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Recursive Digital
Filter Synthesis in
the Time Domain

FRANCIS BROPHY and ANDRES C. SALAZAR,
Member, IEEE

“©1974 1EEE. Perso@se of this material is

Abstract—The nonlinear minimization problem that results
from recursive digital filter design with phase constraints is
simplified somewhat by working in the time domain. This
paper describes techniques that utilize the time samples of the
desired response as target values for an iterative minimization.
Initial values for the a and 8 (feedforward and feedback) coef-
ficients can be obtained by one of several reliable methods
and fed into iterative routines that lead to a locally optimal
solution for the coefficients. The initial guess procedures,
stemming from regressionlike equations, only require the solu-
tion of a set of linear equations, In addition, the iteration
procedures described in this paper lead to recursive filter de-
signs requiring little computer time. Examples are presented
to illustrate a range of applications.

I. Introduction

The design of recursive digital filters is made dif-
ficult because of the nonlinear programming problem
involved and the need for good initial values of a
(feedforward) and 8 (feedback) coefficients. If the
design is formed in the frequency domain, then sam-
pled amplitude and phase spectra of the ideal and ap-
proximating filters are compared after every adjust-
ment of the « and § vectors. The computation of the
spectra for this comparison requires many exponential
and inverse trigonometric function evaluations that
take up a substantial amount of time in the design
program. If the number of « and § parameters is
moderately large (e.g., 10 each) the number of itera-
tions required to reach a local minimum is large and
the computation time becomes prohibitively expen-
sive. Also, there does not seem to be an easy method
of obtaining good initial values for the a and 8 vectors
when working in the frequency domain.

An alternative filter design procedure is presented
here that utilizes time domain techniques to find a
realizable filter whose response approximates an ideal
time sequence. The closer the designed filter’s im-
pulse response is to the ideal, the “better’ (e.g., L, or
L. metric) the approximation is in frequency with
regard to both amplitude and phase. We recall that
the impulse response of a digital filter is the sequence

Manusecript received May 17, 1973.
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of Fourier coefficients of its frequency response. It
can be shown that a frequency domain approximation
iIs directly related to a search for a realizable filter
whose impulse response matches a large number of
the values of an ideal time sequence closely (see Ap-
pendix). Initial values for the a and g vectors can be
easily obtained from this sequence by solving nothing
more than a set of linear equations. Iterative pro-
grams, which then search for a set of a and § coef-
ficients yielding an impulse response closest (e.g.,
least squares) to the desired one, require gradient
(and sometimes Hessian) evaluations that are easily
performed in the time domain with no need for tran-
scendental function computations. As the degrees of
freedom for the design of a recursive digital filter
increase, namely, the number of « and § coefficients,
computation savings become increasingly important.
This aspect, as well as the ease with which good
initial « and § values can be obtained, support the
contention that the time domain may be the more
natural domain for recursive filter design.

Time domain designs, however, can only deal with
an overall frequency specification. That is, the ap-
proximation problem has been transferred from min-
imum stopband loss requirements and maximum
passband deviation in the frequency domain to one
involving maximum response deviations from an ideal
time sequence. However, since initial guesses for «
and § coefficients are difficult to obtain for frequency
domain designs, it still may be practical to first im-
plement a time domain procedure similar to one that
we will treat in the next few sections, and then feed
the locally optimal time domain solution to a fre-
quency domain design procedure that will iterate
towards a locally optimal frequency domain solution.

We emphasize that the need for a recursive digital
filter design with specified phase does not arise from
an academic viewpoint. Implementation considera-
tions encourage minimization of the number of de-
lays in a filter and this can be done easily with
recursive filters with no sacrifice in the number of
degrees of freedom in design. (By design degrees of
freedom we mean the number of filter variables,
namely, the feedback or feedforward tap settings.)
For example, a common implementation is that of
the cascaded second-order section that is multiplexed
many times between incoming signal samples. Thus,
in order to use the full capability of this implementa-
tion a recursive filter design is required. Also, in min-
imizing the number of delays in a filter design an
important benefit is derived if coefficient length is a
limitation. In general, the higher the order of the
filter the greater will be the range of coefficients.

