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Abstract 

This paper is concerned with the application of com- 
puterized quantifier elimination (QE) methods for ro- 
bust multiobjective feedback design (RMOD), when 
design objectives are specified in the frequency do- 
main. The class of design problems considered here 
has no analytical solutions, so that computerized 
solutions are of interest, even for relatively simple 
problems. However because of the computational 
complexity of pure QE algorithms, a combined Q E  
discretization approach is proposed and illustrated 
with a single example. 

1. Introduction 

In this paper, we are going to deal with the RMOD 
problems in the frequency-domain. The problem can 
be stated as follows: given a plant with uncertain 
parameters each of which lies in a given range (P), 
find a family of compensators which satisfy multi- 
objectives, such as stability, tracking error, and con- 
trol effort, etc.. For simplicity, here we consider the 
linear, time-invariant, single-input single-output sys- 
tem and assume that the compensator structure is 
given. In this case, it has been shown (Fiorio, Malan, 
and Milanese, 1993; Dorato, Yang, and Abdallah, 
1996) that many interesting RMOD problems can be 
stated mathematically as follows: find the range of q 
such that the set of inequalities, 

Fi(w,p,q)>O,wEfl, P E P ,  i=1,2, ..., m (1) 

hold, where w is the frequency variable within the 
given range fl, p is the vector of uncertain parame- 
ters in the given plant within the given range P, q 
is the vector of design parameters in compensation, 
and Fi are the multivariable polynomial functions. 
For quantifier elimination algorithms, the further as- 
sumption that the coefficients in F; must be integers 
is required. Since real numbers can always be closely 

approximated by rational numbers, this is not a se- 
rious constraint. Currently there are four ways of 
dealing with this problem. They are: 

(1) pure-discretization approach, discretize 
each component of uncertain plant parameter 
vector p and design parameter vector q (w if 
necessary) and check if all F, are satisfied for 
the discretized variables. 

(2) stochastic approach, e.g. Monte-Carlo and 
genetic algorithms. The idea is the same as 
pure-discretization approach. But here the dis- 
cretized points are picked in terms of some kind 
of probability. 

(3) overestimating approach, overestimate the 
maximum value (9) and minimum value (F;) of 
polynomials over given intervals (Fiorio, Mzan, 
and Milanese, 1993); 

(4) pure QE approach, use quantifier elimina- 
tion (QE) algorithms (Collins, 1975; Collins 
and Hong, 1991) symbolically eliminated the 
quantified variables p and w in inequalities (1) 
and produce equivalent quantifier-free formulas 
(9(q)) on the domain of vector q, which repre- 
sents a characterization of the compensator de- 
sign. A QE software package, called QEPCAD- 
Quantifier Elimination by Partial Cylindri- 
cal Algebraic Decomposition-QEPCAD (Hong, 
1992), is available for solving control problems. 

The key disadvantage for the first three approaches 
listed above is that one must have "a prior" knowl- 
edge for the design parameters q, i.e. one must know 
(or assume) the range of design parameters q. Oth- 
erwise, one has to search the whole q space, which is 
impossible in limited time. QE algorithms are very 
attractive for control problems where there are no 
general analytical design approaches, e.g. output- 
feedback stabilization problem. QE methods were 
applied to output-feedback stabilization problem by 
(Anderson, Bose, and Jury, 1975). The advantage 
of QE algorithm is that it can give a necessary and 

1843 

mailto:wyang@eece.unm.edu


sufficient condition on g by searching the whole g 
space. However QE algorithms, even recent ones, 
are very complex (Collins, 1975; Collins and Hong, 
1991). Computing time and storage space complexity 
are double exponential in the number of variables and 
expressions. Due to this, a new method, called QE- 
discretization approach, is proposed here, which com- 
bines the QE algorithm and discretization methods. 
It turns out that this QEdiscretization approach can 
solve some control problems, e.g. example 2, where 
QEPCAD fails to produce an output. 

This paper is organized below. Section 2 reviews 
some QE theory and software. Section 3 presents the 
reduction of feedback design problems to QE prob- 
lems. Section 4 introduces the algorithms of directly 
using QEPCAD software package to solve the control 
problems. Section 5 proposes the QE-discretiaation 
algorithm, while section 6 gives two examples. The 
first example is very simple control problem, which 
explains the algorithms in section 4. The second 
example is a little more complicated, in which we 
show the difficulties of directly using QEPCAD. But 
it turns out that the QE-discretization approach pro- 
posed here can solve this problem. 

2. QE Algorithms and Software 

In this section, we review the general QE problem 
and introduce the software package QEPCAD which 
we use to solve our control problems. A more detailed 
treatment may be found in (Tarski, 1951; Basu, Pol- 
lack, and Roy, 1994). 

