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Abstract

The accurate estimation of robot position and orientation in real-time is one of the fundamental challenges in
mobile robotics. The Extended Kalman Filter is a nonlinear real-time recursive time domain filter that combines
available sensor data to produce an accurate estimate of state, and has been successfully applied to the localization
problem in mobile robotics and aircraft navigation. This report describes an Extended Kalman Filter implementa-
tion for the Khepera II mobile robotics platform that seeks to produce accurate localization estimates in real-time
using wheel odometry data, IR sensor range data, and compass heading data.
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Chapter 1

Introduction

Mobile robots are free to move in their operating environments. They are limited in mobility by available battery
power and by obstacles within the environment that the robots design cannot overcome. This freedom of motion
is in contrast to a rigidly fixed industrial robot arm, whose position and orientation relative to the environment
is known with a high degree of accuracy from the moment the industrial robot is switched on. Both fixed and
mobile robots need accurate position and orientation data in order to perform navigation and interaction tasks
with the environment and with other robots. Since mobile robots frequently change their position and orientation
relative to their starting locations, they require reliable and accurate methods to obtain position and orientation
data in real-time as they are moving and exploring. In words, mobile robots need to constantly ask the question,
”Where am I now?”

1 Context and Motivation

Mobile robots obtain position and orientation data by sensing. Two categories of position and orientation sensors
are available for mobile robots. The first category is global sensors, which are external to the mobile robot,
such as the Global Positioning System (GPS), navigation beacons, and other mobile robots. Global sensors have
the advantage of providing the robot with an absolute position and orientation measurement at a given time.
The second category is local sensors, which are located inside the robot, such as inertial navigation, odometers,
magnetic compass, and laser range finders. Mobile robots using only local sensors need to rely on dead-reckoning,
which is the use of sensor information to obtain the current position and orientation from a known starting point.

The use of multiple local sensors and dead-reckoning introduces several challenges for mobile robots to obtain
accurate orientation and position information. The first problem is drift, where small errors in initial measure-
ments compound with each new sensor reading and eventually grow into large errors. The second problem is
integrating data from various types of local sensors that measure different physical quantities to obtain a single
measurement of position and orientation. There can also be more sensor data inputs than states for position and
orientation. An example situation would be integrating laser range finder data to a known object, gyroscope head-
ing information, and odometry data from the wheel sensors on the robot. If the position state vector is only of
length three (x,y, ®), there will be more data streams than states with potentially overlapping information between
each sensor. The goal is to obtain the most accurate estimate of position and orientation at a given sensor update
from these different sensors.

One possible solution to the sensor integration and drift problems is the use of Kalman filtering on the mobile
robots local sensor input data. The Kalman Filter is a robust, recursive time domain filter with a low computational
cost [5]. Kalman filtering reduces the effects of sensor noise, drift, and also serves to integrate multiple sensor
readings and produce an accurate sate update. Kalman filtering has an extensive record of highly successful
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application in engineering areas such as rocket, guidance, aircraft navigation, and was used by NASA during the
initial moon landings of the 1960s.

This report presents an investigation that applies an Extended Kalman Filter (a non-linear extension of the
standard linear Kalman Filter) to the position and orientation estimation problem for a Khepera II mobile robot
(manufactured by the KTEAM corporation).

Figure 1: Khepera II with gripper turret.

Fig. [I]shows an illustration of the Khepera II robot with a gripper turret attached. The Khepera II is two-
wheeld, with odometry sensors and eight infrared range sensors. An orientation compass sensor is also available
to provide heading information.

2 Literature Review

Kalman filtering began with the publication of Ronald E. Kalman’s landmark paper in 1960 [11]] on an improved
time domain filter (over the then dominant frequency domain Wienar filter) to remove signal noise. Acceptance
of Kalman’s work was greatly facilitated by the work of Stanley Schmidt from NASA Ames research, which
extended Kalman’s strictly linear limitation of the filter to handle a narrow class of useful non-linear functions.
The resulting filter was called the Schmidt-Kalman filter (now called the Extended Kalman Filter (EKF), and
the application was found for the EKF during the initial Apollo moon landings. Recent work by Julier and
Uhlmann [9]] has produced the Unscented Kalman Filter (UKF), which can handle a much wider range of non-
linear functions than the standard EKF. A definitive theoretical treatment of non-linear functions with the Kalman
Filter still awaits discovery.