I1. Time Domain Recursive Filter Synthesis

The impulse response of a causal recursive digital
filter {g,}o is a sequence of Fourier coefficients of
some complex frequency function G(e7“To) on
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B={w:lw| < (n/Ty)} where T, is the sampling
period. From classical analysis of Fourier series we
understand that an approximation

Ky N )
Hg(w)= 3 h, emwTo

n=-Kji

to a desired continuous spectrum H(w), can be arbi-
trarily improved in a given norm (such as L, or L_)
on B by making K; and K, sufficiently large. We in-
troduce a constant delay K, T, and so we can now
reindex {ﬁn}ﬁf to {h,}r where T=K, +K,.

We choose to measure the goodness of the approxi-
mation in the time domain by a function &:

T
&= (h- ). (1)
n=0

It is evident that even if & is reduced to zero by
adjustment of the « and B coefficients the spectrum
approximation error has not been reduced to zero.
This is apparent from the requirement that a realiz-
able digital filter have at most a semi-infinite response.
We refer to {h, }7 as the target sequence.

We recognize that the approximation error is com-
posed of two parts, the first consisting of {h, """
and the second is that of {h,}x,.,. If K, >> K, the
second part becomes insignificant compared to the
first for most approximation problems of interest.
Hence, in forming {h,}} as the target sequence, we
have sacrificed most of the approximation error to a
realizability consideration.

The approximation of H(w) on B by a harmonic
series with respect to some norm is a subject which
has been well studied (see Appendix). We need only
mention that there exist various methods for obtain-
ing the functions

. K2
T ~ i
HK (elw 0) = Z hn e](.a)To

n=—K1

such that Hy — H in B with respect to a given norm.
For example, if the L, (B) norm is used then h, are
nothing more than the Fourier coefficients of H(w)
relative to the complex exponentials {e"“7T0}%, A
least squares norm with a weighting function can also
be used in which case the k,, are the Fourier coeffi-
cients of H(w) with respect to the set of functions
orthonormalized with respect to that weighting func-
tion (e.g., Chebyshev polynomials). A brief review of
methods. for obtaining target sequence {#,}%. which
approximate the desired spectrum H(w) with respect
to the complex exponentials is given in the Appendix.

Let a realizable digital filter have the transfer
function!

1G(z7' ) has been normalized at z™! = 0 for notational con-

venience and reduced to the canonical form where M < N.

l1+a,z7 b +a272 4+ - +ayz™ u
<N
- - . -N = .
1-8,271-8,272= .. .- Bn2

Gz V) =

(2)

By writing the impulse response recursion equations
for G(z7'):

N
gnzz Bkgn—k+an 1<n<M (3)
k=1

N
8n =) BrBn- n>M (4)
k=1

it then becomes clear that g, is a nonlinear function
of the {8 }¥., and {a,}L,. Thus, the minimization
of & is a difficult nonlinear programming problem.
As the number of degrees of freedom increase, viz.,
M + N, the region over which minimization is sought
becomes awesomely large. It therefore becomes im-
perative that the initial guess for the a and § vectors
be of high quality to avoid long iteration times com-
mon for such nonlinear minimization problems.

A method [1] of reducing the number of variates
in the minimization? of & consists of relating the «
parameters to the iterating § vector by using the a’s
to force g, = h, for 1 < n < M in (3). For example,
the degrees of freedom would be cut in half if M = N.

l11. Initial Guesses for the a and § Parameters

Some advantages of a good initial guess for a and 8
values for iterating towards a local minimum of & have
been discussed in the previous section. We present
here time domain techniques for obtaining initial
guesses of the a and § parameters. In addition to be-
ing simple to implement, these techniques yield digital
filter designs of excellent quality.

The advantage of having several ways of obtaining
initial values for the a and 8 parameters becomes ap-
parent when a particular method is used and an un-
stable § solution results. In such instances, another
method offers an opportunity to find an initial 8
vector corresponding to a stable filter.

