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SURVEY OF THE ROBUST CONTROL
OF ROBOTS

ABSTRACr
In this survey, we discuss current approaches to the robug con-

trol of the motion of robots and smmarize the available liteatre on
the subj The three major desips discussed are the "Linear-
Multivariable" Appoach, the *Passivity approcwh and the
"Vaiable-Stnturew approach. The rey is limited to rigd robots
and nonadpive controllers.

L INTRODUCIION
There are basically two underlying phiosophies to dte contro

of uncertain systems: the adaptve control approach, and herobust
control appoach. In the adaptive approach, one designs a controler
which atempts to learn" the uncertain pameters of the paricular
system and, if properly designed will eventuy be a "bes" con-
troller for the system m question. In the robust approach, the con-
trller has a fixed-stucture which yieds an "acceptable" rormance
for a gi plam-u tait setIn n l the adapve aprach
is applicable to a wider rage of uncerinties but robust controllers
are smpler to implment and no dme is reqWired to "tune" the con-
trler to t plat variations.

We review her different robust control desgns used in con-
troling tbe modon of robots. A discussion of adaptive controls
may be found in [1]. The techniques discussed in this survey belong
to one of the categories. The first is the liar-multivariabe or
fe ack-lineaization approach [2] whme the inverse dynamics of
the robot are ued in order to gloly inearize and decouple the
robot's dynamics. Since one do not have access to the exact
invers dynamics, the lineaizaton and th decouplg will not be
exact. This wi be manifested by unrtain feedbck tem that may
be handled usin muthivaiable linr robust control techniu [3].
The methods baed on computedtorque, or inverse-dynamics such as
those of [4-l] fal under this heading. This approach wi be
described in section of the paper. The second category conts
methods that exploit the pasve nate of th robot [12]. These
techniques try to maintain the pasivity of t closed-loop
robozlontroler system depite uncertn knowledge of the robot's
parmetr Altho ot as to linear control echniques
as the approach i passivity-based methods can
nontheless gt the rbust stabity of the closed-loop
robe/contrler system. The wofks descrbed in [13,14] fall under
this category and wi be discsed m section IlL In the ftird
categOry We iclude methods that can not be easily detEd from
eithe the compatd-oque nxr the passivity approaches. These
include varible-strwture and switching controlers [151 which
atpt to robustly cont the nonlina robot Secton IV will
present the works of [16,17,41] which provide a sample of these
techniques A general swvey of exising robu control thory may
be found in [3, 181.

Le the rid rbot dyasnics be given in joint speby the
lagrge-Euler equikms [19]

D(q)4 + h(q,4) = s (1.1)
whee q is fte g coordinate n vector representng te joints
postios, and T is the gFenazed n orqw input vecto. The maix
D(q) is a symmetric posive-dfinite inertia matrix and h(q,4) is a
vector containig the Corols, centrifugal, and gravity terms. In
geneal, (1.1) arises as a solution to the Lagrange equations of
motion for natura systems [20]. In this paper, we survey methods
which deal primarily with designing controllers that wl make q and
4 tack some desired qd and 4, when the some entries of D (q) and
h(q,4) are uncerain. This wil exclude the important case when te
robot comes in contact with the environment.

C Abdalak, P. Dorato, and K Janahidi
CAD L y for Systems and Robotcs

Elctrical and Computer Engineeing Depam nt
University of New Mexico
Albuquerque, NM 87131.

I. LINEAR MULTIVARLABLE APPROACH
In this section we review approaches which use linear or

saturating linear multivariable design techniques for design of robust
robot controllers. In the early days of robot control, the idea of
liizing the nolinea robot equaions about tir desred trajec-
tory wa popular, and many controLers were desiged that way
[21,23,42,43]. Later however, the special stucture of equations
(1.1), and the fact that the conto T provides an independent input
for each degree of freedom [2,12] , has led to the use of -global"
linearizaon of the nonliear system. It is this later approach that is
stessed in this section. For an excellent description of the exact
linearizaton of robots see [2]. By defining the trajectory eor vec-
tor, eI = q-qd, e2 = i , one is able to globaly linearize the non-
linear error sysem, to dte foowing

i =Ac +Bv (2.1)

where

v = D (q)- [t-h (q,4)] - q. (2.2)

and

A [O 0],B= [l e = e2]

