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SURVEY OF THE ROBUST CONTROL
OF ROBOTS

C. Abdallah, P. Dorato, and M. Jamshidi
CAD Laboratory for Systems and Robotics
Electrical and Computer Engineering Department
University of New Mexico
Albuquerque, NM 87131.

ABSTRACT

In this survey, we discuss current approaches 1o the robust cosi-
trol of the motion of robots and summarize the available literature on
the subject. The three major designs discussed are the "Linear-
Multivariable" Approach, the "Passivity" approach and the
"Variable-Structure” approach. The survey is limited to rigid robots
and nonadaptive controllers,

L INTRODUCTION

There are basically two underlying philosophies to the control
of uncertain systems : the adaptive control approach, and the robust
control approach. In the adaptive approach, one designs a controller
which attempts to "leamn” the uncertain parameters of the particular
system and, if properly designed will eventually be a "best” con-
troller for the system in question. In the robust approach, the con-
troller has a fixed-structure which yields an "acceptable® performance
for a given plant-uncertainty set. In general, the adaptive approach
is applicable to a wider range of uncertainties , but robust controllers
are simpler (0 implement and no time is required to "tune” the con-
troller to the plant variations.

We review here different robust control designs used in con-
trolling the motion of robots. A discussion of adaptive conmtrollers
may be found in [1]. The techniques discussed in this survey belong
to one of three categories. The first is the linear-multivariable or
feedback-linearization approach [2] where the inverse dynamics of
the robot are used in order to globally linearize and decouple the
robot’s dynamics, Since one does not have access to the exact
inverse dynamics, the linearization and the decoupling will not be
exact. This will be manifested by uncertain feedback terms that may
be handled using multivariable linear robust control techniques [3].
The methods based on computed-torque, or inverse-dynamics such as
those of [4-11] fall under this heading. This approach will be
described in section II of the paper. The second category contains
methods that exploit the passive nature of the robot [12]. These
techniques try to maintain the passivity of the closed-loop
robot/controller system despité uncertain knowledge of the robot’s
parameters. Although not as transparent to linear control techniques
as the computed-torque approach is, passivity-based methods can
nontheless guarantee the robust stability of the closed-loop
robot/controller system. The works described in [13,14] fall under
this category and will be discussed in section IIl. In the third
category we include methods that can not be easily deduced from
either the computed-torque nor the passivity approaches. These
include variable-structure and switching controllers [15] which
attempt to robustly control the nonlinear robot. Section IV will
present the works of [16,17,41] which provide a sample of these
techniques. A general survey of existing robust control theory may
be found in [3, 18].

Let the rigid robot dynamics be given in joint space by the
Lagrange-Euler equations [19]

D@} + h(a.d) =1 ¢RY)
where g is the generalized coordinate n vector representing the joints
positions, and 1 is the generalized » torque input vector. The matrix
D(q) is a symmetric positive-definite inertia matrix and h(g,q) is a
vector containing the Coriolis, centrifugal, and gravity terms. In
general, (1.1) arises as a solution to the Lagrange equations of
motion for natural systems {20). In this paper, we survey methods
which deal primarily with designing controllers that will make ¢ and
¢ track some desired g, and §,; when the some entries of D (g) and
h(q.g) are uncertain. This will exclude the important case when the
robot comes in contact with the environment.
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II. LINEAR MULTIVARIABLE APPROACH

In this section we review approaches which use linear or
saturating linear multivariable design techniques for design of robust
robot controllers. In the early days of robot control, the idea of
linearizing the nonlinear robot equations about their desired trajec-
tory was popular, and many controllers were designed that way
[21,23,4243). Later, however, the special structure of equations
(1.1), and the fact that the control T provides an independent input
for each degree of freedom [2,12] , has led to the use of "global”
linearization of the nonlinear system. It is this later approach that is
stressed in this section. For an excellent description of the exact
linearization of robots see [2]. By defining the trajectory error vec-
tor, e, = g—qg4, €, = é, , one is able to globally linearize the non-
linear error system, to the following