Since the a vector has a primary effect on the time
response {g,} of (3) for the first M samples and has
only a secondary effect on the time samples of (4)
we can justify the attention given to solving for an
optimal § vector separately in (4). Hence, we mini-
mize (5) first and then

&= 3

n=M+1

N 2
(hn -5 ﬁkg,,-k> (5)
k=1

2The function & of (1) represents only one way of measur-
ing the difference between the ideal and the synthesizable
sequences. One can propose other functions for measuring
this difference but & of (lf will yield a simple gradient for
iteration purposes as we shall see.
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return with a given set of {g,}Y to solve for {a,} ¥
such that g, =h,,n=1,2,---,M. Thus the mini-
mum of &' is identical to the minimum of & (1)
subject to this constraint on the «’s. Keeping this
idea in mind let us examine several methods of esti-
mating a § vector.

A. Modified Least Squares

The actual response {g,} of a realizable filter can
be decomposed into the ideal response {h,} and an
error sequence. Thus, we write

&n =h, *te, (6)
where {€,} is an error sequence to be minimized:
, I T
&' = Z (hn - gn)2 = Z €n (7)
M+1 M+1

where T >> M + N (e.g., 10 times M + N). Rewriting
(5) in terms of (6) we have

, T N 2 T N
&= 3 (-3 Buhoer) = 23 (7 & akhn-k)
M+1 k=1 M+1 k=1

+ ZT: (:Z:l Bken—k)z- (8)

M+1

Instead of seeking to minimize simultaneously the
three terms (absolute magnitude) on the right-hand
side of (8), we minimize the first term only:

" T N 2
&" = z(hn— > akhn-k) :

M+1

(9)

This consideration is not without justification. For
we note that minimizing &” has the additional effect
of minimizing the second term of (8) because of the
factor

N
(hn -2 5khn-k>-
k=1

Further, the sequence {e,} is minimized if 8’s are
found so that

Bk hn—k

M=

h, =

k

1

for every n.
The set of §’s minimizing &” can be found easily
from the normal equations?

N T T
Z Bk(z hn—khn—l> = Z hnhn—l

k=1 M+1 M+1
1=1,2,3,---,N. (10)

The question of stability in obtaining this initial
guess has never been fully explored. Experimental

*Shanks [1] in a related study encountered the same
equations.
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evidence suggests that for sufficiently large T and a
continuous spectrum corresponding to {h, } the § vec-
tor that results from this initial guess offers a stable
filter. Of course, {h,}%,, is intended to contain a
large portion of the ‘“tail” of the time impulse
response,.

B. Padé Approximants®

It is possible to solve for the a’s and 8’s from (3)
and (4) so thatg, =h,,n=0,1,2,--- , M+ N. This
amounts to equating the first M + N + 1 coefficients
of the power series expansion of G(z7!) of (2) with

H(Ez"')=3 h,z™"
n=0

representing the ideal transfer function. Of course,
G(z7!') does not have a sufficient number of degrees
of freedom so that g, = h,,, all n, but a sufficient num-
ber of the Fourier coefficients {h,} will be matched
exactly for a reasonable spectrum approximation.

Some care should be exercised in forming the Pade
approximant since an unstable filter may result. Ex-
perience has shown that two factors that could lead to
instability are the discontinuity of the spectrum spec-
ification and a choice of M + N that is too low. A
simple test can be performed on the samples {h,, } ¥*N
in order to determine whether stability will result
from the Padé synthesis technique [2].

C. Generalizations to Padé or Modified Least
Squares Techniques

Simplicity is an important advantage of any initial
guess procedure and often outweighs any other dis-
tinction an initializing procedure may have. We offer
several generalizations of the two previous methods
discussed that still entail only the solution to a set of
linear equations.

1) An obvious generalization to the modified least
squares method involves weighting the target se-
quence approximation:

T N 2
&= Z (hn - Z B hn—k) Wy

n=M+1 k=1
wherew, > O, n=M+1,M+2 -.- T.

Again we assume that the a’s will be used to match
{h,}{' exactly. We can see easily that w, = 1,
M+1<n<M+N, w, =0, otherwise yields the
Padé¢ approximant technique, while w, = 1, all n,
forms the modified least squares method. By choos-
ing an appropriate set of weights {w,}%,,, we argue
that improvement over the Padé initial guess could
result if we more closely matched the first N + K
samples (past the zeros’ influence) at the expense of
not matching the first N exactly. In the case of mod-
ified least squares we could de-emphasize the smaller

4See [2] for a fuller discussion of the Padé technique.
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samples in the pulse tail and weight more heavily the
large samples near the pulse peak (e.g., in relation to
their contribution to the overall energy).