Kalman filtering has been applied extensively in robot navigation and sensing, both as a means of integrating
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sensor data and as a means of overcoming the effects of noise on sensor data. Specifically, the EKF has been a
popular choice for robotic navigation applications, due to the EKF’s ability to handle the non-linear kinematic
and dynamic equations that describe mobile robot motion. An investigation by Roumeliotis [15] used an EKF
to integrate sensor data for a three wheeled robot along with the kinematic equations that described the robots
motion. The findings of the investigation showed the EKF provides a superior state estimate to that of only using
dead-reckoning, and that the addition of global sensor data from a sun-sensor stopped the EKF from drifting due
to small errors in the kinematic equations. A similar study by Alessandri [1] showed the use of onboard gyros
can improve EKF estimates and overcome slip effects due to terrain. Work by Ashokaraj [2] showed the EKF
is effective when only using local sensor data from accelerometers and odometers. An interesting mobile robot
navigation system was devised by Sasiadek and Wang [1/]], which fused sensor data from an Inertial Navigation
System (INS) and GPS using an EKF with fuzzy logic rules. The resulting system allowed the strengths of INS
to compliment the weaknesses of GPS and vice-versa. Additional work by Roumeliotis [16]] broke the navigation
problem into a two stage estimation process, with the orientation estimate occurring first, then followed by the
position estimate, and finally use of the EKF to fuse the results. Work by Ivanjko [7] [6] has focused on using
sonar range sensors with the EKF and an occupancy grid map of the environment.

More recent work has focused on the more general navigation problem known as Simultaneous Localization
and Mapping (SLAM). SLAM research addresses the challenge of robots navigating in unknown environments,
where the robot needs to navigate using a map constructed in real-time. The size of the state matrices in the full
SLAM problem is proportional to the number of navigation landmarks in the map. Work by Durrant-Whyte [4]
showed that the number of landmarks can be reduced to those closest to the robot with affecting the statistical
significance of the calculated SLAM solution. Dellaert [[10] presents the ISAM system (Incremental Smoothing
and Mapping) that solves the SLAM problem by means of an incrementally constructed sparse QR matrix factor-
ization of the pose and landmark information matrix. Work by Delahoche [3]] used an EKF to accurately position
the robot and to locate landmarks in a map of the environment. Related work by Asensio [8] used an EKF to
associate readings from a laser range finder and a trinocular vision system. The trinocular vision system was used
to map larger goals for navigation, and the laser compensated for possible drifts in the dead-reckoning navigation.
An outdoor navigation system was used by Ohno [13]], withe the navigation map pre-computed, and the data from
GPS and odometry merged by an EKF. Recent work by Rodriguez [[14] has proposed solutions to inconsistencies
in non-linear system linearization when applying EKF to the SLAM problem. A different approach to SLAM
is called C-SLAM or cooperative SLAM, where multiple robots aid each other in determining location, orienta-
tion, and environment mappings. Recent work by Roumeliotis [[12] presents a theoretical bound on the absolute
performance of cooperative localization, using the EKF as a state estimator.

3 Kalman Filtering and Khepera II Kinematics

A brief summary of the basic discrete time linear Kalman Filter follows. Useful references for the Kalman Filter
and the Extended Kalman Filter can be found in Welch and Bishop [18]] and Gelb [5]]. The Kalman Filter produces
a state estimate of a discrete time linear difference equation of the form given in equation (3.1)), where x(k) is the
current state of the system, A is the linear process dynamics matrix, B is the matrix that relates the control input
u(k—1), and w(k — 1) is the Gaussian process noise.

x(k) =Ax(k—1)+Bu(k—1)+w(k—1) 3.1
Equation (3.2)) describes how the sensors produce a measurement z(k) of the process given in equation (3.1).