Given the set of polynomials with integer coefficients 
Pi(X,Y) ,  1 5 i 5 s where X represents a k di- 
mensional vector of quantified real variables and Y 
represents a 1 dimensional vector of unquantified real 
variables, let X['] be a block of ki quantified variables, 
Qi be one of the quantifiers 3 (there exists) or V (for 
all), and let @ ( Y )  be the quantified formula 

@(Y) = ( Q I X [ l l ,  QwX['"I)F(P1, - P a ) ,  (2) 

where F(P1, ..., Pa) is a quantifier free Boolean for- 
mula, that is a formula containing the Boolean op- 
erators A (and) and V (or), operating on atomic 
predicates of the form Pi(Y, X [ l ] ,  ..., X['"]) 2 0 or 
P ~ ( Y ,  x['], ..., x [ w ] )  > o or P ~ ( Y ,  xi'], ..., x [ w ] )  = 0. 
We can now state the general quantifier elimination 
problem 

General Quantifier Elimination Problem: Find 
a quantifier-free Boolean formula Y.(Y) such that 
@(Y) is true if and only if g ( Y )  is true. 

In control problems, the unquantified variables are 

generally the compensator parameters, represented 
by the parameter vector Y = q, and the quantified 
variables are the plant parameters, represented by the 
plant parameter vector p, and the frequency variable 
w .  Uncertainty in plant parameters are characterized 
by quantified formulas of the type V ( p i )  [pi 5 pi 5 E] 
where pi and E are rational numbers. Th; quantifier- 
f r e e  fo&uh \k(q) then ~epresenta a characterization 
of the compensator design. 

An important special problem is the QE problem with 
no unquantified variables (free variables), i.e. 1 = 0. 
This problem is referred to as the General Decision 
Problem. 

General Decision Problem: With no unquanti- 
fied variables, i.e. 1 = 0, determine if the quantified 
formula given in (2) is true or false. 

The general decision problem may be applied to the 
problem of ezistence of compensators that meet given 
specifications, in which case an LLexistencen quanti- 
fier is applied to the compensator parameter q. Al- 
gorithms for solving general QE problems were first 
given by (Tarski, 1951; and Seidenberg, 1954), and 
are commonly called Seidenberg-Tarski decision pro- 
cedures. Tarski showed that QE is solvable in a fi- 
nite number of "algebraic" steps, but his algorithm 
and later modifications are exponential in the size 
of the problem. Researchers in control theory have 
been aware of Tarski's results and their applicability 
to control problems since the 1970's (Anderson, Bose, 
and Jury, 1975), but the complexity of the computa- 
tions and lack of software limited their applicability. 
Later, (Collins, 1975) introduced a theoretically more 
efficient QE algorithm that uses a cylindrical alge- 
braic decomposition (CAD) approach. However, this 
algorithm was not capable of effectively handling non- 
trivial problems. More recently (Hong, 1990; Collins 
and Hong, 1991; Hong, 1992) have introduced a sig- 
nificantly more efficient partial CAD QE algorithm. 

The Cylindrical Algebraic Decomposition (CAD) al- 
gorithm, has been developed (Collins and Hong, 
1991) for the computer elimination of quantifiers 
on polynomial-function inequalities. This algorithm 
requires a finite number of 'algebraic" operations. 
However the number of operations is still doubly ex- 
ponential in the number of variables, so that only 
problems of modest complexity can actually be com- 
puted. See (Basu, Pollack, and Roy, 1994) for a 
discussion of computational complexity in quantifier 
elimination. A software package called QEPCAD 
(Quantifier Elimination by Partial Cylindrical Alge- 
braic Decomposition) has been developed for the solu- 
tion of quantifier elimination problems (If. Hong, In- 
stitute for Symbolic Computation, Linz, Austria). An 
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excellent introduction to quantifier elimination theory 
and its applications to control system design may be 
found in the monograph of (Jirstrand, 1996). 

3. Reduction to a Quantifier Elimination 
Problem 

From the discussions above it follows that frequency- 
domain robust multiobjective feedback design prob- 
lem can be reduced to the satisfaction of inequality 
constraints of the form given in (1) with logic quan- 
tifiers of the form ‘for all w” and “for all p” over 
given ranges of w and p. Typically the variables in 
the polynomials are real and are related to plant (con- 
trolled system) and compensator (controller) parame- 
ters. The final design objective is to obtain quantifier- 
free formulas for the compensator parameters or, for 
the existence problem, to obtain a “true” or “false” 
output. For example, given a plant transfer func- 
tion G(s, p), and a controller with transfer function 
C(s, q), the requirement that the transfer function 
between reference input and control input be con- 
strained to have a magnitude less than a given value, 
QU, may be written 

By squaring the magnitude and clearing fractions, the 
expression above takes on the form FI(w, p, q) > 0, 
where the function is polynomial in its arguments 
as long as the components of the vector p and q en- 
ter the coefficients of the polynomials in the transfer 
function G and C polynomially. Similarly tracking 
error can be reduced to an inequality of the form 
a ( w , p , q )  > 0. Finally stability of the closed-loop 
system is guaranteed, via the Routh Hurwitz test, 
by the satisfaction of further inequalities of the form 
Fib, 9) > 0. 