The poblem is then reduced to findig a linea controllr v which
will achkve a desied close-loop pformance ie.

i = Fz + Ge,

v = Hz,

or,

vt) =H(s[-F)-tGe(t) n C(sUe(t)
The folowing static stat-feedback controler is often used

v = -KleC1-2e2 -K;e

to lead tD t following n ontroller

,t = D (qXId+vJ+h(q,4)
which - thefollowing clsed-kJp sySteM

D(q)fil+K2l+K2eI] = 0.

(23)

(2.4)

(2.5)

(2.6)
Unfortunately, the control law (2.5) can noc usually be impemented
due to itscatt c rto r present in D (q) amd h (q,4).
Ins -

'r = D4dVlqvh ;(2.7)
whereD an h arees ofD ann. This in tnakan to (Fg-
ue 1)

c = Ae + B(v+n) (2.$)

rq =E(.)®+D4AA
E=D-'D--t * AA=h-h (2.9)

The vactr r is a nine function of both eand v and can not be
ated as an eral disrlne. Itr s a disu x of th
glbly earized err dynamics which is caused by modeling
uncertaintie paamneter variadons and maybe even noisy meanure-
ments [4]. he line multivarable approaches then revolve around
the design of lnear contoalers C(s) (which may be dynamical) that
will give a control law v such that the complete closed-loop systen
(Figure 1) is stable in some suitable sense, e.g. uniformly ulimately
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bounded, gloaly asymp ally stable, etc. for a given class of on-
liew pertrbation ie.

c = Ae + B(v+-q)
v(t) = C(s e(t)

The following meonable assumnptons [24] are often made

p-lDl < a,

EII.5a

I,hll <8ol1ell2 + 8ieIl + po

(2.10)
(2.11)

(2.12)

(2.13)
(2.14)

where a , a, SO, 8, and po are nonnegative finite constants which
depend on the size of the uncet-ainties.

In generaL the small-gain them [25], or the total stability
theorem [26] are applied in order to find C(s). The most general of
these controllers have been designed using Youla parametrizaton and
H- control eory [27,28] and will be discussed first.

Spong and Vidyasagar [4] used the factoriation approach [27]
to design a clas of linear compensators C(s) , parametizd by a
stable transfer matrix R (s), and which guarantee that the solution
e(t) to the nonlinear system (22) has a bounded L_ norm. The
authors actually assumed that the bound on Ah is linear, i.e. 80 = 0
in (2.14) and found the family of all L_ stabilizing compensatos of

ti nominal plant A particular compensator may then be obtained
by choosing the paameter R(s) to satisfy other design criteria such
as surpresing the effects of 9. As was discussed in [24], including
the more reasonable quadratic bound wiLl not destroy the L_ stability
result, but will exclude any L2 rewlts unless the problem is reformu-
hed and more assmptons are made. In partcular, noisy measure-
ments are no longer tolrated Craig [29] discussed the L2 prblem
and under certn conditions, was able to show the boundedness of
the erro signals.

Staic feedback compensato such as the ones given in (23)
have also been used extensively starting with the works of Freund
[30], and Tam eLal. [6], where

v = C(s)e = -Ke (2.15)

such that

k =Ae + B(v+rI) = (A-BK)e +Bl = A,e + BTi. (2.16)
In thes paies the authrs use the state-feedback to either pile te
pols sufficiety far in the left-half-plane [9], fterefore guarnteeing
stability in the presmce of rj (by the tal stability theorem for
example), or an extra control loop [6] to coret for the effects of 1,.
In Kuo and Wang [31], the intenl model pinciPle developed by
Francis and Wonham [32] is used to design a liner controller which
minimizes the effects of the dis nce term rHHowever, since r is
a nonliear function of e and v, minizing its effecs does not
neceswly guatee cosed-loop stability. In Gilbert and Ha [10],
Proportial-Lntegral-Denvaive control is apphed m order to obtain
some seasitivity improvamnts. Cai and Goldeberg [33] use
Proprtiona-Integral control to improve the robus s prpertes of
t controller. Armoto and Myazaki [34] use Pnortonal-
Integral-Derivative feedback control to rohstly stabilize rbot mani-
Wlats. Ha and Gilbert [5] use a sturating type feedbaac control

