as

J�r� � r�� � J � ���

In terms of these constructions� the class of FMS studied here is given as follows� Denote

the set of resources minus the pallets as R
�� � R� fpj�g�

De�nition � �De�nition of a Class of Reentrant Flow Lines� De�ne the class of reen�

trant �ow lines with or without assembly as those satisfying the following properties�

�� For all places p � P� one has �p � p� � � the empty set� �No self�loops�	


� For each part path j� the �rst transition satis�es xj� ��R � � and� if the path is complete

the last transition satis�es �xjLj
� R � �� �Each part path has a well�de�ned beginning

and end�	

�� For each resource r � R
��� one has r � p�� � R for all p � J�r� � r�� � J � �Unity job

duration� each job is described by only one job place along the part path�	

This de	nition results in the following facts� easily derivable using de	nition�

Lemma � �Properties of the Class of Reentrant Flow Lines� The class of reentrant �ow

lines considered satis�es the following properties

�� The job set of r is given by J�r� � r�� � J ��� r � J for all resources r � R
���

��



�� p�� � R ��� p � R for all jobs p � J �

�� If there are pallets for part path j� then pj� �� � R � �� �� pj� � R � �� �This follows

directly from De�nition � and De�nition � item 	
�

�� Let p � P � R� J � Then p � p� for some p�invariant p�� That is� the owline is covered

by p�invariants�

����� Special Form of the Incidence Matrices�

The reentrant �ow line De�nition and Lemma mean that the PN matrices in ��� have a particular

form� Matrices Fv � S
T
v consist of diagonal blocks� one per part path� which in ST

v are identity

matrices� and in Fv have a subdiagonal of 	
s� If there is assembly there will be some 	
s in Fv

below the diagonal blocks� where a 	 in element �i� j� means that place j is the last place in a

partial part path and joins transition i in another part path�

Matrices Fr� S
T
r are related as follows� If the i�th transition is not the last transition in

a partial part path� and there is an entry of 	 in position �i� j� of Fr� meaning resource j is

committed at transition i� then there is an entry of 	 in position �i� 	� j� of ST
r � meaning that

the resource is released at the next transition� If the i�th transition is the last transition in a

partial part path� and there is an entry of 	 in position �i� j� of Fr� then there is an entry of 	

in position �k� j� of ST
r � meaning that the resource is released at the assembly transition k�

This structure results in a particularly convenient form of the PN incidence matrix W 

�ST
v � Fv ST

r � Fr � � �Wv Wr�� Block Wv has diagonal blocks having 	
s on the diagonal and

�	
s on the subdiagonal� with some �	
s below these blocks in the case of assembly operations�

In each column� matrix Wr has a �	 immediately followed by a 	� except in the case of assembly

where the occurrence of the following 	 is shifted down to the assembly transition� In the case

of shared resources� there is more than one �	�	 pair in the column� In columns corresponding

��



to pallets� the � occurs at the beginning of the associated diagonal block of Wv and the �� at

its end�

��� Algorithm for Computation of the p�Invariants

For the reentrant �ow line� an algorithm for determining all the p�invariants in a polynomial

number of operations is given by the following theorem�

Theorem � �Computation of a Set of Independent p�Invariants� Let there be given the

PN matrices ��� for a �ow line satisfying De�nition �� with places in the job vector v ordered

in the causal ordering speci�ed in Subsection 	
�
 Form matrices �Fv � �Fr by deleting the rows of

Fv � Fr corresponding to the extra terminating transitions in each complete part path
 Form ma�

trices �Sv� �Sr by deleting the columns of Sv� Sr corresponding to the extra terminating transitions

in each complete part path
 Then� the complete set of p�invariants �resource loops� is given by

the columns of the matrix

P �

�
���
�	 �ST

v
�

�Fv

��	 �ST

r
�

�Fr


I

�
��� 	�


where I is the identity matrix


proof

The p�invariants are de�ned using ��� where W is given by ��� and� for the reentrant �ow

line� Wv�Wr have the special form noted in Subsection 	
�
�
 This shows that the p�invariants

are de�ned by

�Wv Wr

�
���

v

r

�
��� � ��

with v a vector of job places and r a vector of resource places� or

Wvv � �Wrr�

��



To construct a special left inverse of Wv to solve this equation for v� delete the extra last

transitions in the complete part paths to de�ne

�W � �ST
�

�F � � �ST

v �
�Fv �ST

r �
�Fr� � � �Wv

�Wr��

This makes matrix �Wv square� This is allowed as the deleted rows of Wv are in the row space

of the remaining rows� Then� the p�invariants are de�ned by

�Wvv � � �Wrr�

so that v � �
�W��

v
�Wrr for any r� To obtain a basis for nullspace W � set r � I� the identity�

resulting in ����

It is required now to show that the resulting v is binary� According to the discussion in

Subsection 	�
�� on the special structure of the DE matrices� �Wv is lower block triangular with

blocks on the diagonal corresponding to each part path and having the form
�
�����������

� � � �

�� � � �

� �� � �

� � �� �

�
�����������

�

The inverse of such a block is

�
�����������

� � � �

� � � �

� � � �

� � � �

�
�����������

� �a�

which appears as the corresponding diagonal block of �W��

v
� In the case of assembly� there are

some entries in �W��

v below these diagonal blocks� Speci�cally� if there is a subdiagonal entry of

�
 in position �i� j� of Wv the meaning is that there is a partial part path j� whose last place j

��



feeds into an assembly transition i in a part path j�� In this event� the lower o��diagonal block

corresponding to the diagonal blocks j� and j� �e�g� block �j�� j��� is zero� but �lled with 	
s on

rows i and below�

Now one must turn to the structure of � �Wr� Since resources are always committed prior

to their release� and all jobs have unity duration� the entries in any column of � �Wr consist in

the case of no assembly of 	
s followed immediately by �	
s� It is easy to see that such entries

multiplied by blocks such as �a� always result in elements of � or 	 in v� In the case of an assembly

with partial part path j� feeding into part path j�� an entry of 	 on the row corresponding to the

last transition of partial path j� is followed in any column j by a �	 in row i� where transition

i is the assembly transition in path j�� However� this corresponds to the beginning of the �ll of

	
s in block �j�� j�� of �W��

v
� and hence �W��

v

�Wr can be seen to yield only entries of � or 	 in v�

� Conclusion

We have shown by reduction from the One�In��Sat problem that �nding a binary basis for the

nullspace of the p�invariant matrix is NP�complete in the general job shop problem� This implies

that the job shop deadlock analysis problem will be at least as hard as the subproblem of �nding

the p�invariants� In the case of the reentrant �ow line with assembly� however� we exhibited a

closed�form solution for a binary basis� The importance of correctly selecting part �ow and job

routing protocols in �exible manufacturing systems is thereby conclusively demonstrated� The

job routings and resource allocations should follow the structural protocols developed Section

	�
 to simplify the complexity of shared resource dispatching analysis of the FMS�
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