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Abstract

In this report we develop a control scheme to coordinate a group of mobile sensors for radiation mapping of
a given planar polygon region. The control algorithm is based on the concept of information surfing, where
navigation is done by means of following information gradients, taking into account sensing performance as well
as inter-robot communication range limitations. The control scheme provably steers mobile sensors to locations
at which they maximize the information content of their measurement data, and the asymptotic properties of
our information metric with respect to time ensures that no local information metric extremum traps the sensors
indefinitely. In addition, the inherent synergy of the mobile sensor group facilitates the temporal “erosion” of such
extremum configurations. Information surfing allows for reactive mobile sensor network behavior and adaptation
to environmental changes, as well as human retasking.
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1 Introduction

Imagine there is a nuclear contamination of a large metropolitan area. How big is the contaminated area? How
dangerous is the radiation being emitted from this contamination? The sooner these questions can be answered,
the faster the situation can be assessed. The ability to address these issues could save lives, facilitate decontam-
ination efforts, and yield economic savings. Current technology in radiation detection is not well suited for this
type of scenario. A group of robots can provide situational awareness by cooperating with each other to map
the contaminated area. With a radiation map of the area, decision makers are able to better assess the extent of
the problem and handle the situation more efficiently. To be successful in this mission, robots need a method
of coordinating their actions in a way that allows for rapid mapping of the contaminated area at a progressively
higher level of accuracy. Using large teams of robots, we avoid placing humans in harm’s way and we quickly
map big areas.

The goal of our work is to design a control algorithm for a group of cooperating robots to map the radiation
levels over an area of interest. The control scheme should be decentralized, in order to be implementable with
an effort that scales with the size of the group. It should take into account the performance of the sensors and
inter-robot communication limitations.

We approach this problem by breaking up the area to be mapped among the team members. This partitioning
of the area is dynamic, because it depends on the locations of the robots. The partitioning of the region is updated
after a robot reaches a new position. The robots follow information gradients and with new data collected they
continuously update their map. After obtaining a map of the area at a desired level of accuracy, the mission is
completed. Because this map is continuously updated, a real-time snapshot can be generated at any time and thus
situational awareness is provided at different confidence levels, even from the first minute.

With relatively inexpensive and capable hardware in communication, computing, and sensing, as well as the
many practical applications, research in cooperative control of mobile robots has become a big area in controls
research. Applications can be found in coordination of robots for topological mapping ( , ;

s ; s ). ( ) use target points to coordinate the team of robots.
A target point is chosen by weighing the cost and utility of each target point. ( ) extends region
frontiers, defined based on information-theoretic considerations, to achieve the underlying coordination of the
group. Frontiers are regions that are on the boundaries of the area which has been explored and the region
which is unexplored. ( ) use occupancy grids with a Bayesian update rule to coordinate
the group for topological mapping. In an occupancy grid, the environment is divided into homogeneous cells
that contain a probability of being occupied by an obstacle. Another application in cooperatlve control is found
in robotic deployment of sensor networks ( , ; , ; s ;

, ). ( ) take advantage of potential fields to achieve the desired motion of the
group. Potential fields place artificial forces on the agents, and through these forces the desired trajectories are
obtained. ( ) and ( ) use gradient climbing algorithms to distribute agents in
an optimal fashion over the area in question. Agents follow gradients that maximize a static density function that
is weighted by a sensor performance function. ( ) use a gradient climbing method
for control of the group as well, but does so without having to partition the area among the team members, which
reduces computational overhead.

Coordination algorithms for robots deployed for topological mapping, typically assume ideal sensors. How-
ever, it is unlikely that approaches assuming ideal sensors can be implemented in the field without significant
concessions in terms of performance of the sensors. Most of the work in sensor network deployment, usually
relies on prior information to coordinate the sensors. This information is static, therefore if the environment
changes these approaches are unable to adapt easily to reconfigure in an optimized fashion.

