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Abstract

This paper considers the problem
stabilizing a plant using a suboptimal sta
compensator of fixed order. The result
equations are a modified form of the optii
projection equations, with the separat
principle not holding in either the full-
reduced-order case.

I. Introduction

This paper considers the design of sta
fixed-order dynamic compensators in the ev
that the optimal Linear-Quadratic-Gaussian (L
controller is unstable. This is related to
problem of strong stabilization. [1] A condit
for the existence of a strong stabilizer an
synthesis procedure are given in [1] . T
method may yield high order compensators for s
problems. A method proposed by Halevi t2]
finding suboptimal full order compensators u
modifications to LQG synthesis procedur
Ganesh and Pearson [3] employ a frequency don
approach, using the "Q'-parameterization
stabilizing compensators.

II. Problem Statement

The system to be controlled is given by:

x(t) - Ax(t) + Bu(t) + wi(t)

y(t) - Cx(t) + w2(t)

The closed loop system may be written as:

AQ + Q + V

FA B[C1 V o l QC Q ]- CI - 11 1Q 112T
A- C A, I0 T''2BC -T -

(8)

(9)

III. Compensator Stability Guarantee and
Auxiliary Minimization Problem

Theorem 1: Let 0T > 0 be such that

T TT(B IQ ))>BVB- -BCCQ- -QT C BTc~ 12- c 2 c c 12 12 c

and for given Ac, Bc, and Cc, suppose that

(A, [V + ]f') is stabilizable

and that there exists Q > 0 satisfying

0 AQ + QA + V + 0

O O
hn >

Then,
Q T ]Q12 Q2-

A is_asymptotically stable.
Q c Q,
J . tr(QR) - J , and

(1) Ac is stable.
Proof: See [5].

(2)
where the A, B, and C matrices are assumed to be
known exactly (as in conventional LQC theory).
Vectors wl and W2 consist of independent white
noise processes with intensities VI > 0 and V2 >
0. The problem is to design a stable, fixed-
order, dynamic compensator of order nc

*c(t) ACxC(t)+By(t) (3)

u(t) - Ccx(t) (4)

which minimizes

J(A B c) lim E[xT (t)R1x(t) + uT (t)R2u(t)]c c c
t+ 5

where Xc is the compensator state of order nc;
Ac, BC, and Cc are the compensator matrices; Rl >
0 and R2 > 0 are the state and control weighting
matrices and E() denotes the expectation
operator.

The expected cost can easily be shown to be

J tr(QR) (6)
where

- lim E(xx ), x [i], R = [ TRC (7)
t-*w xc- O CcR2ccc

(10)

(11)

(12)

(13)

(14)
(15)
(16)
(17)

Equations (6) and (12) may be used to form a
new (upper bound) minimization problem as
follows:

Upper Bound Minimization Problem: Determine (Ac,
Bc, Cc) and Q > 0 that minimize T subject to
(12). Solution of this problem gives a stable
compensator with actual closed loop cost less
than or equal to J. We now choose a form for 0
that satisfies equation (10).

Proposition 1: Let

0 - B CTCTBT + PQT T-1Q (18)

where T is an arbitrary positive definite matrix;
then 0 satisfies (10) when a - 1 and =l.

Proof: See [5].
IV. Sufficient Conditions for a Stable, Reduced
Order Compensator

Recall that a square matrix is nonnegative
(positive) semisimple if it has a diagonal Jordan
form and nonnegative (positive) eigenvalues. [4]

A A

Lemma 1: Suppose P, Q are nxn nonnegative
definite matrices. Then QP is nonnegative
semisimple. Furthermore, if rank(QP) - nc, then
there exist ncxn matrices G, r and a positive
semisimple ncxnc matrix M such that: [4]
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A A T T
QP Gmr 1rG - I (19)n

c

Any G, M, and r satisfying Lenau I Awill be
called a (G, M, r) factorization of QP. The
following simplified notation will be used:

-BR2 1B - C (V2 + aCTC) c CTVI C. (20)

Theorem 3: Assume that condition (11) holds and
that thereAexist nonnegative definite matrices P,
Q, P, and Q satisfying

T +V -Q T A -JA
0 AQ + QA + V-Q I+ r II PQTQs

V TO AP + PA +R1 -PP + rPPr

JAA A .1+fT QP + PPQT
A A T

0-(A- EP)Q + Q(A - EP) + QD'

- T A.-lA-rflQSrl .f Q

°(A - QZ - T I)T + PQA Q -1AI-1TA A - A4
0 - (A-QS-QT)P +P(A QS -PQT)

+ PSP - TPEPr
£1 1

(21)

(22)

(23)

(24)
A A AA

rank(Q) - rank(P) rank(QP) - nc (25)

with a - - 1. Then the compensator given by:
A -1T

Ac - r(A -QE -SP - QT )G

B IVQCT(V + C-Tl1
Cc R2 B PGC - --BTPGT
C 2

(26)

(27)

(28)

using a G, K, P-factorization of QP, and with r a
GTr and Tr - In - t, satisfies conditions (14)-
(17).

Conversely if (Ac, Bc, Cc) solves the upper
bound minimization problem with Ac a stable
matrix and 0 given by (18), then there exist real

nonnegative definite matrices P, Q, P, and
Q and 0 < a, s 1 that satisfy equations (21)-
(25) with Ac. Bc. and Cc given by equations (26)-
(28).

proof: See [5].

Remark 1: These optimal projection equations
with a stable compensator guarantee consist of 4
equations that are coupled in both the full (rj -
0) and reduced-order cases. The separation
principle is not valid in either case. The
equations reduce to the usual LQG equations when
a - 1 and rT - 0. In Halevi's work [4], the
full-order solution is given in terms of 2
decoupled Ricatti equations as compared with the
four coupled equations found here.

Remark 2: In [5], the results of this work are
extended to the design of fixed-order, strictly
positive real compensators.

Remark 3: It is clear that a stable compensator
of any order exists if the plant is open loop
stable. Reference 5 also demonstrates that (2l)-

(25) possess a solution if the plant is open loop
stable.

V. Example Problem

The example problem was considered by Doyle
and Stein (61 and also by Halevi [21 and Ganesh
and Pearson [3]. The system is:

* [ 3 _4] [ju + w1 y- [2 l]x + w2 (29)

r2800 4731 [ 1225 -21351
R V

[473 80] -2135 3721]
(30)

with R2 - V2 - 1. The LQC controller is unstable
with a pole at 18.7. For the choice a - 0.011, p
- 1, T - 1000I2, the compensator poles are -0.005
and -15.9 with w gain margin, 60" phase margin,
cost bound of 4.94x105 and actual cost of
4.31x105. For the choice a - - 1, T - 62.5I2.
the compensator poles were -7.94±j2.98 with X
gain and phase margins, cost bound of 5.93x105
and actual cost of 5.51x105. For comparison, the
lowest cost suboptimal compensator design by
Halevi [2] had a cost of 4.4x105 with infinite
gain margin and 82" phase margin and the design
by Ganesh and Pearson (3] had a cost of 3.88x105
using a fourth-order compensator. A particular
advantage of the method presented here is the
ability to handle compensators of order less than
the plant order, although no numerical results
are given here.

VII. Conclusions

This paper presents a method for designing
stable, dynamic compensators of order less than
or equal to that of the plant. An overbounding
technique on the state covariance guarantees that
the compensator is stable if nonnegative definite
solutions exist to the design equations.
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