derived from Lyapunov function theory in order to guarantee the ulti-
mate boundedness of the error vector e(t). Their solution is
parametrized with cerain constant matrices which make it possible
to design for ultimate error bound, rate of approach to the ulae
bound, size of the saurating zone, and feedback gains in the unsa-
turated regon. In Spong et al. [8], Lyapunov function theory was
used to guarantee the ultimate boundedness of the error vector in
(2.2). The controller is saturating and was obtained fom the results
of Cvetkovic and Vukobratovic [351 and a linear "high-gain" con-
troller based on the theory of Barmish etal. [36], Gutman [37], and
Coriess and Leitman [38]. A similar approach was discussed by
Chen [39]. Finally, in Samson [11], Lyapunov theory was used to
obtain a 'High-gain" controller which guarantees ultimate bounded-
ness.

INe feectk-lineization approach has been populr (under
differe names) in the robotics fiekl Its main advantage is obvi-
ously the weah of linear techniues which may be used in the linear
outer loop. In the prese of contact forces however, this apprc h
becmes much more involved as was discussed in [14]. In some
cases, the local linear ion ap ah was combined with other tech-
niques in omr to gurt robust stability [21,23,421. In partcular,
Desa and Roth [23] used the inte l model nrincinke to minimize
tie effects of disnces for a robot model linearized over seg-
ments of the total operating me. Here also, closed-loop stability is
not guaranteed.

ImL PASSiVrrY - BASED APPROACH
In this sectio, we review approache which rely on the pas-

sive structure of rigid robots as described in te folowing

D(q + C(q,4)4 + g(q) = X (3.1)
where h(q,4) = C(q, w + g(q), and b(q)-2C(q,4) is skew sym-
metric by an appropriate choice of C(q,4) [121. As a result of ta,
the following dtorem is obtained.

Theorem 3.1 [1]:
The Lagrnge-Euler dynamical equation of a rigid robot (1.1) define
a passive mapping frm 'c to 4 ie.,

<41m 4Tdt&> -P (3.2)

for some 5>0 and all T finite.

Based on that property, if one can close the loop from 4 to s wih a
PaSSiVe system (along with 12 bonded inputs) as in Figure 2, the
closedloop system will be stable using the passivity theorem [25].
This however, wiU only show the asymptotic stability of k1 and not
of e 1 . On the other hand, if one can show the passivity of tx sys-
tem which maps x to a new vector r which is a filtered version of e 1,
then a controller which closes the loop between -r and r wi
guarawtee e asymptotic stability of both e1 and i . This approach
has been used in tic adatve control literture to define passive con-
trollers [1]. Consider ten the following contol law

T= D(4rK,F(s)i )+C4+g (3-3)
where F,(s) is an SPR trnsfer function, K, is a positive-defiite gain
matix. Unfortumately, the inclusion of an integrtor which recon-
ats the error el wll stroy the SPR condition. Substituing the
above control law into equation (3.2), one gets from Figure 2

r = [C-DKF,(s)]il
r = A(s)i 1 (3.4)

and

2= Dd+C4d+g (33)
whe DK,F,(s)-C is SPR with an SPR inverse by an appropriate
choice of K, md F,(s). Using the pssivity terem, one deduces
thatk 1 and rae bouded in the L2nom,andsine

c1 =A(sf'r (3.6)
is SPR, one deduces t k-1 is asymptotcaly stable. Unforunately,
as discussed above, this wil only imply that the positon error el is
bouded and not its asymptoic stability.