2(k) = Hx(k) +v(k) (3.2)

H is the measurement matrix with a number of rows equal to the number of sensor inputs and v(k) is the Gaus-
sian measurement noise for the sensors. The two fundamental assumptions in the linear Kalman Filter are that
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the estimated discrete time process is linear, and the measurement and process noise are Gaussian distributions
with zero means.

The Kalman Filter algorithm is recursive, and runs in two stages. The first stage is called the *predictor’ in
which a new state estimate is produced from the previous estimate. The second stage is called the ’corrector’ in
which the estimate produced by the predictor stage is adjusted based on the new sensor measurements produced
by equation (3.2). The algorithm only uses data from the previous state estimate, and thus requires minimal data
storage and computation to produce the new state update.

The Khepera II mobile robot is two wheeled, with kinematics similar to a tank. The available sensor data
from the Khepera II includes odometry (position and velocity), a compass sensor that gives heading in degrees,
and eight short range infrared sensors that cover 360 degrees around the robot. The surface that the Khepera II
operates on is assumed to be smooth and planar. The discrete time kinematics for the Khepera II are given in
equations (3.3), (3.4), and (3.3)). These equations give the Khepera robot (x,y) position and orientation ®.

x(k+1) =x(k)+

(Vrzﬂrcos((a(m 1) (3.3)

(ve+w1)

y(k+1) =y(k) + Tsin(®(k+1)) (3.4)

@(k+1):®(k)+@

T 3.5)
Where v, and v; are the right and left wheel velocities, d is the distance between the wheels, and T is the
sampling time increment.

The Khepera kinematic equations are non-linear, and thus do not fit the model given in equation (3.I). The
linear Kalman Filter cannot be applied. The EKF can be used with the Khepera kinematic equations to handle the
non-linear equations. The EKF follows the same basic algorithm as the linear Kalman Filter, but the nonlinear
equations governing the process and possibly the measurement dynamics are linearized by means of a Jacobian
derivative matrix computed at each time increment update. Equation (3.6) and show the non-linear process
and measurement equations, which are analogous to the linear equations (3.1)) and (3.2).

x(k) = fx(k—=1),u((k=1)) +w(k—1) (3.6)

2(k) = h(x(k)) +v(k) 3.7)

Equations (3.6) and (3.7) can be linearized in the EKF at each time increment by computing the Jacobian
derivative matrix with respect the three state variables (x,y, ©).



Chapter 2

An Extended Kalman Filter for the
Khepera 11

The Extended Kalman Filter implementation shown in this chapter is based on the work of Ivanjko in [6] and [[7]],
where the authors describe an Extended Kalman Filter for a mobile robot with sonar sensors. The authors use
an occupancy grid to describe the environment around the robot, and the straight line distance function for each
sonar sensor to the nearest occupied grid cell is used as the measurement function 4. The EKF implementation for
the Khepera II in this report makes a modification to the measurement function % to admit Khepera II IR sensors
and the compass sensor, but otherwise uses the same EKF implementation described in the work by Ivanjko.

1 EKF Equations for the Khepera II

The state estimate vector for the EKF during time step & is given in equation (I.I). The horizontal and vertical
position of the robot are x(k) and y(k), respectively. The robot orientation is given by @ (k).

k)= (k) (1.1

The control inputs for the Khepera robot are the left and right wheel velocities specified by v; and v,, respec-
tively. The control vector u(k) in equation (T.4) is comprised of the translational displacement (T.2)) and rotational
displacement (I.3) during one time step, with d the Khepera II axle length between the wheels, and T the amount
of time in one discrete time increment.