é =Ae +By (2.1)
where

v =D (g) [h(g.9)] - §a. 22

0 I 0 €
afpe 2-f]. .- [‘2]
The problem is then reduced to finding a linear controller v which
will achieve a desired closed-loop performance ie.
2 = Fz + Ge,

v = Hz,

and

23)
or,
v(t) = H(I-F)Y'Ge (t) = C(s)e(t)
The following static state-feedback controller is often used
v=-K,e,-K,e9 = —Ke
10 Jead 1o the following nonlinear controller
©=D(gNgrvh(g.9)
which gives the following closed-loop system
D(q)[é+K 2¢,+K2¢,]1 = 0. Q6)
Unfortanately, the control law (2.5) can not usually be impiemented
due to its complexity or to uncertaintics present in D (q) and k(g,4).
Instead, one applies
1 =Dlgvi+h @n
whal'e)ﬁamﬂsesthnaesofDand‘h. This in trn leads to (Fig-
ure

249

23)

é =Ae + B(v+n) 38)
where

n=E(w+§) + D4k

E=D'D-1, , Ah=h-h 9

The vector 7} is a nonlinear function of both ¢ and v and can not be
treated as an external disturbance. It represents a distarbance of the
globally linearized error dynamics which is caused by modeling
uncertainties, r variations and maybe even noisy measure-
ments [4). The linear multivariable approaches then revolve around
the design of linear controllers C(s) (which may be dynamical) that
will give a control law v such that the complete closed-loop system
(Figure 1) is stable in some suitable sense, e.g. uniformly ultimately



bounded, globally asymptotically stable, etc. for a given class of non-
linear perturbation 1) i.e.

¢ = Ae + B(v+1) (2.10

v()=C(se(® 2.11)
The following reasonable assumptions [24] are often made

D <a, .12

IEl <o (2.13)

ikl < Soliell 2 + Sfiell + po 2.14)

where a , o, & , 3, and p, are nonnegative finite constants which
depend on the size of the uncertainties.

In general, the small-gain theorem [25], or the total stability
theorem [26] are applied in order to find C(s). The most general of
these coatrollers have been designed using Youla parametrization and
H*" coutrol theory [27,28] and will be discussed first.

Spong and Vidyasagar [4] used the factorization approach [27]
to design a class of linear compensators C(s) , parametrized by a
stable transfer matrix R (s), and which guarantee that the solution
e(t) to the nonlinear system (2.2) has a bounded L. norm. The
authors actually assumed that the bound on Ak is linear, i.e. 8 =0
in (2.14) and found the family of all L., stabilizing compensators of

the nominal plant. A particular compensator may then be obtained
by choosing the parameter R(s) to ‘satisfy other design criteria such
as surpressing the effects of 7. As was discussed in [24], including
the more reasonable quadratic bound will not destroy the L.. stability
result, but will exclude any L, results unless the problem is reformu-
lated and more assumptions are made. In particular, noisy measure-
ments are no longer tolerated. Craig [29] discussed the L, problem
and under certain conditions, was able to show the boundedness of
the error signals.

Static feedback compensators such as the ones given in (2.3)
have also been used extensively starting with the works of Freund
[30], and Tarn et.al. [6], where

v =C(s)e = -Ke
such that
¢ = Ae + B(v+1) = (A-BK)e + By = A_e + Bn. (2.16)