2) Instead of solving (3) and (4) for the a’s and
g’s that yield g, = h,, n =0,1,2,---, M + N, we
could choose to solve these equations for any index
set I of cardinality M + N (by assuming g, = h, over
all pertinent index n). The problem is linear and
easily solved. The inherent assumption (viz., g, = h,),
for some n, induces errors but at the same time points
further from the pulse peak will be used to influence
the solution. This technique can best be applied
when the time response is smooth and matching the
first M + N + 1 samples seems redundant.

3) We could replace the entries to the Padé ap-
proximant matrix equation by values which represent
averaged values about that entry, e.g., replace h, by

1 n+2
—-Z h, foralln.

n-2

The strategy is obvious. We hope to sacrifice the
accuracy of any one sample to gain the influence of a
few more points.

IV. lterative Routines

The nonlinear nature of &' in (5) necessitates the
use of an iterative routine for its minimization. Since
&', as a function of the §’s, can have its gradient and
Hessian easily computed, a facile implementation of
one of several minimization methods leads to a locally
optimal solution.

Most unconstrained minimization routines are re-
lated through the matrix A, found in the iterative
equation

Rt =%~ 8,4,V 8 (F,) (11)
where X, is the estimate of the location of the mini-
mum of & at the nth step, A, is the nth step size,
and V&' is the gradient of the object function &
evaluated at X¥,. Convergence to a local minimum of
&' requires that A,, be a positive definite matrix at
every step. For the steepest descent algorithm
A, =1 while a Newton-Raphson technique uses
A, = H'(x,), the inverse of the Hessian of &' eval-
uated at ¥,. The latter method works best when &'
is a convex function in the neighborhood of every X,,.
Finally, the Fletcher-Powell (F-P) minimization algo-
rithm [3] changes A, monotonically from A, =1 to
the inverse Hessian at the final estimate of &'’s
minimum.

We recall that & can be written

(12)

£ (-

n=M

N 2
Z Bk gn—k)

k=1

where constraints on the a’s allow g, = h,, n = 1,
2,---Min (3).

The gradient vector of &' denoted by V&' = (e,,
ey, - ,eyn) has component (noting g, is also a func-
tion of §)

T
Z 2(hn -~ &n

n=M+1

N
) (gn—k +2 6 an—l(k)>

I=1
k=1,2 -, N.

The array a,, (k) is computed from the formula

(13)

08m N
e (k)=aa_ =8m-k * 2 B10m-1(R)
I=1

m=2k

k=12,---,N (14)

with a,,(m) = 1form=1,2,--- N, and a,,(n) =0
form < n. '
For minimization algorithms requiring Hessian eval-

uations, the array a,, (k) again comes into play:

62& . N
Vvik aBjaﬁk 2nzM:+l{an(])[gn-k +1=Z:1 Blan—l(k)]

N
- (hy - &) [2an-k(f) + 2 Biba (], k)]}
=1
where Vj is the j, k entry of the Hessian of & and
b, (j, k) is an array that is also computed iteratively:

3&m
9608y,

b (U, k) = =pm-g(J) * am_; (k)

N
+ Z 61 bm—l(.iv k)
1=1

wherem=1,2,---,Tand1<j,E<N.

At first glance, it would seem that calculation of
a,, (k) and b,(j, k) require a great deal of computa-
tion. However, it is easy to show that

a,(R)=ap,(kR+1) k=1,2,---N-1.
Thus, only a,, (1), m =1, 2,---, T need be com-
puted. Similarly, since b,, (], k) b, (k, J) and
bm(j’ k) m+l(],k+ 1) andb (J, k) m+2(.’+1

k + 1) where b,,(j, k) =
bj,,k(j, k) 2, we need only compute b,,(1, 1), m =
1,2,---,T. Hence the computation of Vj, is greatly
simplifled.