4. Algorithms for solving RMOD problems 
via QE theory 

In this section, we discuss the ways of directly using 
QEPCAD to solve RMOD problems. Particularly, 
two algorithms are given here, which are based on 
the observations: (i) p and w are quantified variables; 
(ii) q are free (unquantified) variables. The task of 
the algorithms for RMOD is to eliminate p and w to 
obtain the solutions on q, i.e. quantifier-free formula 
on q. 

Algorithm 1 

step 1: Use QE formula, 

(%)(VP E P)(VW E n)[Fi > 0, Vi], (4) 

to determine if a solution exists. 
step 2: If ”yes”, uee the QE formula, 

(Vp E P)(Vw E n)[Fi > 0, Vi], (5) 

to obtain a quantifier-free formula B(q) which 
is then used to determine a set of admissible 
vector values. 

Comments: If there are more than one design param- 
eter, the given quantifier-free formula is rather com- 
plicated such that one cannot figure out the solution 
regions (see example 1). So, the following algorithm 
is proposed, by which the solutions can cleanly be 
displayed in figures. 

Algorithm 2 

step 1: The same as that in algorithm 1; 
step 2: If ”yes”, use the QE formula, 

(%k)(Vw E ~ ) ( V P  E P)[Fi > 0, Vi], (6) 

for all k, except k = j, to obtain a quantifier- 
free formula in the single unquantified variable 
pj . This formula in qj  involves only polynomials 
in one variable, for which inequality can easily 
be checked by finding the roots of the respec- 
tive polynomials. In this way one can compute 
the intervals that include admissible values of 
q j ,  This can be repeated for other components 
of q to obtain intervals for each component of 
the design vector q, defining boxes in which ad- 
missible variables may lie. 

step 3: Within the boxes obtained above, use QE for- 
mula, 

( V q  E Q)(Vw E ~ ) ( V P  E P)[Fi > 0, Vi], (7) 
to check if some interesting point or subbox, 
denoted &, is a solution. 

5. QE-discreti~ation Approach 

Although the QE theory discussed above appears very 
attractive for robust multiobjective design, it breaks 
down computationally even for very simple control 
problem (see example 2 in next section). Since the 
complexity of QE algorithm is double exponential in 
the number of variables and expressions, the success- 
ful application of the QE algorithm requires one to 
reduce the number of variables and number of ex- 
pressions as much as possibly. QE discretization is 
one way to reduce the number of variables, and is 
described next. 
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step 1: Pick a particular value of p, which is generally 

step 2: The QE formula, 

Example 1: (Dorato, Yang, and Abdallah, 1996). 
The plant is G ( s , p l )  = &, pl = fl.  The problem 
is to find a optimal PI compensator (C(s, q1, q 2 )  = 
q 1 +  q a / s )  such that we have 

the nominal value PO of p; 

(Vw E Q)[Fi(w, PO, 4) > 0, Vi], (8) 0 robust stability; 

is used to determine the range Rpo of design 

out that the space Rgo 2 R t ,  i.e. Rgo is 
a necessary solution region, where R t  denotes 
the solution regions for all p E P;  

parameters q for p = PO. It shoul 1 be pointed 

step 3: Discretize the space Rq PO . Then the QE for- 
mula, 

(VU E f W P  E F)Pi(U, P, 90) > 0, Vi ] ,  (9) 

is used to determine if some discretized point qo 

we can find a solution region in the q space. 
is a solution point. After we search the Rq PO , 

Comments: 

0 Note that this approach is different from the 
pure discretization approach mentioned in the 
introduction. In particular, in this approach, 
only the design parameters q are discretized 
and QE takes care of the plant parameters p 
and w,  while, in the pure discretization ap- 
proach, w ,  q, and p must 4 be discretized. 

0 In the step 2 for determining REo, the idea 
of algorithm 2 (step 2) should be used if the 
number of design parameters is more than one. 

0 In the step 3, some stochastic idea (e.g. Monte- 
Carlo) can be used to choose the discretized 
points instead of fixed-discretization. 

0 For the step 3 of the QE-discretization approach 
given above, one may suggest that subdivision 
strategy be used, i.e. check if each subbox Q 
subdivided within REo is a solution region by 
using QE formula, 

(Vu E Q)(Vp E P ) ( V q  E Q)[Fi(w, q) > 0, Vi]. 
(10) 

It should be noticed that doing so is generally 
inappropriate since the number of variables is 
increased. 