Most approaches to navigation for groups of robots fall under the category of gradient following ( ,

; s ; s ), “frontier-based” approach ( s s

), or occupancy grids ( ); ( ); ( ). The gradient following
approach, mostly concentrates on sensor coverage, where the group is initially in a random configuration and the
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control algorithm coordinates the group to an optimal configuration in the sense of sensor coverage. This method
is suited to surveillance applications. In the frontier-based approach, the agents move to the boundary of the area
which has been explored and the region which is unexplored. Successively doing this allows for the whole area to
be explored. This type of approach assume that the explored area is completely known after the area is explored.
This approach is not reactive to changes in the environment, because once a region is scanned it is assumed to be
completely known. It does not allows for addressing the question of whether an area should be scanned again.
With the occupancy grid approach, the area to be investigated is partitioned into cells that contain the probabilities
of the cell being occupied by an obstacle. Path planning can then be made based on cost metrics of paths through
these cells. Much like the frontier-based approach, navigation of the agents is done in a way to quickly visit all
cells within the area, rather than investigate the most “interesting” regions.

Most of the research in navigation for groups of robots assumes a static, time-invariant environment. Because
of this, a good model of the environment is required. In application like the one considered in this paper, this
assumption is not realistic. Furthermore, most approaches to group navigation are not reactive with respect to
the sensed environment, and therefore unable to cope with a dynamic environment. One exception is the work

of ( ), where the control of the group is done in a way to reduce state estimate uncertainty.
This type of navigation is named information surfing, because agents are driven to maximize their information
gain. Our approach is similar in spirit, but whereas ( ) perform information surfing for

topological mapping and surveillance, in this report it is applied to radiation map building. The main differences
are the underlying measurement statistics and the time-varying nature of the optimization objective considered
here. In addition, we provide a mathematical proof of convergence to “interesting configurations” and we indicate
how our closed loop system is capable of avoiding getting stuck at singular configurations.

The latter theoretical result needs to be emphasized, because most of the work in this area lacks completeness
in the sense of stability of the control algorithm and the asymptomatic behavior of the group. In this report we
focus on establishing the stability of the coordination algorithm when a time varying information gradient is used.
The outcome is a cooperative motion and measurement strategy that provides real time situational awareness
which is a key tool in helping assess and react to the problem at hand.

2 Problem Statement

For this scenario we assume n holonomic robots, equipped with radiation sensors and capable of omnidirectional
motion. Each robotic agent in the group is assumed to be described kinematically as a single integrator. Therefore,
if p; indicates the planar coordinates of the ith robot, then p; = u;, where u; is its control input. Stacking all robot
coordinates and inputs to two corresponding vectors p and u, we obtain

p=u &)

Each robot is assumed to be able to communicate with its neighboring robots. Its radiation sensor is capable
of measuring radiation counts from source activities ¢, in the range o) < o < 0.

The area to be mapped for radiation is a a simple convex polygon, Q € R?. Each robot has prior knowledge
of the boundaries of Q. A layout of the configuration for the proposed investigation is shown in Figure 1.

The problem that we address can be expressed as follows:
Problem 2.1. Develop a decentralized control strategy for the deployment and coordination of a mobile robot

team, to create a radiation map of a convex polygon. The coordination algorithm should account for sensor
performance limitations as well as communication restrictions within the group.
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Figure 1: The layout of the proposed area to be searched with a team of robots in a random configuration.
Each robot is equipped with radiation sensors as well as radio communication. These robots are actually non
holonomic, and holonomic motion can be approximated in two steps: rotation in place, then straight line motion.

3 The Probabilistic Dynamics of Radiation Measurements

Low-rate counting of radiation from nuclear decay is described by the Poisson statistics, where the probability to
register n counts in ¢ seconds, from a source assumed to emit an average of u counts per second (cts/s) is

(1) ()

P(n,t) = PO . ()

In ( ), the authors describe how to model radiation measurements from a moving source
with a stationary sensor. In our approach we take that same idea but turn it around and look at a stationary source
with a moving sensor. We can describe the expected number of source counts, u, to be registered by a moving
Sensor as

ro1
=x-0 | ——dt 3
p=xa o, G)
where ¥ is the cross sectional area of the sensor, o is the activity of the source, and r(¢) is the instantaneous
distance of the source to the sensor.

We can now describe the probability density function (PDF) associated with the random variable ¢, which is
the total number of counts recorded, for a moving sensor as

fe)= W o, )

where u is expressed in (3).