Success in iterating to a locally optimal solution for
the 8’s depends on a judicious choice for A,,. The
sensitivity of the location of the poles with respect to
the B8’s can be seen easily from the theory of equa-
tions. Hence, it is possible that the filter becomes
unstable for only small changes in the coefficients of
the transfer function’s denominator polynomial. Any
iterative routine would then have to proceed cau-
tiously in sequentially choosing its adjustment step
size A, in order to prevent an unbounded time re-
sponse {g,}. We have found that standard uncon-
strained minimization programs such as that of the

Oif j + kB> m and
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IBM scientific subroutines implementation of the
F-P algorithm were not suitable for our usage be-
cause of its lack of control on step sizes. However,
we have been able to program a version of the F-P
algorithm suitable for the filter synthesis problem
that we have outlined.

V. Examples

We illustrate the synthesis procedures discussed in
the previous sections with a few practical design ex-
amples typically found in data transmission system
applications.

The first example is one of a spectrum shaping
bandpass filter, the square root of a baseband signal-
ing filter. In Fig. 1 we show the desired shape to
approximate (A) along with the initial guess to its
approximation (B). The initial guess is obtained using
the Padé technique (see Section III-B), and as can be

seen, this serves as a fine initial approximation. Start-
ing from this guess, a steepest descent algorithm was
applied to further improve the approximation to that
of form B in Fig. 2. Two hundred thirty-three gra-
dient evaluations were required to converge to this
tenth order approximation. Also, as shown in Fig. 3,
the associated phase approximates linear phase in the
passband quite well. In fact, after removing the
linear phase introduced by the approximation the
phase deviates by no more than 0.65° in the passband.
We finally note that the final approximation has a
square error term [&' of (12)] of 0.165 times the
initial guess squared error term, bringing the largest
absolute error for the time samples to 0.011 where
max th,}=1. In the frequency domain the maximum

deviation between the specified curve A and the ap-

proximating spectrum B was 0.02 (or 0.17 dB) in the
passband (900-2700 Hz).
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As a second example we show a tenth order
recursive digital filter design approximating a Hil-
bert transformer. For our purposes, we gave the
filter a smooth rolloff (raised cosine) to assist the
convergence of the time sequence. Again, the Padé
approximant technique was applied to obtain the ini-
tial guess. Starting from there 23 iterations of the
steepest descent algorithm brought the approximation
to that of form B in Fig. 4. The resultant phase is
90° £+ 2.8° (having removed the linear phase which
was introduced by the approximation). Again we
note that the squared error term was reduced by a
factor of 0.9 bringing the maximum absolute error
time sample to 0.013 with max |h,| = 1. We also note

a maximum magnitude error of 0.027 (or 0.2 dB) in
the frequency specification over the passband.

The third example is a typical low-pass filter. We
again gave the filter a raised cosine rolloff to assist
the convergence of the time sequence. The desired
shape (A) and its final approximation (B, eleventh

order) can be seen in Fig. 5. The method used for
obtaining the initial guess for this approximation was
referred to in Section 111-C, and consisted of match-
ing every other sample of the first 2N. We sacrificed
accuracy, in that all samples were not matched ex-
actly, but hopefully gained in the approximation, in
that more samples affected the approximation and
the general nature of the time response was faithfully
reproduced.

We recorded that a Fletcher-Powell minimization
converged to the final approximation in nine steps.
The associated items of interest are: 1) a 3.7° devia-
tion in phase in the passband (linear term removed),
2) a squared error reduction by 0.117 from the ini-
tial guess to the final approximation, and 3) a1 max-
imum absolute error of 0,012 for the time samples
with max |A,| =1, while the maximum deviation in

the frequency specification was 0.021 (or 0.18 dB).

Perhaps, at this point, two issues should be cleared.
First, we cannot hope to claim that these optima are
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Fig. 6. Modified least squares as initial guess-amplitude comparisons.

anything more than local. In fact, intuitively, we
feel that the chance of finding a good local optimum
depends on the technique of determining an initial
guess. And this notion is precisely what motivated
the development of the work on initial guesses re-
ported here. Second, we have found that the gen-
erally powerful Fletcher-Powell minimization tech-
nique does not significantly speed up convergence to
a local optimum for the time domain filter design
techniques we have treated here. When the number
of iterations (namely, gradient evaluations) is rela-
tively small the steepest descent algorithm serves
adequately enough, especially as it is simpler to imple-
ment. In this same light, implementing any modified
Newton-Raphson method, which requires Hessian
evaluations does not appear to be useful.