AD(k) = (WJZFV’)T (1.2)
A®(k) = (V’;W)T (1.3)
u(k) = ( iggg ) (1.4)

The non-linear state transition function (I.3)) is a function of the current state £(k) and the control input u(k).
The state transition function moves the current state £(k) to state £(k -+ 1|k) according to the Khepera II kinematic
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equations. The ’predict’ stage of the EKF advances the state from £(k) to £(k + 1]k) according to equation (I.5)
before the *correction’ stage of the filter that adjusts the estimate based on new sensor input. After the ’correction’
stage of the filter, the state estimate is written as £(k+ 1|k +1).

AO(K)) (1.5)

It is also possible to express the state update equations by integration the continuous time forms of the robot
kinematic equations given in equations (1.6)), (I.7), and (I.8). The integration is performed under the assumption
that the control inputs AD(k) and A®(k) are constant for step k over a time interval of length T'.

AD(k)

x= T cos(0(r)) (1.6)
y= ADT(k) sin(O(t)) (L.7)
6= AB(k) (1.8)

The continuous time integrated state update equations (zero initial conditions) are given in equations (T.9)),
(1.10), and (I.11). These equations are exact if the constant control input assumption is valid. The EKF imple-
mentation used in this report made use of the discrete state update equation given in equation ((1.5).

x(t) = iggg sin(A@(k)t) (1.9)
x(t) = 2883(1 — cos(A®(k)t)) (1.10)
O(t) = A®(k)r (1.11)

Equation (I.12) is the Jacobian derivative of the state transition function (I.3) with respect to the two control
variables AD(k) and A® (k).

—AD(k)sin(®(k) +AO(k)) cos(®(k)+O(k))
Vf(k)= | AD(k)cos(®(k)+AB(k)) sin(O(k)+O(k)) (1.12)
1 0

The process noise covariance matrix (I.13) is formed with the state transition Jacobian (I.12)) and the vari-

ances for the assumed sources of noise in the robot motion kinematics. The variance 67, models the noise in the

robots translational motion, and the variance Gi(a models the noise in the robots rotational motion.

A®(k)?ciy O

Q(k) =V (k) ( 0 o3 )Vf(k)T (1.13)

Equation (I.14)) is the Jacobian of (1.12) with respect to the state variables x(k), y(k), and @ (k).
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, 1 0 —AD(k)sin(®(k)+AB(k))
Vik =[ 0 1 AD®K)cos(®k)+A0(K)) (1.14)
0 0 1

The process error covariance matrix (I.13)) is updated from the previous time step via equations and
(T.13). The matrix P(k+ 1|k) is the error covariance estimate (the estimated amount of error in the estimate
of each state variable) produced during the ’predict’ stage of the EKF, before any measurement data has been
applied during the ’correct’ stage.

P(k+1]k) = V£ (K)P(kK)VF (k) + (k) (1.15)

Equation (L.T6) creates the innovation matrix S(k+ 1) from the expected measurement function Jacobian
Vh(k). Please see section [2| for a description of the measurement function 4(k). The matrix R(k + 1) is the
measurement noise covariance matrix, which is a diagonal matrix with entries along the diagonal for the error
variances in the IR sensors and compass sensor. For the Khepera II with eight IR sensors and one compass sensor,
S(k+ 1) will be a nine by nine matrix.

S(k+1) = Vh P(k+1|k)VAT +R(k+1) (1.16)

Equation creates the Kalman gain matrix K (k + 1). Computing the Kalman gain is the most computa-
tionally expensive stage of the EKF, as the inverse of the innovation matrix S(k + 1) must be computed. The size
of the innovation matrix is proportional to the number of sensor measurements used in the EKF. An intuitive way
to think of the Kalman gain magnitude based on equation (1.17), is that the Kalman gain magnitude is directly
proportional to the uncertainty in the process dynamics P(k + 1|k), and inversely proportional to the uncertainty
in the sensor measurement dynamics S~! (k +1).

K(k+1) = P(k+1|k)VAT S~ (k4 1) (1.17)

The "correct” stage of the EKF updates the process error covariance matrix (I.I8) with the Kalman gain and
the expected innovation from sensor data.