The expected number of counts u is conditioned on the source having activity o, the cross sectional area of
the sensor being %, and the distance between the source and sensor being r(¢). Therefore the PDF associated with
the random variable c is formally

f(e) =1 (elox, r(1))- (5)
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In ( ) it is seen that Bayes rule allows us to calculate f(ct|c,y, r(¢)) using f(c|o, X, (7). As
new measurements are taken by the sensor, we update the distribution using the equation

f(o) - flelonx, 7 (1))
felo) .

Function f(o) is the PDF associated with having a source with activity o at a distance r(z). In our formulation
we take this to be the uniform distribution, from source activity o(; to a source activity . This allows us to
search and map radiation levels from an arbitrary source with activity o, such that o} < a0 < a. In fact, f(a) is
a function of position too, but when assuming a uniform distribution, the position of the sensor does not matter.
From this point, the PDF expressing our initial guess about the source activity will be expressed as

1 .
— . ifoy<a<oy
o) =< 2% . (7
f(@) {O, otherwise. )

flale,x,r(t) = (6)

Function f,(c) is the marginal density function of f(c)

da. (8)

c!

t_1 c
fc(c):/az [(X'Oﬂfo 2 ) el

g

4 Differential Entropy and Mutual Information

Viewing our radiation sensor as a communication channel between the robot (receiver) and its environment
(sender), we can introduce metrics to describe the transmission of information. An entropy-based metric pro-
vides an intuitive way of measuring how much information we gain by a given measurement. The entropy is
also known as self information, and is related to uncertainty because as the latter decreases the information gain
increases. By using such a measure we can formalize the objective of our control law as reducing the uncertainty
of our belief regarding the radiation levels over the area of interest.

Information theory defines the conditional differential entropy of a continuous random variables A associated
with the transmitted signal, (in our case the radiation source activity), and C associated with the received signal,
(in our case the number of counts registered by our sensors) as follows,

Qo

WAIC) == [ f(olo)-loga - f(ale)dor. ©

g

Note that we are using the definition of the differential entropy for continuous distributions even though the
Poisson distribution is discrete. This because our ultimate objective is to derive a continuous time/space control
laws based on information gradients. Our workspace is continuous even if our measurement events are discrete.

Using (6), denoting the generalized hypergeometric function Q(-) and defining
!

1
d& | ——dr
o r2(t)
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we get a closed form solution for the differential entropy in (9) as follows

,dx
[C(c+1,01-d-x) —T(c+1,02-d-x)]log2

h(A|C) =

c-Qc+1,c+1lic+2,c+2—ay-d-x) (o -d-x) T — (c+ 1) T(c+2,04 -d )
(c+1)%d-y
Qe+ letliet2,c4+2—0pd-x) (0 d- %) — (c+1)*T(c+2,00-d )
(c+1)%d-y
(c+ DT (c+ 1,00 -d-x) (0t -d -y +1og(e 4 %) (o -d %)) —c-T(c+2)log(o)
(c+1)%d-x
~—c-T(c+2)log(on) + (c+ I'(c+1,00 ~d~x)(a2-d-x+log(e0‘2'd'x)(oc2-d-x)“)]

(c+1)2d-y

d-y
log (nmm )T (c+1,05d7) )

10
c!log2 » (10

Note that (10) is a time and position dependent quantity.

It is known that continuous differential entropy can not be directly associated with self-information — contrary
to the discrete scheme ( , ). One concept that does carry over from the discrete setting is the mutual
information

I(X;Y) 2 h(X)—h(X|Y).

Mutual information quantifies the mutual dependence of the two random variables, X and Y. It tells us how
knowing one variable, Y, reduces our uncertainty about the other variable, X. We exploit the property of mutual
information expressed in the following Lemma.

Lemma 4.1. ( ( ) I(X;Y) > 0 with equality iff X and Y are independent.

For our problem, the mutual information is defined as

1(A;C) = h(A) — h(A|C).

Where
(05] (05 1 1 1 1
h(A :—/ ocdoc:—/ ‘1o < )doczoc—oc [ -lo ( )}éK,
( ) o f( ) a; O —04 g Ol — Ol ( 2 1) Olr — Ol £ Ol — 01
which is a constant. With 1(A|C) as in (10), mutual information is described as
1(A;C) =K — h(A[C). (11)

Equation (11) expresses how knowing the number of radiation counts, reduces our uncertainty regarding the
presence of the source A.