In these papers, the authors use the state-feedback to either place the
poles sufficiently far in the left-half-plane [9], therefore guaranteeing
stability in the presence of 7 (by the total stability theorem for
example), or an extra control loop [6] to comrect for the effects of 1.
In Kuo and Wang [31], the internal model principle developed by
Francis and Wonham [32] is used to design a linear controller which
minimizes the effects of the disturbance term 1. However, since 1 is
a nonlinear function of e and v, minimizing its effects does not
necessarily guarantee closed-loop stability. In Gilbert and Ha {10],
Proportional-Integral-Derivative control is applied in order to obtain
some sensitivity improvements. Cai and Goldenberg [33] use
Proportional-Integral control to improve the robustness properties of
the controller. Arimoto and Miyazaki {34] use Proportional-
Integral-Derivative feedback control to robustly stabilize robot mani-
pulators. Ha and Gilbert [5] use a saturating type feedback control
derived from Lyapunov function theory in order to guarantee the ulti-
mate boundedness of the emor vector e(t). Their solution is
parametrized with certain constant matrices which make it possible
to design for ultimate error bound, rate of approach to the ultimate
bound, size of the saturating zone, and feedback gains in the unsa-
turated region. In Spong et. al. [8], Lyapunov function theory was
used to guarantee the ultimate boundedness of the error vector in
(2.2). The controller is saturating and was obtained from the results
of Cvetkovic and Vukobratovic [35] and a linear "high-gain” con-
troller based on the theory of Barmish et.al. [36], Gutman [37], and
Corless and Leitman [38]. A similar approach was discussed by
Chen [39]. Finally, in Samson {11], Lyapunov theory was used to
obtain a "High-gain” controller which guarantees ultimate bounded-
ness.

(2.15)
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The feedback-linearization approach has been popular (under
different names) in the robotics fiekd. Its main advantage is obvi-
ously the wealth of linear techniques which may be used in the lincar
outer loop. In the presence of contact forces however, this approach
becomes much more involved as was discussed in [14). In some
cases, the local linearization approach was combined with other tech-
niques in order to guarantee robust stability [21,23,42]. In particular,
Desa and Roth [23] used the internal madel nrincinle to minimize
the effects of disturbances for a robot mode! linearized over seg-
ments of the total operating time. Here also, closed-loop stability is
not guaranteed.

III. PASSIVITY - BASED APPROACH

In this section, we review approaches which rely on the pas-
sive structure of rigid robots as described in the following

D@ +C@.9q +g@=1 3.y
where h(q,g) = C(q.4} + 8(¢), and D(g)»-2C(q.g) is skew sym-

metric by an appropriate choice of C(g,¢) [12]. As a result of that,
the following theorem is obtained.

Theorem 3.1 [1]:
The Lagrange-Euler dynamical equations of a rigid robot (1.1) define
a passive mapping from T 0 § ie.,

T

<Glor = { 't > B (G2

for some >0 and all T finite.

Based on that property, if one can close the loop from ¢ to T with a
passive system (along with /, bounded inputs) as in Figure 2, the
closed-loop system will be stable using the passivity theorem [25].
This however, will only show the asymptotic stability of ¢, and not
of ¢;. On the other hand, if one can show the passivity of the sys-
tem which maps 1 to a new vector » which is a filtered version of e,
then a controller which closes the loop between —7 and 7 will
guarantee the asymptotic stability of both ¢; and ¢;. This approach
has been used in the adaptive control literature to define passive con-
trollers [1]. Consider then the following control law

T =D(§K.F ()1 4+Ci+g 3.3

where F,(s) is an SPR transfer function, X, is a positive-definite gain
matrix. Unfortunately, the inclusion of an integrator which recon-
structs the error e; will destroy the SPR condition. Substituting the
above control law into equation (3.2), one gets from Figure 2

r = [C-DK,F,(s))é;
r = A(s)é, (3.4)
and

uy =DgCortg (CR)]
where DK, F,(s)-C is SPR with an SPR inverse by an appropriate
choice of K, and F,(s). Using the passivity theorem, one deduces
that ¢, and r are bounded in the L, norm, and since

e =A@, 3.6)
is SPR, one deduces that ¢, is asymptotically stable. Unfortunately,
as discussed above, this will only imply that the position error e, is
bounded and not its asymptotic stability.