Pk+1lk+1) = P(k+1]k) — K(k+1)S(k+ 1)K (k+1) (1.18)
The final estimate £(k + 1|k + 1) is produced by equation (I.19). The Kalman gain is used to magnify or

diminish the difference between the actual sensor readings in z(k+ 1) and the expected sensor readings in 2(k+ 1),
with the resulting being added to the ’predict’ estimate £(k + 1|k) formed at the beginning of the EKF iteration.

£(k+1k+1) = £(k+ 1/k) + K(k+ 1) (z(k+1) — h(k+1)) (1.19)

2 Map and Measurement Model

The non-linear measurement function A(k) in the EKF gives the expected sensor measurement values for the
current state estimate at time step k. Equation (2.1 gives the measurement function used for the Khepera II in
this report, based on work by Ivanjko in [6] and [7]].

T 21 (v — 7 ifi—
hi(f(k+lk)7pi):{(\9/(xl x(k+1]k))2+ (yi —y(k+1]k))?> ifi=1..8, IR sensors, 2.1

(k+1]k) if i =9, compass sensor
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The compass sensor gives a direct reading of heading in radians, thus the expected sensor value is simply the
value of @(k + 1]k) from the EKF ’predict’ stage. The eight IR sensors produce eight distinct distance mea-
sures to obstacles in a straight line originating from the IR sensor in question. The measurement function is the
distance from the current Khepera position to the nearest map obstacle for each IR sensor. The function input
parameter p; = (x;,y;) provides the location of the nearest obstacle for each IR sensor from a consultation of
the environment map. In the work by Ivanjko, the environment map was specified by an occupancy grid, in this
report the environment map is specified by a list of line segments defining the map walls and the map boundaries.
Each IR sensor is modeled as a line segment originating from the current position of the Khepera, with a length
that extends outside of the map boundary, and a direction based on the current orientation of the Khepera. A
line segment intersection algorithm is run against the environment map line segment list for each IR sensor line
segment to obtain the value of p; = (x;,y;) for the IR sensor in question. The resulting eight values are then used
to find the value of the expected measurement function distance for the IR sensors. The environment map and the
measurement function are decoupled in way that makes the mathematics tractable and the map description quite
flexible, i.e. line segment lists can describe a vast array of possible environment map configurations.

Equation (2.2)) describes the sensor dynamics with Gaussian noise for each sensor modeled in w; (k).

zi(k) = hi(X(k+1k), pi) +wi(k) (2.2)

Equation (2.3)) gives the Jacobian derivative of the measurement function (2.1)) with respect to the state vari-
ables ( x(k+ 1]k),y(k+ 1]k),®(k + 1]k) ). The measurement Jacobian matrix VA(k) is constructed by stacking
the derivative values for each sensor into a nine by three matrix.

(k1) —x; T
V= (ke 1[k) 24 (vi =y (k1 [K)?
Ykt 1K) —yi if i = 1..8, IR sensors,
V= (k1) 24 (vi =y (k-1 [K)?
Vhi(£(k + 1]k), pi) = ., 0 2.3)
0
0 if i =9, compass sensor
1




Chapter 3

Results and Conclusion

The EKF equations for the Khepera II described in Chapter [2] were implemented as a combination of Matlab
scripts and C program functions for both pure computer simulation, and for experiments on the Khepera II robot
hardware. The following two sections describe results from simulation and experiments.

1 Simulation Results

This section presents simulation results of Khepera II straight line motion using realistic error variances for the
IR sensors and the compass sensor. Please see Appendex [A]for a description of the calibration procedure used for
the Khepera II IR sensors and compass sensor to determine the error variances in these sensors.

Simulated straight line horizontal motion of the Khepera II over a distance of one meter is shown on the
following pages in Figures 2] 3] @ and[5] All units are in millimeters. The Khepera II desired velocity over the
motion was 10 millimeters per second. Zero mean Gaussian noise with a variance of 0.0001 was injected into the
the control vector (equation (I.4)) to simulate friction and disturbances in the wheel-surface contact. This choice
of variances was based on observation of actual Khepera II straight motion deviation. Figure 2| shows the straight
line motion simulation using only odometry without the EKF turned on. The Khepera II deviates from the the
straight line path by about 1 centimeter at the end of the motion, in agreement with actual observation. The RMS
error between the actual and estimated position is approximately 2.5¢6.