As a last example, we present what may appear to
be a difficult design problem, a compromise equalizer.
We identify the magnitude specification as form A in

Fig. 6; this should typify a moderately complicated
shape (Fig. 8, form A gives the associated phase). We
chose a twentieth order approximation. The initial
guess (form B, Fig. 6) was obtained using the modi-
fied least squares technique (see Section III-A) and
after eight iterations of a Fletcher-Powell minimiza-
tion the final approximation (magnitude) can be
found in Fig. 7. The phase approximation can be ap-
preciated by viewing Fig. 8. Here we record a maxi-
mum phase error of 3.5° in the passband and a
maximum absolute error over the time samples of
0.099 with max lhn| = 1, reducing the overall error by

a factor of 0.6 in the minimization from the initial
guess. The maximum magnitude deviation was 0.06.
We capsule the results of all the examples in Table 1.

It is interesting to note that the size of the approxi-
mation is not necessarily the limiting variable using
the described time domain techniques. Typically, as
the number of variables increases in a nonlinear mini-
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Fig. 8. Fletcher-Powell minimization phase-linear term removed.

mization problem, iteration times become longer.
However, due to the nature of the initial guess, this
phenomenon does not appear here. In fact the initial
guesses also improve with the degree of the filter.
And so, one could possibly envision cases where the
iteration times actually decrease with increasing order
of the approximation (of course, the time to obtain
an initial guess will increase slightly).

We can perhaps now summarize an interesting phe-
nomenon associated with the time domain synthesis
of recursive digital filters, namely, this technique is
more ideally suited for filters of higher degree (> 8).
There is nothing conceptually wrong with designing
filters of low order using this technique; however,
from a practical viewpoint the methods of obtaining
stable initial guesses are not as standardized. (For
example, the Padé approximant cannot be guaranteed
to be stable, especially for low order filters.) Of
course, there is nothing to prevent the designer from
obtaining his own initial guess and then iterating
from there.

" Finally, we remind the reader that in the time do-
main the amplitude and phase cannot be separated.
That is to say that the quality of the approximation
cannot be varied, at will, between amplitude and
phase. Likewise, in the time domain the designer has
no simple way to guarantee stability (such as root
reflection when the approximation is done in the
frequency domain) without seriously altering the de-
sired samples to be approximated. (Once an initial
guess is stable then further iterations remain stable.)
We refer the reader to [4], [13] for a discussion of
the frequency domain design of recursive digital
filters with specified magnitude and phase char-
acteristics.

VL. Conclusions

Recursive filter designs are often required in digital
circuits in which the number of delays is to be min-
imized and coefficient accuracy is limited. The main
obstacle that arises for such designs is that the de-
termination of the «’s and g’s that will yield a desired
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TABLE I
Design Characteristics of Figs. 1-8
Bandpass
Shaping Compromise
Filter Name Filter Phase Shifter Low Pass Equalizer
Figs. 1-3 4 5 6-8
Order of filter 10 | 10 11 2
Type of initial guess Pade Padé modified Padé modified least squares
Type of minimization steepest descent steepest descent Fletcher-Powell Fletcher-Powell
Number of iterations 28 9 8
Percent reduction 83.6 29.8 10 30.2
Maximum relative 0.011 0.099 0.013 0.012
time sample error
Maximum relative 0.0201 0.06 0.027 0.0207
magnitude error o o ° o
Maximum phase error 0.646 3.562 2.81 3.21
(linear term removed) o o o o
Average phase error 0.005 0.77 0.847 0.407

(linear term removed)

spectral shape is a nonlinear programming problem.
A simplication occurs if the desired spectrum con-
straints are carried into the time domain by forming
a target time sequence (see Appendix for several
methods of obtaining this sequence). The approxi-
mating recursive filter is then forced via one of several
techniques to have its impulse response follow (in the
least squares sense) this target sequence. Iterative
routines can then be employed to adjust the a’s and
B’s further until a locally optimal solution is reached.

An important feature of this time domain approach
is that it yields simple initial guesses to @ and § values
for arbitrary spectral specifications. Further, iteration
in the time domain is void of complex arithmetic
since both magnitude and phase requirements have
been transformed into a real time sequence. Ex-
amples have been provided to illustrate the flexibility
of this approach.