On the other hand, since coe does not have dte exat
kncYwedge required to implement contoller (3.3), one usually uses

T = D[4b-xr(s)ti] + q + g (3.7)
Node that the gravity term g is being exactly canceled. Applying
this controUer to equation (3.1) results in Figure 2, with

r = [C-DKF,(s)]1l (3.8)

U2 D4dC (3-9)
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art the sablity of the closed-loop sytm is stll guaranteed using
th passivity theorm if one chooses DKF,(s)-C to be SPR with an
SPR invem.

The passivity wosches desribed so far have been modified
versions of the feebk-linearizatkonagFoaches. In [13,141 how-
eve, Andeon demonstred using network-teory concet, hat
even in tic absne of conct forces, a feedback-linearzation-based
comtrdler is nt passive ad may te se in ities the
eof merwin His soluto to dic poblem consisted of

using mi Dervative (PD) with vail -sLe.

s = -K1e1-K2e2 + 9,

V. CONCLUSIONS
lie robust motion control of rigid robot was reviewed. Three

main we idkatified and explned. All controllers were
robust with respec to a range of uncertain paramwers alhough some
of them could only gantee the boundedness of the position erro
ratber than its asymptotic convergence. A combinaion of twese
woaches may be usel as we try to include force control, and
fexibit effects in our cent and futue research.

(3.10)
where K, ad K2 are me-varying anddep on the iner
matrix D(q). Even thu, D(q) is nt exactly knon the stability
of the closd-kx erro is gurted by the passivity of t robot
and the feeda law. Te advtage of this ap h is that contact
forces may w be modated and that lae aties may
now be ated Its main disadvantage is dtat its perfmance
depends on the knowledge ofD (q) whose ingular vaes ar need
in order to find K atd K2. In [40]. a combination of feedback-
lineizaion ad passivity rsult was used to show the stability of
th ckned-loop ercr response unpde the ausump$km ta the h trs
are known or sml

IV. VARIBLE - STRUCTURE CONTROLLERS
In ths stion we gro designs tt use varable-strtue

controlles (15] and sin designs which may not he esiy deduced
from either previou apoce,T VSS theoy has been applied
to the control of may nonlin processes. One of the m featur
is of this approach is that onc only needs to drve the errco to a
"'swing surae", after which the system is in "sliding mode' at
will at he affectd by any modeling unctainties and/o dtur-
bucest15,16]. ic firms Of t tha ory to robot onrol
sems to he in the woit of Young [161 whe the set point reguhtion
pbem (,4- O ) was solved using th following ontroll

x ifsi(e i,4i) > 0

w refri=l ,nfor n - krobot,and

Si (Ciiu4) = ciei + 4i, ci > 0.

(4.1)

(42)
are the siching planes. It is then shown using the hierarchy of the

sliding smfaces r*s', ,s, atd give bounds the u tinti
in th manipulatos modeL that one can find b d C- in ode to
drive te error sigal to fte intestion of the sliding sfcs aft
which the eror wfll "slde" to ero. This contrll e ts tic
lin coping of the joins by forcing the syt into fte sliding

mode. Unforuately, e control effort as sen rom (4.1) is dicon-
tinuous ad will therefore cete "chattring" which may excite
unmodei bigh-fieqoeoy dynami

More reendy, S bn has modified [17,411 the original VSS
controlls using the so-cald "sucton control". In this appach,
the sliig suface s(e) is allowed to be time-vsrying at the control
pocere consists of two seps. In e fist, the contl law fores
the trajectory towards the slding surface while in the second step,
the controle is smoodted inside a possiby tim-varyin bounldy
layer, in order to achieve optia treoff between contrl
bandwidth and tracking precision, theefre eliminang ating
and the sensitivity oftic controller to high-fequency
dynamics. The conetrer stuctume in his cs is given by

t =bl>2Ai-sQ2e1-4t<q,4,t)] + A (4.3)

wiem, A is a diagonal matrix of positive elements X. (which may he
time-varying) and 4{,@.) is a wnlinr term _detrmined by the
exte of the parae-tric uncertainties and the sucn cotol
modificatn [17].

Figure 1

Fgx 2
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