Figure 3| shows a simulation of straight line motion under the same conditions as in Figure [2| but in this
case the EKF is turned on with only the compass sensor active. The simulated compass sensor measurements
are injected with zero mean gaussian noise with a variance of 0.0049. This choice of variance comes from the
observed error in the compass sensor, which is approximately +/- 4 degrees. The EKF process error covariance
matrix is initialized to a three by three identity matrix. The EKF compass simulation shows less deviation than
the pure odometry simulation, approximately half a centimeter, and a reduced RMS error of approximately 6e5.

Figure ] again shows a simulation of straight line motion, but with the EKF and the IR sensors turned on.
The compass sensor is turned off. A wall extending along the X axis is located 50 millimeters in the positive Y
direction. The IR sensor measurements are injected with zero mean Gaussian noise with variances of 100.0. This
choice of variance is based on the observed error in the IR sensors, approximately +/- 1 centimeter. The EKF IR
sensors simulation shows the same deviation as the compass sensor simulation, approximately half a centimeter,
and a comparable RMS error of approximately 4e5. The IR sensors are in general very sensitive, and difficult to
tune properly in the EKF, especially in comparison with the compass sensor. In particular, the threshold parameter
which governs how large the difference can be between the expected and the actual IR sensor readings must be
carefully selected for stable performance. In this case, the threshold parameter was selected as 20 millimeters.

10
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Anything greater than this value was thresholded. Significantly smaller or larger threshold values caused the EKF
to become unstable. The threshold problem is discussed briefly by Ivanjko in [7]].

The final straight line motion simulation result shown in Figure[5] Both the compass and IR sensors are turned
on, with the same conditions as the previous simulations. The EKF fuses the available sensor data to produce a
trajectory with almost no deviation and a very small RMS error of approximately 500.

Ehepera Odometry with Moise

300 Estimated Position with Odormetry H
— Actyal Position
200 FkdS Error; 2598534 6634 .
100 i
0
::_
-100 | -
=200 | .
=300 | .
<400 | i
1 1 1 1 1 1 1 | 1
0 100 200 300 400 s00 GO0 700 aan ann
k4

Figure 2: Simulation of Khepera motion with odometry and added noise.
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k-hepera Odometry with Maize and Kalman Filker using Compass

4I:II:I B 1 1 1 1 1 1 1 1 1 |
Estirnated Position with Ealman Filker using Compass
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300 .
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100 | .
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-100 | .
=200 | .
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Figure 3: Simulation of Khepera motion with EKF using compass sensor only.
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k.hepera Odametry with Moise and kalman Filber using IR
q'l:”:l = I 1 1 1 1 1 1 1 1 -
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Figure 4: Simulation of Khepera motion with EKF using IR sensors only.
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Khepera Odametry with Moise and Kalman Filker using Compass and IR
1 1 1 1 1 1 1 1 1
Estimated Paosition with Kalman Filber using Compass and IR

— Agtual Position
300 -

200 R4S Ermror: 4722574 -

100 i
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Figure 5: Simulation of Khepera motion with EKF using IR and compass sensors.
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2 Experimental Results

Appendix [A] describes the calibration procedure used for the compass sensor and the IR sensors. The sensors
were calibrated in anticipation of conducting experiments with the Khepera II robot hardware to match the results
shown in the simulation section of this report.

The first attempt at getting the EKF to run on the Khepera II was to compile all of the EKF code to run directly
on the Khepera II hardware. This approach did not work for two reasons. First, the amount of time to complete
one iteration of the EKF on the Khepera II hardware averaged around 2 seconds, which is well outside of typical
real-time update rates of about 0.1 or 0.2 seconds. Second, the numerical routine used to invert the innovation
matrix would fail periodically due to numerical stability problems, most likely due to the lack of hardware floating
point processing on the Khepera II.