S Planning Motion to Gather Information

In this section we describe how to dynamically partition the area based on each robots location and also de-
fine a function to gauge sensor performance. Combining sensor performance and mutual information over the
partitioned area, we are able to describe our objective function. This objective function measures the mutual
information weighted by the sensors performance.
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Let Q be a simple convex polygon in R? including its interior. Let P be a set of n distinct points {py,...,p,}.
Define the Voronoi Partition generated by P to the convex polygon Q to be

Vi(P)={q€ Q| llg—pill <|lg—p)||vp; € P}.

Voronoi partition
vertex

.

Boundary of O

.

Figure 2: Example plot of Bounded Voronoi Partition. Our convex polygon is the rectangular boundary, and each
dot which is not on the Voronoi partition (one of its vertices) represents a robot in its respective Voronoi cell.

Figure 2 shows how the convex polygon Q is partitioned by the Voronoi cells created by V;(P). To define the
boundaries of its cell, robot i at position p; only needs to know the boundary of Q and the positions of its nearest
neighbors. A neighbor to robot i (in the sequel identified with its position p;) is any other point p;, such that the
Voronoi cells of p; and p; share a common edge.

A performance function f : Ry — R is a non-increasing and piecewise differentiable map with finite jump
discontinuities, ( , ). The performance function is a quantitative model of the signal-to-noise ratio
(SNR) of our radiation sensor as a function of the distance of the sensor from the source. In nuclear search, the
SNR falls as the distance R to the source increases proportionally to R? ( , ). Let us define the
performance function as

o 71)
Ip<(R2qPi||) - if R <|lg—pi|| <R,
flla—pil) = e"p<uez—nq—mm)*e“’<<||q—piu—R2>> ‘ (2
1 if0 < |lg—pil| < 1R,
0 if R<|qg—pill-

Distance R is the sensor detection range which is considered to be a constant, and ||g — p;|| is the Euclidean
distance from the sensor to the source. Constructing f in this manner ensures that f(||g — p;||) is continuously
differentiable ( , ). From Figure 3, it is seen that the performance function is identically equal to one
for part of the sensing range. This limit is defined to be approximately 0.5. This is due to the geometry of the
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sensor, where normally a perfect reading can be obtained along the whole length of the sensor, and not just at a
particular point. By construction, f(||g— pi||) >0V p;,q, fori=1,...,n.

Edge of sensor casing

/

Distance

0.2 0.4 0.6 0.8 1

Figure 3: An example of the type of performance function considered for the radiation sensor used, assuming the
length of the sensor protective casing to be 0.05 m.

The radiation mapping problem considered here falls in the category of multiple sensor coverage control
because we are trying to place the robots in a configuration that is optimal with respect to information gained
from sensors. This is very similar to the area covering problems in robot surveillance, where they are placed in
a configuration to optimize there sensor coverage over the area. Most of the work in coverage control addresses
the case where the environment to be covered is time invariant (static), as in ( , ) where the goal
is to maximize the following function

#(p)= | 1l pilota)aa

We focus our attention on a dynamic version of this problem, where the underlying density function ¢ is time
dependent. The mutual information, I(g, p;,¢) will play the role of density function for this problem. Let us define
the objective function for the problem considered here as

we) - |

f(lg = pil)I(g; pi,t)dg. (13)
Vi(P)

6 Control Design and Stability Analysis

Assume that the kinematics of each robot i are simply described as

Pi = uj, (14)
where u; is the control input, designed to make the robot follow the gradient of mutual information in the following
way
9f (|lg — pi dl(q,pit
w=-[[ NPy g [ sla-pil) 2L g s
Vi(P) Pi Vi(P) Di

The following Lemma is used in the proof of our main result. The proof of this Lemma is given in Appendix A.

Lemma 6.1. Let I(q, p;,t) be the mutual information of the radiation sensor information channel. Then,

lim al(qapht)

=0.
t—e Ot
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Proposition 6.2. Consider the gradient field defined by (14) —(15). Then the system stabilizes at configurations
that (locally) minimize the information flow from each robot as expressed by the product I1(q,p;,t)f(|lg— pil),
fori=1,....n

Proof. Notice that

I, pi,t) f(llg—pill) _ 9f(lg—pill),

dl(q, pist)
api apl .

opi

(%Pn )+f(Hq pl”) (16)

We choose (13) to be a Lyapunov function candidate. Calculating the derivative of W(P) along the trajectories
of the system we obtain