A computer program has been written incorporating
the filter synthesis techniques outlined in this paper.
The program consists of five sections: 1) the genera-
tion of the desired frequency response, 2) an applica-
tion of the fast Fourier transform to obtain the
associated time response, 3) the calculation of initial «
and g coefficients corresponding to a particular initial
guess procedure, 4) the continuation of the minimiza-
tion of &' through either the steepest descent or the
Fletcher-Powell algorithms, and 5) output, including
the printing and plotting of the final frequency and
time approximations. In all the examples, the mini-
mization (i.e., 2-4) time was found to be less than
1 min on an IBM 370. This maximum time is espe-
cially significant when one notes that the times re-
quired to design even low-order recursive filters (typ-
ically of degree 6 or so) using frequency domain
techniques take well over a minute [4], [12], [13].

Appendix—Review of Approximation Theory for
Digital Filter Synthesis

We reduce the digital filter synthesis problem to a
problem of approximation by a certain class of

analytic functions on the unit disk. To see this, we °

start with a familiar setting.

A. Approximation by a Finite Trigonometric Polynomial

Let H(f) denote a piecewise continuous, real and
even function defined on [—%, % ]. We can formally
write the truncated Fourier series for H(f) by

1

2 (A1)

N
Sn(f)= 3 a.e™  |f<
n=-N
where a,, is the Fourier coefficient of H(f) relative to
e’ Of course, the sequence of functions Sy ()
need not converge pointwise everywhere although
L, -%, %] and a.e. convergence is guaranteed. The
function H(f) here represents the spectrum require-
ment of the filter. Generally, this function is spec-
ified by a sequence of straight lines or other smooth
curves. In any case, a finite number of discontinuities
(of the first kind) of H(f) may result. It is at these
points of discontinuity that convergence of (A1) be-
comes a problem. This is nothing more than a con-
clusion of Riemann’s principle of localization [5, vol.
I, p. 103]. In the subintervals where H(f) is defined
by C,, p = 1 (p-differentiable) functions, we have
uniform convergence of (Al). However, in the neigh-
borhood of a point of discontinuity we experience
Gibbs’ phenomenon with the associated slow con-
vergence of Sy (f) to H(f) at points of continuity
of H(f).

Mitigation of this convergence problem is accom-
plished by adjusting the coefficient sequence {a, }%
as we shall see.

We find that Sy can be written

/2
SN(f)=f H(u) Dy (u - f) du

-2

where Dy (u) is the Dirichlet kernel:
sin (N + %) 2nu

2 sin ru

1

2

Dy (u) =

lul < (A2)
or reproducing kernel of Ty, the set of trigono-
metric polynomials up to degree N, is taken as a sub-
space of L, [—%, %]. We note that the Dirichlet
kernel corresponds to no adjustment of the Fourier
coefficients {a,}?. If we transform {a,}% to
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A a,}N, where AM) =1 - (n/N) we then obtain
the integral equation

1/2

Sy (f) = H(u) Ky (u- f)du (A3)
—1/2
where
1 in N' 2
O s Y

-~

the Fejér kernel.

The benefit derived from the preceding adjustment
is that on any closed interval of continuity of H(f),
Sy () converges uniformly to H(f). Further [5, vol. I,
p. 135] at a point of discontinuity (of the first kind)
fo of H, Sy (f) converges to

H(fo +0) + H(fo - 0)
2

Most importantly, perhaps, is that
lim lim Sy (fo * €) = H(f,  0),
EFQON—oo
which was not possible with the Dirichlet kernel.
In general,’ any adjustment of {a, }7 to {(A{™ a, } 7%
where A\{™ is real and

AV =A% k=1,2,---N

and
Nli_r)nm AM =1 (Ab)
and for all N,
1/2 N .
f 2 3 AM e*?™ gy < constant  (A6)
-1/2  k=-N
results in an integral equation of the type
N 1/2
Sy () =f H(n)Ayn(u- f)du (AT)
-1/2
where
ud 1
Ay@) =AM +2 3 A®™ cos 2nu, |ul< 3

k=1

If the kernel Ay (u) is formed this way then §N N
of (A7) enjoys the same convergence properties as
Sn (f) of (A3) associated with the Fejér kernel. There
exist many convergence factors {A{™}N that are
known to improve the convergence of Sy (f) near a
point of discontinuity of H(f) [6, p. 220] or [7, p.
200]. In passing we note that the factors {A\{M}%;
have not been tabulated which transform the approx-
imation Sy (f) to one consisting of the projection of
H(f) onto the Chebyshev polynomials on —%, %].
Also it is not known whether there exist factors that