The second attempt at implementing the EKF for the Khepera II involved running the EKF on a laptop
computer with the Khepera II acting as a receiver of velocity command input and a transmitter of odometry, IR
sensor, and compass data back to the laptop. The communication was done over a serial port connection between
the laptop and the Khepera II.

The second implementation worked well by overcoming the problems with update rate and numerical stability
encountered in the first implementation, but the available Khepera II hardware exhibited electrical problems with
the serial port connection over sustained motion experiments, and also while downloading programs to the robot.
This made further studies impossible. If new Khepera Il hardware were available, the work could be continued
to show agreement with the simulation section of this report.

3 Conclusion

This report presented an implementation of the EKF for a two-wheeled mobile robot with IR distance sensors
and a compass sensor that gives heading information. The simulation section of this report showed that the
EKF implementation works when properly tuned for sensor error variances and robot motion error variances.
The EKF presented could be used on any two-wheeled mobile robot with similar distance measurement and
orientation sensors, not just the Khepera Il with the hardware presented here. It is unfortunate that the Khepera II
hardware available did not function well enough to confirm the results of the simulations. If newer robot hardware
is available, it may be possible to run the EKF entirely on the robot, and do away with the communication link to
a laptop computer.
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Appendix A

Khepera Compass and IR Sensor
Calibration

A Compass Sensor Calibration

The compass sensor used for this report is the R1525 magnetic Hall effect sensor manufactured by the Dinsmore
company. The compass is mounted on the I/O turret of the Khepera II and provides two analog output voltages
as the Khepera II is turned 360 degrees. The compass senses the earths magnetic field and is not disturbed by
nearby magnetic field sources. The manufacturer states the compass is accurate to within +/- 1 degree.

The calibration of the compass sensor turned the Khepera II in a complete circle, and took compass output
readings every 20 degrees of rotation. Figure [6] shows a plot of the data gathered from this experiment. The
maximum and minimum analog output values were recorded to scale the output data between -1 and 1. The
sensor output functions are sin() and cos() curves, so the arctan() function can be used to recover the heading in
radians. If s3 is the sin() curve output scaled between -1 and 1, and s4 is the cos() curve output scaled between -1
and 1, then the output heading A in radians can be found with equation (A-I).

h=x+2n ifx<0
x_arctan(S3,S4){h_i+ T :fii—o (A.1)

Repeated tests of the compass reading while pointing towards true north, showed the compass sensor error is
approximately +/- 4 degrees.
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Figure 6: Compass sensor output voltages over a 360 degree rotation.

19



UNM Technical Report: ME-TR-08-001 Khepera Compass and IR Sensor Calibration

B IR Sensor Calibration

The Khepera II has eight short range IR sensors arrayed around the outside of the robot for the purpose of
detecting obstacles. The IR sensors have an effective range of about 8 centimeters. With proper calibration, the
IR sensors can be used to measure the distance to objects close to the robot.

The calibration procedure used in this report gathered data at one centimeter increments for each IR sensor. A
white reflective surface was placed at one centimeter from an IR sensor and moved in one centimeter increments
out to a distance of eight centimeters. The measurement procedure was repeated five times and an average value
was calculated at each distance. The results of this experiment are shown plotted in Figure 7]

An exponential regression curve was fit to the data for each IR sensor. The regression curve fits are shown
plotted in [/| along with the experimental data. The exponential regression equation has the form given in
where m is the IR sensor measurement, d is the distance to the obstacle, and a and r are parameters to be
determined by regression analysis.

m=ar® (B.1)

Equation can be expressed as a linear equation of the form y = mx + b, where the slope m = log(r) and
the intercept b = log(a). Fitting this linear equation to the experimental data yields two parameters, a and r, for
each IR sensor. Inverting equation produces a distance value for an input IR sensor measurement. The error
in the IR sensors was found to be +/- 1 centimeter after the IR sensor calibration was completed.
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Figure 7: IR sensor value versus distance to a reflective object for the eight IR sensors.
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