WP = OW(P) . n dW(P)

ap: DT T o
= {/ M I(q, pist dq+/ flllg— pzll)qu - Pi
i(P) Pi pz
_ (CI Pi, )
+/ flg—pill) g, 4 (17)

Substituting (15) into (17), the derivative along the trajectories of the system becomes

y _ (Hq pl”) / qua / (%Piat)
we)==[ [ D pnage [ sl 52000+ [ pla—pl) H Gy

We establish our main result by contradiction: assume that the system does not stabilize to the configurations

where
al(qvplat)f(‘lq_le) -0
api
Then given
ol i
t—o0 ot

by Lemma 6.1, after sufficient time 7 there will be an € > 0 such that

‘ (g, pi,t) f(llg — pil)
api

‘>s Vi>T.

It follows that

[/i(p)

Define the following functions:

Iflllg—pil),

op: (q Piyt

 Dis 2
oo [ et p ™G ag] > [ eag
Pi i(P)

Wie) 2 | g
02 [ rlla-p g

The derivative of W/ along the trajectories of the system can now be bounded as follows

‘W(P) < —Ws(e)+B() < —(1—0)Ws(e) — 6W3(e) +B(7). (18)
Looking at the last two terms in the right hand side of (18), and knowing that

ol i\t
lim (%ph )

=0
1—00 ot ’



UNM Technical Report: ME-TR-07-001

we conclude that

. aI(‘LPiJ)
1 —pil)—=—"~dg =0.
im (P)f(\lq pill)—5—d4

[—o0 Vt

Since Wj is a strictly increasing function, there exists a time T such that —6W3(e) +(t) <0 V¢ > 1. After time
T, W(P) < —(1—0)Ws(e) £ (). Notice that ¥() is a constant because it only depends on €. Therefore we can
directly integrate for y(¢) as follows y(¢) = ¥(0) — (1 — 0)W3(€)¢. From the Comparison Lemma ( , ) it
follows that

W(P) <A(t).

This implies that there exists a finite time where W (P) < 0. But this is a contradiction, since by construction
W(P) > 0. Hence the assumption that system does not stabilize is invalid; the system indeed converges to
configurations where

dl(q,pi,t)f(llq— pill)
opi

=0. (19)

O

7 Discussion

In Section 6, the stability of the closed loop system (14)-(15) is established. However, the information surfing
control strategy of equation (15) does not directly guarantee the global optimization of sensor information flow,
since the set of possible equilibrium points includes all local maxima and minima of 1(q, p;,t) f(||lg — p:l|)-

Nevertheless, efficiency and performance are not compromised. For in the case of local maxima, and with no
control input given to the robot, it continues to take measurements at its current location. Because measurements
are continuously being taken, the mutual information at that location drops, the information gradient in this area
changes, and eventually the robot finds a direction of motion.

In the case of local minima, the robot does have good motion directions, but none of them stands out, and
it is uncertain if more measurements can identify a single direction through the mutual information gradient.
In this case, it is the group synergy that comes to the rescue: the motion of other robots and their distributed
measurements inevitably change the shape of the mutual information distribution, making the local minimum
at which one robot may be trapped “erode” with time. Therefore with a multiple robot approach and a shared
density function, the likelihood of a robot getting stuck and remaining stuck is significantly reduced compared to
the case of a single robot.

Thus, and due to the time-asymptotic properties of mutual information, no local extremum is a positively
invariant configuration for the system. The distributed nature of our algorithm in conjunction with sharing of
information on the evolution of the density function, establishes a synergy between mobile sensors: in our multi-
agent information surfing strategy the whole is more than the sum of its parts.
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A Proof of Lemma 6.1

Taking the mutual information defined in equation (11), we find its time derivative to be
dl(q,pi,t) _ dhdd
ot od ot
The first partial derivative takes the form
g—z = gAi, (20)
where A through A1, are fractional terms that make up the whole expression. For the first term

(—=1=)T(1+c,0q-d-x)?