On the other hand, since one does not have the exact

knowledge required to implement controller (3.3), one usually uses

t= Dl K Fo()e1]+ Cq+g )
Notice that the gravity term g is being exactly canceled. Applying
this controller to equation (3.1) results in Figure 2, with

r = [C-DK,F ()], (3.38)
and

4 = DgACiy (3.9)



and the stability of the closed-loop system is still guaranteed using
the passivity theorem if one chooses DK, F, (s)~C 1o be SPR with an
SPR inverse.

‘The passivity approaches described so far have been modified
versions of the feedback-linearization approaches. In [13,14] how-
ver, Anderson demonstrated using network-theory concepts, that
even in the absence of contact forces, a feedback-linearization-based
controller is not passive and may therefore cause instabilities in the
presence of uncertamties. His solution t0 the problem conmsisted of
using Proportional-Derivative (PD) controllers with variable gains ie.

1=-Ke;-Ke5 + 8, (3.10)

where K, and K, are time-varying and dependent on the inertia
matrix D (¢q). Even though, D(g) is not exactly known, the stability
of the closed-loop esror is guaranieed by the passivity of the robot
and the feedback law. The advantage of this approach is that contact
forces may now be accommodated and that larger nncertainties may
now be accomodated. Its main disadvantage is that its performance
depends on the knowledge of D (g) whose singular values are needed
in order to find K, and K,. In (40], a combination of feedback-
linearization and passivity results was used to show the stability of
the closed-loop error response under the assumption that the h terms
are known or small.

IV. VARIABLE - STRUCTURE CONTROLLERS

In this section, we group designs that use variable-structure
controllers [15] and other designs which may not be easily deduced
from either previous approaches. The VSS theory has been applied
to the control of many nonlinear processes. One of the main features
is of this approach is that one only needs to drive the error to a
"switching surface®, after which the system is in "sliding mode" and
will not be affected by any modeling uncertaintics and/or distur-
bances [15,16]. The first application of this theory to robot control
seems to be in the work of Young [16] where the set point regulation
problem (- = 0 ) was solved using the following controller

e {rr ifs(e1,d) > 0

O ifm(en.d) <0
where i=1, - - - ,n for an n - link robot, and
si(e1i,4) = cie; + ¢, ¢; > 0. @2
are the switching planes. It is then shown using the hicrarchy of the

sliding surfaces §;,82, * * * ,S, and given bounds on the uncertainties
in the manipulators model, that one can find * and t~ in order to
drive the error signal to the intersection of the sliding surfaces after
which the emror will "slide” to zero. This controller eliminates the
nonlinear coupling of the joints by forcing the system into the sliding
mode. Unfortunately, the control effort as seen from (4.1) is discon-
tinnous and will therefore create “chattering” which may excite
More recently, Slotine has modified [17,41] the original VSS
controllers using the so-called "suction control”. In this approach,
the sliding surface s(¢) is allowed to be time-varying and the control
procedure consists of two steps. In the first, the control law forces
the trajectory towards the sliding surface while in the second step,
the controller is smoothed inside a possibly time-varying boundary
layer, in order to achieve optimal trade-off between control
bandwidth and tracking precision, therefore eliminating chattering
and the sensitivity of the controller to high-frequency unmodeled

dynamics. The controller structure in this case is given by
© = DI§2Aé1-Ale,—(q,4.01 + h 43)

where, A is a diagonal matrix of positive elements A, (which may be
time-varying) and &(,..) is a nonlinear term determined by the
extent of the parametric uncertainties and the suction control
modifications [17].

@1
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V. CONCLUSIONS

The robast motioa control of rigid robot was reviewed. Three
main areas were identified and explained. All coatrollers were
robust with respect to a range of uncertain parameters although some
of them could only guarantee the boundedness of the position error
rather than its asymptotic convergence. A combination of these
approaches may be useful as we try to include force control, and
fiexibility effects in our curreat and future research.

cm * o

Figure 1
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