6. Examples 

In this section, two examples are given to illustrate 
the application of QE theory, algorithm 1 & 2 (exam- 
ple 1) and mixed QE-discretization approach (exam- 
ple 2). 

0 steady-state tracking error; 
0 as small as possible control effort (i.e. small 

value of oru = n/d, where n and d are integers). 

Solutions: First we formulate the problem 
into a system of Boolean formulas, which are 
Fl(W,Pl,ql,%?l), F 2 ( w , p l , q l , q 2 ) ,  and F3(W,plrqlrq2) 
(omitted here due to limited space). Then algorithm 
2 is used, which produces the step-by-step results 
shown below: 

step 1: The answer to the existence question is "yes" 
with "minimum" control effort n*/d* = 41/10 
in the sense that the answer is "no" for nld = 
40110; 

step 2: 1.9758 5 q1 5 2.0248 and 0 < q2 5 0.0253; 
step 3: Since this problem is an optimization problem 

in the sense that the control effort was made as 
small as possibly, the compensator set is basi- 
cally shrinker to single point. To find optimal 
compensator in the sense that control effort is as 
small as possible, pick the mean values of q1 and 
q2,  which are qi = 2 and qi = 0.0126. QE for- 
mula (VU E [o, ool ) (~pl=  &1)[Fiq:Iq;)(w,p1) > 

put to check if (qf , 9;) is a solution. It turns out 
that "true" was returned, which means that op- 
timal PI compensator is C*(s) = 2 + 0.0126/s. 

Note: If algorithm 1 is used, then it turns out that, 
after step 2, QEPCAD gives 

o/,F,(q;lq;)( w , p l  ) > OAF,(q''q;)(w,pl) > 01 was 

[961q: - 5084q: + 620qiq: - 5084q2q: + 9266q: 
1640qXq1+ 13448qaqi- 6724q1+ 1004; 
1640qi + 820q: - 6724q2+ 1681 5 0 V 

(1Oq: - 41 5 0 A 31q: - 82ql- 104; - 82q2 

+41 2 O)] 
A q 1 -  1 > 0 Aq2  > 0 A q i  + 1 > 0. 

We can see that this quantifier-free formula is rather 
complicated. 

Example 2: (Fiorio, Malan, and Milanese, 1993), 
where the robust tuning of a proportional plus in- 
tegral compensator is considered. The plant is 
G(S,PI ,PZ)  = &,  here 0.8 I PIJ 5 1-25. 
The controller is a PI compensator C ( s , q l , q ~ )  = 
q. The design aim is to find a family of 
compensators which satisfy the following performance 
measures: 
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0: solution set; x: nonsolution set 
................................................................................................... 

2 I I I I I 

-250 -200 -1 50 -100 -50 
Q1 

Figure 1: Admissible design parameter values for exam- 
ple 2. 

0 robust stability; 
0 unitary ramp steady state error le,l < 0.02s; 
0 bandwidth w )  2 10rad/s; 
0 resonance peak of the complementary sensitiv- 

0 control effort IR(jw)l < 20, V u  E [ O , o o ] ;  

ity function Tp < 1.4; 

Solutions: In this example, the QEdiscretization 
approach was used. The results are: 

step 1: pick po = [PI pa] = 11 11; 

step 2: REo = [ (ql  < -217) V (-182 < q1 < -50)] 
and REo = [3.13 < q2 < 13.831. The necessary 
solution region RZo is shown in figure 1, which 
is bounded by solid lines; 

cretized points. Then apply QEPGAD for each 
of these points. We obtain the solution regions 
which is shown in figure 1, where symbol '0' 

show the solution points and symbol "x" show 
the non solution points. 

Note: If either algorithm 1 or algorithm 2 is used, 
then QEPCAD gives the message below. 

step 3: Discretize the Rq PO . Also see figure 1 for dis- 

qe16W: 1418 Memory fault - core dumped 

16496.9~ 156.78 4:45:56 97% 0+-4416k 
17156.8 real 16496.9 user 156.7 sys 

7+1975io 44pf+On 

Two algorithms for RMOD are given in this paper 
based on the QE theory. Because of high comput* 
tional cost of QE algorithm, which greatly limits its 
application, a new method, called QEdiscretization 
approach, is proposed. It turns out that this new 
approach for RMOD can solve some interesting prob- 
lems, e.g. example 2 in this paper, for which QEP- 
CAD alone breaks down. 
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From this we see that QEPCAD alone cannot solve 
even relatively simple problems. 

7. Conclusions 1954. 

We have explored the relations between QE and 
RMOD, from which it can be seen that QE theory fits 
control problems, especially for the problems where 
there are no analytical design approaches, quite well. 
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