A 2
' (T o)d-el(T(1+c,00-d-x) —T(1+c,0 -d-x)?))log2’

we find that
limA; =0,

d—oo

due to having c! in the denominator, which is the total number of radiation counts collected during the mission.
Notice that the total number of counts ¢, grows much faster than d does, because of the added effect of background

11
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radiation and source. Other terms that show this same behavior are:
(—1=o)T(1+c,0n-d-x)?
(14+c¢)d-c(T(1+c,ap-d-y) —T(1+c,0oq-d-y)?))log2’
a4, (C1= ¢)e(mR)AT(1 + ¢, oy dy) (o de® Py (o dy)¢ (1 + ady L (1 +¢) — 2e"H1~%2)AL(1 + ¢, 00dY,))))
; (I+c)d-c(T(1+c,0p-d-y) —T(1+c,o-d-y)?))log2 ’
Ao (o (=1 — c)el o)X 02diy (04 dy )T (2 4 ¢)(D(2+ ¢, 0udX) — T(2+ ¢, 0dy) +cT(1+¢)log(Z)))
(I+c)d-c(T(1+c,0p-d-y) —T(1+c,o-d-y)?))log2
O (=1 — ¢)el 1 0Murodty (1 4 ¢+ apdyl'(2+¢))T(1 + ¢, 0d, )
(14c)d-c!(T(1+c,op-d-x) —T(14c, 0 -d-%)?))log2
o (—1—c)el=M=%)dx+amdiy (2 4+ o)[(2 + ¢, 0 d, )
(I+co)d-c(T(1+c,00-d-y) —T(1+c,0-d-y)?))log2’
o (—1 —¢)el =4 =dxtady (1 + ¢, 0y dy) (14 ¢+ T(2 4 ¢) (o dy, + Log(
(14+c)d-c!(T(14c,00-d-x)—T(1+c,0-d-x)?))Log(2)
oy (—1 —c¢)el == t0dy (1 + ¢, oady) (14 ¢ +T(2 4 ¢) (o dy, + log(
(14+c)d-c!(T(1+c,0p-d-x) —T(1+c o1 -d-y)?))log2

Ay =

)

As = (ody)

)

Ag = (0dy)

et o)
2T 0ndy)c

)

A7 = (0ndy)

e 2% (apdy)* )
e~ 19X (o1 dy)°

Ag = (0ndy)

The last four terms that make up (20) are the ones that involve the generalized hypergeometric function:

 adedel 10ty (o dy) Q1+ ¢, 1+ ¢,2+¢,2+ ¢, —o dY)

Ao = (11 02(0(1 + ¢, 00dy) — T(I + ¢, 00dy) 2 log2 !
g = adede =1 =0)dx+ My 2 (0 dy )2 Q1 4¢, 1+ ¢,2 4+ ¢,2 + ¢, —0ady)
(14¢)2(C(1 4 c,oqdy) —T(1+4c,0pdy))?log2 ’
Ay = (o opcdel M =02)dxF+dxXy 2 (o dy ) Q(1 4 ¢, 14-¢,2+¢,2 + ¢, —ody))
(14¢)2(T(1 +c,oudy) —T(1+c,0dy))*log?2 ’
Ay = (01 Opcdel ~0—02)dx+02dXy 2 (o dy Yo Q1+ ¢, 1 4¢,2 4+ ¢,2 + ¢, —0lady)) .

(42T +¢,ady) —T(1 +¢,00dy))?log2

Recall that the generalized hypergeometric function € is defined as

= (14c¢)u(l+¢), —of
Q(l+4+c,1+c¢,24¢,24+c,—aqdy) = .
( 14%) n;)(uc)n(zﬂ-)n !

)

where (14+¢), = (1+¢)(1+c+1)(14+¢+2)---(c+n). This function exhibits oscillatory behavior with n, and
because of this the net effect is
Q(l+c,1+¢,24¢,24c¢,—oqdy) =0.

In fact, any reasonably large finite term approximation of Q will yield outcomes that are numerically insignificant.
For this reason, we get no contribution from the terms Ag through Aj», and (20) becomes

oh 3
% :;Ai.

Note now, that for all terms A; through Ag it holds

oh

lim — =0,

12
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Figure 4: The behavior of % as d grows large, under the conditions: oy = 1 cts/s, ap = 10 cts/s, x =1 cm, ¢ = 2d.

and with ¢ growing much faster than time (even in the case of only background radiation),

lim dl(q,pit) i ohod

fm == ~imsga =Y

This asymptotic analysis is verified in plots of the rate of change of the entropy, as a function of variable d, as
shown in Figure 4.
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