5See [5, vol. II, p. 3] or [6, p. 220].

transform Sy (f) into the trigonometric polynomial
of best approximation to an H(f) continuous on
[-%, %] {or a compact subset thereof), although it is
known that any such map must satisfy a Lipschitz
condition for every continuous H(f) [11, p. 27].

The difference in approximation between that given
by Chebyshev polynomials and the polynomial of
best approximation is very slight if H(f) is continuous
[8, p. 127]. Remez [9] algorithms or derivatives
thereof are usually implemented to obtain the poly-
nomial of best approximation to a continuous H(f).
Since such algorithms are iterative, the Chebyshev ex-
pansion appears to be the simpler one to implement
in many cases.

When H(f) is a complex function but Hermitian,
(real even part and odd imaginary part) the truncated
Fourier series of (A1) is still available as an approxi-
mation. Except for interpolation procedures in the
complex plane [10, pp. 243-252] or [11, pp. 76-80]
this seems to be the only viable method of approx-
imation for obtaining a sequence {a, } %2, such that

Sy(f) =3 ane™ ~ H(p).
N

B. Approximation by Analytic Functions on Unit Disk

We have seen in Section A of this Appendix that a
finite sequence {h,}’} can be formed in many ways
so that

N .
Z h e;nzrrf
n

n=-N

provides an excellent approximation to H(f) on
[—%, %]. Let us now focus attention on the case
where {h,}, represents the ideal response of a re-
cursive digital filter.
The response function of a realizabie digital filter is
Gz™')=3 g.2™" (A8)
n=0
which, for reasons of stability, is an analytic function
in the closed unit disc |27!| < 1. However, if H(f) is
real then the approximation to the desired spectral
function is in the form
H(z™") = > hy2™" (A9)
ne=—w
where, by substituting z = 2"’ we can obtain the
more familiar form discussed in Section A. If
2 |h,| <o then (A9) represents the real part of an
analytic function of the type in (A8) since h, =h_,.
Since linear phase is not a detriment to our approxi-
mation, the problem becomes one of finding g, ’s such
that G(Z™') approximates a shifted version of H(z™!).

Gz 'Yy~zMHZ") (A10)
In terms of the Hardy spaces #(?, p > 1 on the unit

for a finite integer M.
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disk this approximation problem takes on a simple
form if p = 2 is considered. For a fixed M we can find
a function G(z~') € #? such that

fllz
1/2

IG(e-iznu) _ ei21rMu H(e—izﬂu)lz du (All)

is minimum (assuming H(e *"™*) € L, (V) where V is
the unit circle). Since H? is a Hilbert space on V [in
particular a closed subspace of L, (V)] the function
G(z7') consists of nothing more than the projection
of 2™ H(2™") onto #?:

Gz)= 3 hpu 2 (A12)

n=0

or simply the truncated expansion of z ™™ H(z™!).
The reproducing kernel (for H? as a subspace of L,)
in this case is the Szeg® kernel

1
K,(u,v)= (1—_3)

For {” approximation G to an L, function H (again
on the unit circle) for 1 < p < oo it is known [11,
p. 60] that the best 3(? apProximation G* has the
property that for a.e., u| <+

e—i21'ru F(e—i21ru) (G*(e—i’znu) _ H(e—i2‘n'u)) >0
and
IF(e-—izrru)l = IG*(e—iZ'nu) _ H(e—iZWU)'D—I

for some F(e™?™) € }(? where q = p/(p - 1). Further,
the L, norm of the smallest difference G* - H in
approximation is

S5

; 1p
{% fl[ [F(") (GH(=") - H(z™))] dz™ } :

An explicit solution for G*(e™12"¥) approximating an
H(e™'?™) of L, (V) is unknown except for some sim-
ple cases. In this paper the solution of (A12) will
be used explicitly.
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